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Is BDNF sufficient for information transfer
between microglia and dorsal horn neurons
during the onset of central sensitization?
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Abstract

Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn
neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides,
cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible
that much of the information transfer between activated microglia and neurons, at least in this context, may be
explicable in terms of the actions of brain derived neurotrophic factor (BDNF). Microglial-derived BDNF mediates
central sensitization in lamina I by attenuating inhibitory synaptic transmission. This involves an alteration in the
chloride equilibrium potential as a result of down regulation of the potassium-chloride exporter, KCC2. In lamina II,
BDNF duplicates many aspects of the effects of chronic constriction injury (CCI) of the sciatic nerve on excitatory
transmission. It mediates an increase in synaptic drive to putative excitatory neurons whilst reducing that to inhibi-
tory neurons. CCI produces a specific pattern of changes in excitatory synaptic transmission to tonic, delay, phasic,
transient and irregular neurons. A very similar ‘injury footprint’ is seen following long-term exposure to BDNF. This
review presents new information on the action of BDNF and CCI on lamina II neurons, including the similarity of
their actions on the kinetics and distributions of subpopulations of miniature excitatory postsynaptic currents
(mEPSC). These findings raise the possibility that BDNF functions as a final common path for a convergence of per-
turbations that culminate in the generation of neuropathic pain.

In experimental animals, peripheral nerve damage, such
as that generated by chronic constriction injury (CCI) of
the sciatic nerve, induces pain-related behaviours that
are accepted as a model for human neuropathic pain
[1,2]. Seven or more days of CCI promotes release of
cytokines, chemokines and neurotrophins at the site of
nerve injury. These interact with first order primary
afferent neurons to produce an enduring increase in
their excitability [3-11]. The central terminals of these
damaged afferents exhibit spontaneous activity and
release additional cytokines, chemokines, neuropeptides,
as well as ATP and brain derived neurotrophic factor
(BDNF) [12-23] into the dorsal horn. These exert long
term effects on dorsal horn excitability[14,24,25] and/or
alter the state of activation of spinal microglial
cells. Microglia stimulated in this way release of a

further set of mediators, again including (BDNF)
[13,14,17,18,24-30], that promote a slowly developing
increase in excitability of second order sensory neurons
in the dorsal horn of the spinal cord (Figure 1). This
‘central sensitization’ which develops progressively dur-
ing CCI, [16,31-34] is responsible for the allodynia,
hyperalgesia and causalgia that characterize human neu-
ropathic pain [35]. Whereas microglial activation trig-
gers pain onset, enduring activation of astrocytes is
thought to be responsible for the maintenance of central
sensitization [16,17,36-40]. Changes in thalamic and cor-
tical physiology [35,41], long-term sensitization of per-
ipheral nociceptors [16,35,42,43] and changes in
descending inhibition from the rostral ventromedial
medulla and periaqueductal grey [16,35,42,44-47] and
are also involved. Although neuropathic pain can result
from a variety of insults to peripheral nerves, including
diabetic, postherpetic and HIV-AIDs related neuropa-
thies [48,49], axotomy [3,4,50], nerve crush [51] or com-
pression injury [52], the appearance of ectopic action
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potentials and spontaneous activity in primary afferent
fibres seems to be the initial trigger that initiates central
sensitization in many, if not all, types of peripherally
generated neuropathic pain [35].
Despite the documented importance of interleukin 1b

(IL-1b) and tumor necrosis factor a (TNF-a)
[8,29,30,53-58], MCP-1/CCL-2 [7,18,38], ATP [13,59],
BDNF [14,21,24,25,60-62] and fractalkine [63-65] in cen-
tral sensitization, findings to be reviewed below point to
the possibility that BDNF is alone capable of bringing
about one critical step; the interaction between activated
microglia and neurons. It may therefore serve as a final
common path for a convergence of perturbations that
culminate in the generation of neuropathic pain [16,35]
(Figure 1).

