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Cigarette Smoke Exposure Induces
Retrograde Trafficking of CFTR to
the Endoplasmic Reticulum

Abigail J. Marklew'?, Waseema Patel'?, Patrick J. Moore?, Chong D. Tan, Amanda J. Smith®-3,
M. Flori Sassano?, Michael A. Gray? & Robert Tarran'3

Chronic obstructive pulmonary disease (COPD), which is most commonly caused by cigarette smoke
(CS) exposure, is the third leading cause of death worldwide. The cystic fibrosis transmembrane
conductance regulator (CFTR) is an apical membrane anion channel that is widely expressed in epithelia
throughout the body. In the airways, CFTR plays an important role in fluid homeostasis and helps

flush mucus and inhaled pathogens/toxicants out of the lung. Inhibition of CFTR leads to mucus stasis
and severe airway disease. CS exposure also inhibits CFTR, leading to the decreased anion secretion/
hydration seen in COPD patients. However, the underlying mechanism is poorly understood. Here,

we report that CS causes CFTR to be internalized in a clathrin/dynamin-dependent fashion. This
internalization is followed by retrograde trafficking of CFTR to the endoplasmic reticulum. Although this
internalization pathway has been described for bacterial toxins and cargo machinery, it has never been
reported for mammalian ion channels. Furthermore, the rapid internalization of CFTR is dependent on
CFTR dephosphorylation by calcineurin, a protein phosphatase that is upregulated by CS. These results
provide new insights into the mechanism of CFTR internalization, and may help in the development of
new therapies for CFTR correction and lung rehydration in patients with debilitating airway diseases
such as COPD.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated anion channel, which
resides primarily in the apical membrane of glandular and surface airway epithelia. CFTR is vital for airway
surface liquid homeostasis! and dysfunctional CFTR causes the autosomal recessive disease cystic fibrosis (CF)2.
Trafficking of CFTR from the ER and Golgi apparatus to the plasma membrane is tightly regulated by a number
of chaperone proteins including, but not limited to, HSP70, HSP90 and calnexin®. Once at the plasma membrane,
CFTR is then internalized in a clathrin-dependent manner and is normally transported to early and late endo-
somes prior to recycling or degradation at the lysosome*®. For example, deletion of F508, the most common
CF mutation, causes CFTR misfolding and impaired trafficking to the plasma membrane. This in turn results
in diminished anion secretion, reduced mucociliary clearance and ultimately chronic airways infection and
inflammation®.

After formation in the ER, plasma membrane proteins usually pass through the Golgi apparatus, are trafficked
to the plasma membrane and then are internalized via endosomes. From there, they are then either degraded in
lysosomes or proteasomes or recycled back to the plasma membrane’. However, the movement of plasma mem-
brane proteins to and from the cell surface is extremely complex®. For example, retrograde transport between
the endosomes (early and late) and the Golgi apparatus has been well documented’. This phenomenon is also
important for CFTR maturation and CFTR may move from endosomes to the Golgi multiple times in order to
become fully glycosylated®. Bidirectional trafficking may also occur between the Golgi and the ER'. As a case in
point, endosomes form contact sites with the ER to exchange cholesterol and to allow the endocytic cargo to be
modified by proteins located in the plasma membrane of the ER'!. Furthermore, in Saccharomyces cerevisiae, chi-
tin synthase-IIT has been shown to cycle between the plasma membrane, the endosomes and the Golgi apparatus,
allowing regulated expression of the enzyme. However, mammalian proteins have not yet been shown to traffic
from the plasma membrane to the ER™2.
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Chronic obstructive pulmonary disease is the third leading cause of death worldwide and is primarily caused
by smoking tobacco'®. Chronic bronchitis, a phenotype of COPD, is characterized by a productive cough which
lasts for two months over two consecutive years'®. The pathogenesis of chronic bronchitis has been attributed to
the formation of mucus dehydration and decreased mucociliary clearance'®. Inhibition of CFTR by CS has been
proposed as a contributing factor in the development of the chronic bronchitis form of COPD!¢-°. Indeed, we
have previously observed that CS causes plasma membrane CFTR channels to be rapidly internalized in multiple
cell types'®?. In airway epithelia, this leads to a CF-like decrease in anion secretion that contributes to dehydration
of airway surface liquid. Mucus dehydration inversely correlates with the 1 sec forced expiratory volume (FEV,) in
COPD patients?!, suggesting that CFTR internalization and subsequent airway dehydration is relevant to COPD
pathogenesis. Interestingly, CS-induced CFTR internalization is accompanied by a significant decrease in CFTR
solubility, suggesting that CFTR may be aggregating after its rapid exit from the plasma membrane'¢. Despite the
potential importance of this finding for both disease pathogenesis and for potential therapeutic interventions,
the mechanism underlying CS-induced CFTR internalization is not well understood. Here, we have sought to
determine how CS clears CFTR from the plasma membrane and to identify CFTR’s terminal intracellular location.