A role for BDNF in CCI-induced increase in dorsal
horn excitability
BDNF is increased in dorsal root ganglia (DRG) and
spinal cord following crush or section of peripheral
nerves [66-72]. It is released within the spinal cord fol-
lowing afferent fibre stimulation [23]. This release is
Ca2+ dependent and is favoured by high frequency burst
activity [23,73]. Several lines of evidence are consistent
with the central role for BDNF in the initiation of cen-
tral sensitization [21,70,71,74,75]. For example, acutely
applied BDNF sensitizes lamina II neurons to nocicep-
tive input [76]. It also increases substance P release [77],
enhances spinal responses to NMDA [78] and increases
the frequency of miniature EPSCs (mEPSC) [79].
Intrathecal injection of BDNF produces hyperalgesia in

Figure 1 Scheme to show interactions between primary afferents, dorsal horn neurons microglia and astroctyes in the context of
chronic pain. Literature citations supporting the illustrated interactions include; IL-1b, MCP-1/CCL-2 and TNF-a in acute and chronic excitation
of primary afferents [3-9]; MCP-1/CCL-2, ATP, BDNF and fractalkine in microglial activation [13,18,59,60,64,65]; autocrine actions of TNF-a in
microglia [120]; IL-1b release from microglia [55,57] and its actions on neurons [30,98]; BDNF release from microglia and its actions on neurons
[14,21,24,25,61]; role of MCP-1/CCL-2 in astrocyte-neuron interactions [38], actions of TNF-a on astrocytes and neurons [30,58]. To the best of our
knowledge actions of IL-1b on astrocytes in spinal cord has not been demonstated but there is evidence for this interaction in other neuronal
systems [97,121].
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normal mice whereas injection of antisense oligodeoxy-
nucleotides directed against either BDNF or trkB, pre-
vents inflammation-induced hyperalgesia [80]. Similarly,
thermal hyperalgesia and allodynia produced by periph-
eral nerve ligation are attenuated in BDNF (+/-) hetero-
zygous knock-out mice. They are also reduced following
intrathecal injection of TrkB/Fc; a chimeric binding pro-
tein which sequesters BDNF [71].
The observations that 1) peripheral nerve injury

attenuates GABAergic primary afferent depolarization
[81], 2) that both CCI and BDNF reduce the amplitude
of spontaneous and/or evoked IPSC’s in dorsal horn
neurons [14,33] and 3) that pharmacological blockade of
the actions of inhibitory neurotransmitters promote allo-
dynia [82-84] strongly implicate impediment of inhibi-
tory neurotransmission in the development of central
sensitization [16,81,84,85]. Mechanistically, this is
thought to involve alterations in GABA release [33] as
well as down regulation of the chloride transporter
KCC2 in lamina 1 neurons by microglial-derived BDNF
[14,86]. The resultant perturbation of the chloride gradi-
ent leads to attenuation of the inhibitory actions of
GABA/glycine. In some neurons, the chloride gradient
may actually reverse so that inhibition is converted to
excitation [87]. Disinhibition also permits access of sen-
sory information from low threshold Ab fibres to pain
projection neurons in lamina I [88-90]. This “opening of
polysynaptic excitatory synaptic pathways” provides a
physiological basis for the development of allodynia [16].
Although it has been reported that viral vector-driven

expression of BDNF and grafting BDNF-expressing cells
into the spinal cord reduces signs of pain associated with
CCI [91,92] this may reflect analgesic actions within the
midbrain [93-95]. Observations from our laboratory are
consistent with a pro-nociceptive effect of BDNF, at least
at the level of the spinal cord [24,25]. These and other
observations raise the possibility that BDNF is alone cap-
able of conveying many aspects of the communication
between activated microglia and neurons during the
onset of central sensitization. This appears to occur
despite the presence and potential participation of media-
tors such as IL-1b [5,20,30,54,96-98], TNF-a [58,99],
fractalkine [37,63,64,100,101], chemotaxic cytokine
ligand 2 also known as monocyte chemoattractant pro-
tein 1 (CCL-2/MCP-1) [7,18,100,101]. These may exert
their actions at other points in the central sensitization
process (Figure 1) or perhaps function in a parallel fash-
ion to BDNF in microglial - neuron interactions.
BDNF immunoreactivity starts to increase 3 days after

the initiation of peripheral nerve injury and its levels
remain elevated for several weeks thereafter [66]. We
therefore applied BDNF to spinal neurons for 5-6 days
to test whether it produces a global increase in spinal
cord excitability in a similar fashion to CCI [35]. This

involved the use of an organotypic culture of rat spinal
cord [102,103] that allowed us to expose mature neu-
rons to BDNF for prolonged periods [24,25]. Effects on
excitability were monitored by confocal Ca2+ imaging
using Fluo 4-AM. This was done in two ways, we either
challenged neurons with high concentrations of extracel-
lular K+ (Figure 2A and 2B) or stimulated the dorsal
root entry zone (50 Hz; 5 s; 100 μS pulse width) and
observed the resultant elevation in intracellular Ca2+.
Responses were collected from neurons (regions of
interest) in control cultures or in cultures exposed to
BDNF for 5-6 d. Ca2+ responses were evoked by nerve
stimulation once every 5 min and although there was
variability in the amplitude of the responses, those
evoked by the 5th and 6th stimulus (S5 and S6) were
quite consistent (Figure 2C). Figure 2D compares sam-
ple S5 and S6 responses from control neurons with
those from neurons cultured with 50 or 200 ng/ml
BDNF for 6 days. Those evoked in the presence of the
higher concentration of BDNF are clearly larger. The
summary of responses of larger populations of neurons
illustrated in Figure 2E shows that 200 ng/ml BDNF,
but not 50 ng/ml, significantly increased the Ca2+

responses (Figure 2E).
Using ELISA, we found that the ambient level of

BDNF in control cultures was 26.2 ± 8.7 ng/ml (n = 3)
[103]. Because this was not significantly changed after
6 d exposure of cultures to 50 ng/ml BDNF, where the
measured BDNF concentration was 43.7 ± 7.3 ng/ml
(n = 3; P = 0.056), this may explain the lack of effect of
medium containing 50 ng/ml BDNF in Figure 2E. By
contrast, the measured BDNF concentration was signifi-
cantly increased to 92.4 ± 13.0 ng/ml (n = 3, P < 0.002)
after 6 d exposure of cultures to medium containing
200 ng/ml BDNF. As mentioned, this concentration of
BDNF promoted a significant increase in excitability was
observed (Figure 2E). Metabolism, binding or break-
down of some of the exogenous BDNF by the cultures
may explain the lack of correspondence between the
applied and measured concentrations.
To test whether CCI would be expected to increase

excitability in the cultures, we took advantage of the
known role of microglia in central sensitization
[12-20,104]. We found that the excitability of cultures
was increased when they were exposed to medium con-
ditioned by exposure to lipopolysaccharide activated
microglia (activated microglia conditioned medium
aMCM [105]). This increase in excitability could be pre-
vented by sequestering BDNF with the binding protein
TrkBd5 [25,106]. This implicates BDNF in the increased
excitability produced by aMCM and supports its role as
a mediator of pain centralization.
In another series of experiments, we noted that excit-

ability of the cultures could also be increased by 6-8 d
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exposure to 100 pM interleukin 1b (IL-1b) [98]. Despite
this, we do not believe that this cytokine plays a major
role in the microglia - neuron interactions that lead to
central sensitization. This is because the actions of CCI
and BDNF display remarkable similarity at the cellular
level [24,25] whereas the cellular actions of IL-1b are
quite different from those seen with CCI [98] (see
below).

BDNF and increased excitability of superficial
laminae
We have found that CCI produces a specific set of
changes in excitatory synaptic transmission in lamina II.
Neurons in this region can be classified according to
five electrophysiological phenotypes according to their
firing pattern in response to depolarizing current. These

are defined as tonic, delay, irregular, phasic and transi-
ent firing neurons (Figure 3A-E) [24,102,107,108].
Although CCI has minimal effects on the intrinsic mem-
brane properties of these five neuron types, it produces
a discrete pattern of changes in excitatory transmission
across the whole population; the amplitude and fre-
quency of both miniature and spontaneous excitatory
postsynaptic currents (mESPC and sEPSC) are increased
in most neuron types but are reduced in tonic firing
neurons (Figure 3F). This pattern of changes may be
referred to as an ‘injury footprint’ [107].
The observation that BDNF produces a similar ‘injury