Results

Cigarette smoke-internalized CFTR dissociates internally and is taken up by clathrin-coated
vesicles. We have previously reported that both native and GFP-labelled CFTR are internalized after CS expo-
sure'®?, GFP-CFTR matures normally and forms a fully-glycosylated band C CFTR that can internalize from the
plasma membrane in a dynamin-sensitive fashion?>*’. Here, we assessed the time course of GFP-CFTR inter-
nalization using confocal microscopy. We were unable to expose cells to CS in situ on the stage of the confocal
microscope due to the potential for CS to damage the optics. Furthermore, given the rapid nature of CFTR endo-
cytosis, post-CS, we were unable to expose cells to CS and image them before significant levels of endocytosis
had occurred. Thus, we elected to fix cultures before, and at timed intervals after CS exposure. In HEK293T cells,
air exposure did not change the subcellular localization of GFP-CFTR, whereas exposure to 13 puffs of freshly
generated CS decreased CFTR membrane fluorescence intensity, with a half-life of 10.2 min and a T of 14.7 and
intracellular CFTR appeared with similar kinetics after CS exposure (Fig. 1A,B).

To see if the effects of CS were specific to CFTR or whether they extended to other plasma membrane pro-
teins, we transfected additional, fluorescently-labelled proteins into HEK293T cells cultured in 96 well plates. We
expressed GFP conjugated to a ten residue N-terminal myristoylation and palmitoylation sequence (pm-GFP),
which binds to the inner leaflet of the plasma membrane?®!, the anoctamin 1 (Anol) Cl~ channel, the adenosine
2B receptor (A2BR) and the P2Y2, transmembrane G-protein coupled receptors which can activate CFTR and
Anol respectively?, and cathepsin B (CTSB), an intracellular and secreted protease®. We then used automated
fluorescent microscopy to measure fluorescence before/after CS exposure. Using this approach, we found that
only GFP-CFTR was internalized after CS exposure, as indicated by significant increases in intracellular fluo-
rescence (Figs 1C; Sla,b). In contrast, PM-GFP, CTSB and the two GPCRs did not internalize (Figs 1C, S1A,B),
suggesting that this phenomenon is somewhat specific for CFTR.

Using Western blotting, we have previously demonstrated that CS exposure causes a decrease in CFTR solu-
bility in detergent, suggesting that CFTR may have aggregated'®. Forster resonance energy transfer (FRET) can
be used to measure the distance between proteins and has a resolution of <10 nm?’. Therefore, we measured
the FRET efficiency (%E) between GFP-CFTR (donor fluorophore) and RFP-CFTR (acceptor fluorophore) as
an independent marker of aggregation. Plasma membrane CFTR FRET efficiency levels were ~15% after air
exposure and CS exposure did not alter this (Fig. 1C,D). Under basal conditions, little CFTR was detected intra-
cellularly and FRET efficiency was ~0, suggesting that normally internalized CFTR molecules are too far apart
to undergo FRET. In contrast, CFTR accumulated in the perinuclear region following CS exposure (Fig. 1C,D)
and FRET efficiency was ~5% post-CS exposure, which was significantly lower than plasma membrane FRET
efficiency after CS exposure, but significantly higher than intracellular CFTR FRET efficiency after air exposure.
Taken together, these data suggest that CFTR-CFTR interactions after CS-induced internalization were abnormal.

Cigarette smoke induced CFTR internalization is dynamin-dependent. Hypertonic sucrose inhib-
its endocytosis by causing a reduction in the size and number of clathrin-coated pits®. Since CFTR internalizes
via clathrin-coated pits?’, HEK293T cells were pre-treated with hypertonic sucrose for 15 min before exposure to
air or CS. Hypertonic sucrose had no effect on intracellular CFTR after air exposure, but significantly attenuated
intracellular CFTR accumulation after CS exposure (Fig. S2A,B). HEK293T cells were then co-transfected with
GFP-CFTR and clathrin light chain conjugated to mRFP. Under control (air) conditions, colocalization between
GFP-CFTR and clathrin light chain-mRFP occurred (Fig. S2C,D). However, after CS exposure, the percentage
of colocalization between CFTR and clathrin light chain-mRFP significantly increased for up to an hour after
CS exposure, indicating that more CFTR is internalized by clathrin coated vesicles following CS exposure than
during normal endocytosis (Fig. S2C,D).

Dynasore is a small molecule inhibitor of dynamin that blocks dynamin-dependent internalization®. To further
understand how CFTR is internalized after CS exposure, HEK293T cells expressing GFP-CFTR were pre-treated
with vehicle or 80 uM dynasore for 30 min before CS exposure. Post-CS, intracellular CFTR fluorescence signifi-
cantly increased in the presence of the vehicle and dynasore had no effect on CFTR localization after air exposure
(Fig. 2A,B). However, dynasore fully prevented CS-induced CFTR internalization (Fig. 2A,B). Since dynasore has
relatively low specificity and can also inhibit endocytosis in dynamin triple knockout cells®, we next co-expressed
a dominant negative dynamin®*#4 construct with GFP-CFTR. In the presence of dynamin®**4, CS-induced CFTR
internalization was again inhibited (Fig. 2C,D). In contrast, wild type-dynamin had no effect on GFP-CFTR inter-
nalization, suggesting that dynamin GTPase activity is required for CS-induced CFTR internalization.

SCIENTIFIC REPORTS |

(2019) 9:13655 | https://doi.org/10.1038/s41598-019-49544-9


https://doi.org/10.1038/s41598-019-49544-9

www.nature.com/scientificreports/

A

Air

CS

_ 4q
S >-'g *
= 34
o S &
co 24
o Sg
5 82
S S
(e é &) 14
¢ = b
° % 15 30 45 60 g0 RO R SRR
Time (min) & & \;;? & 'vé( q_,{‘
& Q& ° & V9
& ¥ ot v P
&‘b
(&)
D Prebleach Postbleach E 20-
E —
X
= <
2o =15
& I e
& 3 10
< E
—_ 11
[1'4 =
= W5
oW T
29 0
S i 0 15 30 45 60
<y
- t (min)

Figure 1. Cigarette smoke (CS) exposure causes CFTR to rapidly internalize. (A) Confocal micrographs
showing GFP-CFTR after air or CS exposure with time. (B) Time course of GFP-CFTR membrane and
intracellular fluorescence in HEK293T cells after air and CS exposure. CS data were fitted with single
exponentials and the half-life was 10.2 min with a T of 14.7 (n =45-77 cells) and intracellular CFTR appeared
with similar kinetics (n =45-77 cells). Air-exposed cells were fitted with linear regression. (C) Bargraph
showing the mean fold-change (Post-CS/Pre-CS) in intracellular fluoresence for all tested constructs. All
n=40/group from 4 separate experiments. (D) Confocal micrographs of GFP-CFTR (green) and RFP-CFTR
(red) before and after photobleaching of the acceptor fluorophore. (E) Mean FRET efficiency of RFP-CFTR and
GFP-CFTR measured at the plasma membrane. All n=31-60 cells from four independent experiments. [ll,
plasma membrane air; @, plasma CS; [ll, intracellular air; @, intracellular CS. *p < 0.001 different to respective
air exposed cells. 'p < 0.001 different to respective plasma membrane control. Scale bars are 10 pm.
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Figure 2. CS-induced CFTR internalization is dynamin-dependent. (A) Cultures were pre-treated with
dynasore for 30 min at 37 °C. Representative confocal images of GFP-CFTR in the presence of vehicle or

80 uM dynasore in air and CS exposed conditions. (B) Mean intracellular CFTR fluorescence intensity in air
(open bars) or CS (closed bars) cells treated with vehicle or dynasore (n =101-182 cells from 3 independent
experiments). (C) Representative confocal images of air and CS treated cells transfected with GFP-CFTR and
co-transfected with wild-type dynamin or dynamin®**4. (D) Bar graphs of mean intracellular GFP-CFTR
fluorescence in air (open bars) or CS (closed bars)-exposed cells transfected with CFTR and wild-type or K44A
dynamin. All data points are n =65-105 cells from 3 independent experiments. *p < 0.01 different to control,
p < 0.01 different to CS control. Scale bars =10 um.