footprint’ to CCI (Figure 3F-H) [24,25] raised the possi-
bility that it is alone capable of communication between
microglia and neurons in the context of central sensiti-
zation. As with CCI, excitatory synaptic drive to delay,
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Figure 2 Effect of electrical stimulation and 35 mM K+ on intracellular Ca2+ signals in substantia gelatinosa neurons. A. Confocal image
of fluo-4 filled neurons in substantia gelatinosa region of organotypic culture B. Second image of the same field as A after challenging with 35
mM K+. Note increased fluorescence intensity indicative of increases in intracellular Ca2+. C. Responses to a series of 5 sec 50 Hz stimuli (100 μS
pulse width) to the dorsal root entry zone (S1 - S8) delivered at 5 minute intervals. Staggered traces show responses from two different neurons.
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200 ng/ml BDNF. Note enhanced responses in 200 ng/ml BDNF, * = P < 0.05 relative to appropriate control (One-way Anova with Tukey Kramer
multiple comparisons test). Modified from reference [103]
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Figure 3 Neuron types and injury footprints produced by CCI and BDNF. A-E Firing patterns of tonic, delay, irregular, phasic and transient
neurons in response to depolarizing current commands. F. Injury footprint produced by CCI. Neuron types are listed across the top of the
scheme and four indices of excitatory synaptic transmission are listed to the left. Neuron specific parameters increased (↑; such as sEPSC
amplitude in delay neurons) are coded green. Neuron specific parameters decreased (↓; such as sEPSC amplitude in tonic neurons) are coded
red. Data from [107]. nd = not determined. G. Injury footprint produced by BDNF. Neuron types are listed across the top of the scheme and four
indices of excitatory synaptic transmission are listed to the left. Neuron specific parameters increased (↑; such as sEPSC amplitude in delay
neurons) are coded green. Neuron specific parameters decreased (↓; such as sEPSC amplitude in tonic neurons) are coded red. Data from [24].
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squares are yellow. I. Injury footprint produced by IL-1b. Neuron types are listed across the top of the scheme and indices of excitatory synaptic
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irregular, phasic and transient neuron types is increased
by BDNF whereas that to tonic neurons is decreased
[24,25]. Since many tonic neurons are inhibitory
[109,110] and delay neurons are probably never inhibi-
tory [111], we suggested that both BDNF and CCI
increase excitatory synaptic drive to excitatory neurons
whilst reducing that to inhibitory neurons [24,107].
This similarity was also seen when we used more exact-

ing criteria to identify putative inhibitory cells using both
morphological and electrophysiological criteria. Thus
both CCI and BDNF reduced excitatory synaptic drive to
putative inhibitory tonic islet central neurones (TIC neu-
rons) [25] and increased it to putative excitatory delay
radial neurons (DR neurons) [25]. We also identified
GABAeric neurons as those which expressed glutamic
acid decaboxylase-like immunoreactivity. BDNF also
reduced excitatory synaptic drive to these neurons [25].
Although IL-1b increased overall dorsal horn excit-

ability, its effect on tonic and delay neurons differed

from that of BDNF and CCI. Thus while IL-1b
increased the amplitude of sEPSC’s in delay neurons,
sEPSC frequency was unaffected and neither the ampli-
tude nor the frequency of sEPSC’s were affected in tonic
neurons [98]. These observations argue against IL-1b as
a major messenger for transfer information between
microglia and spinal neurons. It may however be
involved in signalling between damaged peripheral tissue
and primary afferents [5,6,9,112]

Further parallels between the actions of BDNF
and CCI on tonic neurons
Besides reducing mEPSC and sEPSC amplitude and fre-
quency (Figure 3G), BDNF reduced the time constant
for mEPSC decay(τ) in tonic neurons in organotypic cul-
ture by 35% [24]. Superimposed events from a typical
control tonic neuron and from another neuron from a
BDNF-treated culture are shown in Figures 4A and 4B.
The white traces show superimposed average data from
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Figure 4 Analysis of the effects of BDNF on mEPSCs of tonic neurons (in vitro). A. Superimposed recordings of 3 min of mEPSC activity in
a control tonic neuron, average of events presented as superimposed white trace. B. Similar superimposed recordings from a tonic neuron in a
BDNF-treated culture. C. Averaged events from the neurons illustrated in A and B. D. Averaged events normalized to control size. Note marked
increased rate of decay of current. E. Distribution histogram (1 pA bins) for amplitudes of 1100 mEPSCs from control tonic neurons. Fit of the
data to three Gaussian distributions represented by black lines. F. Similar histogram and fit to three Gaussian functions for 877 mEPSCs from
BDNF-treated neurons: Insets in E and F. Graphs to show effect of number of Gaussian fits (peaks) on the value of c2 divided by the number of
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the two neurons and these are compared in Figure 4C.
The scaled averages presented in Figure 4D emphasize
the increased rate of mEPSC decay in ‘tonic’ neurons
from BDNF-treated cultures.
As well as reducing the amplitude and frequency of