CFTR co-localizes with early endosomes soon after CS exposure.  After endocytosis by clathrin
coated vesicles, CFTR typically traffics to early endosomes, and from there to late or recycling endosomes®. To
determine whether CFTR still followed this pathway after CS exposure, we looked for colocalization between
GFP-CFTR and Rab5A-DsRed, as a marker of early endosomes, Rab7-DsRed, a marker of late endosomes
and Rab11-DsRed as a marker of recycling endosomes®*~**. We observed basal colocalization between CFTR
and Rab5A, Rab7 and Rab11 (Fig. 3A-F). However, only colocalization between CFTR and Rab5A signifi-
cantly increased after CS exposure with time (Fig. 3A,B), whilst CFTR’s association with Rab7 and Rab11 was
unchanged, indicating that significantly more CFTR was associated with early endosomes after CS exposure than
with late or recycling endosomes (Fig. 3C,F).

Cigarette smoke causes retrograde CFTR trafficking to the endoplasmic reticulum. Since
CFTR trafficking was markedly different after CS exposure, we used a variety of organelle markers to deter-
mine CFTR’s terminal location. To test whether GFP-CFTR entered the Golgi apparatus, an antibody specific
to the cis-Golgi protein, GM130, was utilized. Colocalization of GFP-CFTR with GM130 significantly increased
following CS-exposure compared to air controls over the initial 60 min (Fig. 4A,C). To determine whether
CFTR also entered the ER after CS exposure, HEK293T cells expressing GFP-CFTR were either probed with
an anti-calreticulin antibody or co-transfected with STIM1-mCherry. Post-CS exposure, both calreticulin and
STIM1 displayed significantly increased colocalization with GFP-CFTR compared to air controls (Fig. 4A,D,E),
suggesting that CS-induced CFTR traffics to the endoplasmic reticulum. Of note, this ER staining matched the

previously observed “perinuclear” location of CFTR, which persisted for up to 24 h post CS-exposure'®.
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Figure 3. CFTR traffics through early endosomes after CS exposure. Confocal micrographs showing co-
expression of GFP-CFTR with (A) Rab5a-DsRed, (C) Rab7-DsRed and (E) Rab11-DsRed after 15 min exposure
to air or CS. (B,D,F) Compiled data showing mean percentage colocalization between GFP-CFTR and
DsRed-tagged constructs. Each data point represents n =25-108 cells from 3 independent experiments. [, air
exposure; @, CS exposure. *p < 0.001 different to air controls. Scale bars =10 um.

Next, we performed surface labelling in HEK293T cells transfected with exotope CFTR, a construct that con-
tains a HA- tag extracellularly between the third and fourth membrane spanning domains*. We have previously
used this construct to show that CFTR internalizes after cigarette smoke exposure!®. Here, we chilled cells to 4°C,
blocked and exposed them to an anti-HA antibody that was directly conjugated to the Alexa488 dye so that only
plasma membrane CFTR was labelled (Fig. 5A). To determine baseline CFTR levels, we then fixed some cells
immediately, i.e. before they were exposed to air or CS (naive). We then warmed the remainder of the cultures
to 37°C, exposed them to air or CS over 10 min, returned them to the to 37 °C incubator for 50 min and fixed
them. Next, we blocked again, probed with the calreticulin antibody, imaged and quantified the percentage colo-
calization between CFTR and calreticulin. CS, but not air exposure, caused an obvious internalization of CFTR
(Fig. 5A), that was accompanied by a significant increase in the degree of colocalization between CFTR and calre-
ticulin (Fig. 5A,B). In contrast, there was no significant difference between CFTR and calreticulin colocalization
after air exposure, relative to the naive cells, indicating that post-surface labelling, the air exposure did not induce
any detectable CFTR internalization.
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Figure 4. CFTR colocalizes with markers of the endoplasmic reticulum and Golgi apparatus. Confocal images
of colocalization between GFP-CFTR (green) with (A) GM130 (antibody) and (B) calreticulin (antibody)

and STIM1-mCherry after exposure to air or CS. DAPI (blue) was used as a counter stain. (C-E) Percentage
colocalization between CFTR and GM130, STIM1-mCherry and calreticulin as indicated over time. Each time
point represents n =25-108 cells from 3 independent experiments. [ll, air exposure; @, CS exposure. *p < 0.001
different to respective air controls. Scale bars =10 um.

We then searched for altered colocalization between CFTR and ER-markers in cells that endogenously
expressed native CFTR. For these studies, we cultured primary human bronchial epithelia derived from normal/
non-smoking donors on glass coverslips for 24 h so that we could image CFTR with a high NA objective lens
(100 x 1.49 NA) in order to yield the best possible resolution. We then exposed them to air or CS (Fig. 5C). Unlike
the surface labelling studies (Fig. 5A,B), this approach detected both surface and intracellular CFTR (Fig. 5C,D).
However, after a 10 min CS exposure followed by a 50 min incubation at 37 °C, we found that the percentage colo-
calization between endogenous STIM1 and CFTR significantly increased by ~20% (Fig. 5D), indicating that the
observed colocalization between CFTR and ER markers also occurred in primary airway epithelia.

CFTR’s C-terminus and nucleotide binding domain 2 are not required for CS-induced CFTR
internalization. The C-terminal domain of CFTR strongly influences CFTR turnover via several inter-
nalisation motifs>*¢. To better understand the role of the C-terminus of CFTR in CS-induced internalization,
C-terminal truncation mutants were tested. After 48 h of expression, both GFP-CFTR!'?*#X (which lacks its PDZ
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Figure 5. Non-GFP labelled CFTR shows increased colocalization with endoplasmic reticulum markers after
CS exposure. (A) Representative confocal images of HEK293T cells showing calreticulin (rabbit polyclonal
antibody followed by goat anti-rabbit Alexa 633 secondary, red) and a CFTR construct that has an extracellular
HA epitope tag (HA-CFTR, green) followed by exposure to anti-HA mouse monoclonal primary antibody
that was conjugated to Alexa-488. For these studies, HA-CFTR labeling was performed at 4 °C so as to only
label surface CFTR and cells were warmed up to 37 C and air- or CS-exposed. (B) Bargraphs showing %
colocalization between CFTR and calreticulin in naive cells (i.e. immediate fixing with no air or smoke
exposure; n = 124 cells) as well as air (n =144 cells) and CS (n = 152 cells) exposures. (C) Representative
confocal images of endogenous CFTR in human bronchial epithelia (probed with CFTR # 596 antibody
followed by goat Alexa568 secondary, green) and endogenous STIM1 (probed with rabbit anti-STIM1 followed
by goat Alexa488 secondary, red) after air or CS exposure. (D) Bargraphs showing % colocalization between
CFTR and STIM1 after air (n =212 cells) and CS (n =224 cells) exposures. All experiments were performed
on three separate occasions. DAPI (blue) was not used for quantification. *p < 0.001 different to control. Scale
bars =10 um.

motif) and GFP-CFTRX!7#X (which lacks the PDZ motif and nucleotide binding domain 2) still localized to the
plasma membrane (Fig. S3a,b). Neither truncation prevented CS-induced CFTR-internalization, and the intra-
cellular accumulation of these mutants was not different to that of wild-type GFP-CFTR (Fig. S3a,b), indicating
that CFTR’s C-terminus was not involved in CS-induced internalization.

Cigarette smoke causes dephosphorylation of CFTR leading to its internalization.  Given that
known motifs for CFTR endocytosis were not required for CS-induced CFTR internalization, we assessed the
role of other domains in this process. Forskolin, an adenylyl cyclase agonist, stimulates cAMP/PKA-dependent
phosphorylation of CFTR’s regulatory R-domain®’. Following air exposure, forskolin did not alter CFTR’s locali-
zation (Fig. 6A,B). However, pre-treatment with forskolin significantly attenuated CS-induced GFP-CFTR inter-
nalization (Fig. 6A,B). We have previously shown that CFTR is internalized after CS exposure in multiple cell
types including airway epithelia, HEK293T cells and BHK cells'®?. To further establish the role of PKA phos-
phorylation in CS-induced CFTR internalization, BHK cells stably expressing CFTR with 15 serines replaced
with alanines (CFTR!*$*) were utilized®. This construct lacks all predicted serine phosphorylation sites and has
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Figure 6. CS-induced CFTR dephosphorylation is required for CFTR internalization. (A) Representative
confocal micrographs of GFP-CFTR in the presence of vehicle or 5uM forskolin follwed by air or CS exposure.
(B) Bargraph of mean intracellular CFTR fluorescence after air (open bars) or CS (closed bars) with vehicle