mEPSC’s and sEPSC’s (Figure 3G), CCI produced a 35%
reduction in τ in ex vivo tonic neurons (see Table 1).
Interestingly, this was numerically the same reduction as
was seen with BDNF treatment. For sham operated tonic
neurons, τ = 7.3 ± 0.3 ms (n = 598) and this was reduced
to 4.94 ± 0.62 ms (n = 236) for mEPSCs recorded from
animals subject to CCI (t-test, P < 0.0001). These num-
bers as well as the mean mEPSC amplitudes (data from
Balasubramanyan et al [107]) were used to model the
average events depicted in Figures 5A and 5B; (see Lu
et al [24] for methods).
Three populations of mEPSC amplitudes were identi-

fied in control tonic neurons in organotypic slices by fit-
ting Guassian curves to binned histogram data. These
appeared at 12.1 ± 0.3, 19.7 ± 2.2 and 35.7 ± 7.4 pA

(Figure 4E). By contrast those in BDNF-treated neurons
(Figure 4F) had smaller amplitudes with peaks at at 7.3
± 0.2 and 10.9 ± 1.2 and 19.4 ± 2.4 pA. The insets to
Figures 4E and 4F show that fitting with 3 peaks pro-
duced the optimal reduction in c2 (see figure legends
for methods). Figure 4G shows superimposed plots of
the three Gaussian distributions of mEPSC amplitude
from control and BDNF tonic neurons for comparison.
Similar effects were seen in mEPSC population ampli-

tudes in tonic neurons (ex vivo) after CCI. Only two
populations of mEPSC amplitudes of 15.3 ± 1.3 and
10.8 ± 0.2 pA were seen in tonic neurons from sham
operated animals (Figure 5C). Two populations of
mEPSC amplitude were also seen in neurons from CCI
animals (Figure 5D) but these had smaller peak ampli-
tudes at 11.6 ± 0.1 and 8.7 ± 0.03 pA. The insets to Fig-
ures 5C and 5D show that fitting with 2 peaks produced
the optimal reduction in c2 (see Figure legend) with lit-
tle further reduction in c2 when a third peak was fitted.
Figure 5E shows a superimposition of the Gaussian
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distributions of mEPSC amplitude from sham and CCI
tonic cells for comparison.
Thus for tonic neurons, the effects of CCI and BDNF

on both mEPSC time constant of decay (τ) and on the
amplitude of subpopulations of mEPSC’s are very simi-
lar. This similarity is illustrated further in Table 1.

Further parallels between the actions of BDNF
and CCI on delay neurons
Unlike its action on tonic neurons, BDNF did not
change the overall τ for recovery of mEPSC in delay
neurons in organotypic culture (control τ = 10.7 ± 0.6
ms, n = 766; BDNF τ = 9.5 ± 0.8 ms, n = 1177; t-test,
P > 0.2). Superimposed individual events from a typical
control and a typical BDNF-treated delay neuron are
shown in Figures 6A and 6B. Figure 6C shows average
data from these cells superimposed. Scaled averages are
presented in Figure 6D.
By contrast, CCI increased τ for mEPSC’s in ex vivo

delay cells. This increased from 5.0 ± 0.1 ms (n = 624)
for events from delay neurons in sham animals to 6.9 ±
0.22 ms for events in animals subject to CCI (n = 1066,
P < 0.0001). These numbers as well as the mean
mEPSC amplitudes (data from Balasubramanyan et al
[107]) were used to model the averaged responses
depicted in Figures 7A and 7B; (see Lu et al [24] for
methods).
Three populations of mEPSC amplitude were identi-

fied in control delay neurons in organotypic culture by
fitting Gaussian curves to binned histogram data. These
appeared at 9.3 ± 1.5, 12.7 ± 9.0 and 19.0 ± 12.3 pA in
control neurons (Figure 6E) and at very similar ampli-
tudes (8.1 ± 0.2, 12.5 ± 1.38 and 20.5 ± 4.3 pA) in
BDNF-treated delay neurons (Figure 6F). Insets to

Figures 6E and 6F show optimized c2 values for using 3
peaks to fit the data. Figure 6G is a superimposition of
the distributions for comparison between control and
BDNF-treated neurons. Since BDNF increases overall
mEPSC amplitude in delay neurons (Figure 3G), we
tested whether changes in the number of events contri-
buting to each of the three distributions could explain
this increase. This was done by measuring the area
under the Gaussian curves in Figure 6G and expressing
the results as percentage of the total area (Figure 6G
inset). Surprisingly, similar proportions of the total
events made up each of the three peaks under control
and BDNF-treated conditions. However, further inspec-
tion of the histogram data obtained from BDNF-treated
cells revealed a new population of very large events
(indicated by arrow in Figure 6F). Whereas only 30
events in the control data had amplitudes >30 pA, 106
events in data from BDNF-treated delay neurons fell
into this category. The appearance of this new popula-
tion of large events is emphasized by the presentation of
data for mEPSCs >30 pA in Figures 6H and 6I.
Although few events appear in this group, those that do,
have large amplitudes. Thus, the emergence of a new
group of large mEPSC amplitude events in BDNF may
have a noticeable effect on overall mEPSC amplitude.
Only two populations of mEPSC amplitude were seen

ex vivo in delay neurons from sham operated animals.
Peaks appeared at 12.7 ± 0.2 and 15.1 ± 0.1 pA in sham
delay cells (Figure 7C) and at (7.6 ± 0.1 and 10.1 ± 0.3
pA) in CCI delay cells (Figure 7D). Insets to Figures 7C
and 7D show optimized c2 values for using 2 peaks to
fit the data. Figure 7E is a superimposition of the distri-
butions for comparison between neurons from sham
operated animals and those subject to CCI. Whilst the

Table 1 Comparison of the effects of CCI and BDNF on the characteristics of miniature excitatory postsynaptic
currents (mEPSC) in tonic and delay neurons.

CCI BDNF

ex vivo experiments Organotypic culture experiments

Tonic τ (mEPSC decay) ↓ 35% ↓ 35%

Peak 1 Peak 2 Peak 1 Peak 2 Peak 3

(sham or control) mEPSC peak amplitudes 15 10.8 12 19.7 35.7

(CCI or BDNF) mEPSC peak amplitudes 11.6 8.7 7.3 11 19.4

Change in mEPSC peak ampltudes ↓23% ↓19% ↓39% ↓44% ↓46%

Change in overall mEPSC amplitude ↓23% ↓18%

CCI BDNF

Delay τ (mEPSC decay) Unchanged ↑38%

Peak 1 Peak 2 Peak 1 Peak 2 Peak 3

(sham or control) mEPSC peak amplitudes 8.5 14.7 9.3 12.7 19

(CCI or BDNF) mEPSC peak amplitudes 7.6 10.1 8.1 12.5 20.5

Change in mEPSC peak ampltudes ↓11% ↓31% ↓13% ↓1.5% ↑8%

Change in overall mEPSC amplitude ↑12% Due to appearance of small group
of high amplitude responses (Figure 7)

↑10% Due to appearance of small group of
high amplitude responses (Figure 6)
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decrease in amplitude of the smaller population is highly
significant (P < 0.0001), that of the larger population is
not (P > 0.25). Nevertheless, these data appear to con-
tradict the finding that CCI increases overall mEPSC
amplitude in delay neurons (Figure 3F). There are at
least two explanations for this discrepancy; first, when

we examined the number of events contributing to each
of the two peaks (Figure 7E inset) we found that the
majority of events in control neurons fell under the
smaller peak, whereas after CCI more events contribu-
ted to the larger peak. Also, when we examined very
large events we found that a small population of very
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large events appeared in delay neurons from the CCI
animals (Figure 7F and 7G). Appearance of this new
population of large events is reminiscent of the effect of
BDNF on mEPSC’s of delay neurons (Figure 6H and 6I).
Figure 7G shows that whilst only 18 mEPSC’s in neu-
rons from sham operated animals exceeded 25pA, 33
events exceeded this amplitude in neurons from animals
subject to CCI.
Table 1 also compares the effects of BDNF and CCI

on delay neurons. Although there is some similarity in
the consequences of the two manipulations, this is not
as obvious as that seen with tonic neurons.

Conclusions
Many of the findings discussed above are consistent
with the possibility that BDNF is alone capable for the
transfer of information between activated microglia and
neurons during the process of central sensitization. The
results supporting this argument are:-

1. In terms of excitatory synaptic transmission, both
BDNF and CCI promote a similar ‘injury footprint’
when the properties of five different neuronal phe-
notypes are considered (Figure 3) and neither
manipulation appears to affect intrinsic neuronal
properties such as excitability, input resistance or
rheobase [24,107]. Because this injury footprint is
not reproduced by IL-1b [98], this argues against its
involvement in the final step of transfer of informa-
tion between microglia to neurons.
2. Detailed analysis of the action of BDNF and CCI
on excitatory synaptic transmission to tonic neurons
reveals that the two manipulations produce close to
identical changes on the kinetics and amplitudes of
mEPSC’s (Figure 4 and 5, Table 1).
3. A similar analysis of actions on delay neurons
show that the actions of CCI and BDNF on mEPSC
properties are similar, although not identical (Figure
6 and 7, Table 1).
4. Numerous lines of evidence from Yves De
Koninck’s laboratory in Quebec and Mike Salter’s
group in Toronto implicate microglial-derived BDNF
in attenuation of Cl- mediated, GABA/glycine inhibi-
tion in the dorsal horn [14,86].
5. BDNF and medium from activated microglia both
promote an overall increase in dorsal horn excitabil-
ity (Figure 2) and the effect of the latter is attenu-
ated when BDNF is sequestered using TrkBd5 [25].

If BDNF is sufficient for transferring information
between activated microglia and neurons, one has to
speculate that other mediators such as IL-1b
[20,29,54,113,114], TNF-a[30,96,115], fractalkine [64,65],

MCP-1/CCL-2 [18,100,101] and interferon g [116-118]
exert their actions at other points in the cascade of events
that initiates central sensitization (Figure 1). The obser-
vation that blockade of the action of TNFa with the
fusion protein blocker, etanercept, attenuates spinal cord
injury induced pain [119], suggest that it may act in series
rather than in parallel with BDNF. It may, for example,
act in an autocrine fashion to enhance microglial activa-
tion [120]. Although our data appear to argue against a
role for IL-1b in the microglial-neuron interaction (Fig-
ure 3), it is clear that the actions of other mediators need
to be studied more carefully. Future experiments will
therefore involve an examination of the possible role of
TNF-a and interferon-g in microglia-neuron interactions.
Do they mimic the CCI-induced injury footprint in the
same way as BDNF? If this is the case, it would still be
appropriate to state that BDNF is sufficient to transfer of
information between microglia and neurons, but other
substances are equally capable of effecting this interac-
tion (i.e. BDNF is ‘sufficient’ but not ‘necessary’). It is also
possible that the small discrepancies between the action
of BDNF and CCI on excitatory synaptic transmission in
delay neurons (Table 1), may reflect actions of mediators
other than BDNF. Another issue for future consideration
is that the severity, duration and nature of neuronal
injury may differentially affect spinal cytokine profile
[105]. If this is the case, different mediators may be
involved at different points in the sensitization ‘cascade’
such that some similarity and redundancy of actions of
such mediators might be expected.
Lastly, it should be remembered that microglial activa-

tion and BDNF release in dorsal horn following injury is
transient [66-72], whereas the maintenance of chronic
neuropathic pain appears to involve alterations in astro-
cyte functions [16,17,36-40]. It would therefore be useful
to know whether BDNF is involved in astrocytes activa-
tion. This interesting possibility remains to be investigated.
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