or forskolin. N=137-192 cells from 3 independent experiments. (C) Images of BHK cells stably expressing
either CFTR or CFTR!** exposed to air or CS. Cells were fixed, permeablized and labelled with anti-CFTR 596
antibody and secondary anti-mouse antibody conjugated to alexa 488. (D) Mean intracellular CFTR fluorescence
in air (open bars) or CS (closed bars) exposed cells transfected with wild-type or CFTR!*A. N =80-236 cells
from 3 independent experiments. (E) Typical western blots followed by apical surface biotinylation. Blots were
probed for total and dephosphorylated CFTR and mean densiotometry of dephosphorylated/total CFTR is
shown in (F). Gel blots were cropped from original gel images included in the Supplementary Information
section (Figure S4). Air (open bars); CS (closed bars). 3-5 cultures from 3 individual experiments. *p < 0.05
different to air controls. 'p < 0.01 different to respective air or CS control. Scale bars are 10 pm.

SCIENTIFICREPORTS| (2079)9:13655 | https://doi.org/10.1038/s41598-019-49544-9


https://doi.org/10.1038/s41598-019-49544-9

www.nature.com/scientificreports/

previously been shown to be markedly resistant to PKA-dependent R-domain phosphorylation®. The behaviour
of CFTR'*5A, was consistent with our hypothesis that CFTR must be phosphorylated in order to remain in the
plasma membrane: Indeed, more CFTR!**2 failed to traffic to the plasma membrane under basal conditions and
was evident intracellularly (Fig. 6C,D), and the localization of CFTR!*** resembled that of CS-exposed wild-type
CFTR. Interestingly, after CS exposure, the amount of intracellular CFTR!*5* was moderately decreased, sug-
gesting that this construct may have been degraded. To further understand this phenomenon, we probed
CFTR’s phosphorylation status in HBECs after CS exposure. We used CFTR antibody 596, which is directed
against nucleotide binding domain 2 to determine total CFTR levels, and antibody 217 which is directed against
the R-domain and only binds to dephosphorylated CFTR*® (Fig. 6E,F; the original gels are shown in Fig. S4).
Importantly, our data demonstrated that CS exposure dephosphorylated CFTR, suggesting that CFTR phospho-
rylation is required for CFTR plasma membrane stability.

Cigarette smoke-induced CFTR internalization is mediated by calcineurin.  Since we determined
that CS causes CFTR dephosphorylation, we next considered which phosphatases were responsible for this
phenomenon. Protein phosphatase 2A (PP2A) has previously been shown to regulate CFTR phosphorylation
levels*. Okadaic acid, an inhibitor of PP2A, had no effect on CFTR’s cellular location (Fig. 7A,B). However,
cyclosporin A, an inhibitor of calcineurin (PP2B), attenuated the intracellular accumulation of CFTR compared
to vehicle control after CS exposure (Fig. 7A,B). We then used an ELISA assay to test whether calcineurin was
activated by CS. As controls, we demonstrated that EGTA decreased calcineurin activity and that recombinant
calcineurin was active (Fig. 7C). Importantly, increased calcineurin activity was detected following CS but not
air exposure and this activity was attenuated by cyclosporin A but not by okadaic acid (Fig. 7D). To determine
whether the effects of calcineurin were functionally significant, we measured CFTR-mediated fluid secretion in
HBECs (Fig. 7E,F). As previously described'®, CS rapidly decreased airway surface liquid height within ~30 min
of exposure (Fig. 7E,F). This reduction in airway surface liquid height was prevented by cyclosporin A pretreat-
ment (Fig. 7E,F). These data indicate that dephosphorylation of CFTR by calcineurin is required for CS induced
inhibition of CFTR activity.

Discussion

CS-induced CFTR dysfunction and subsequent airway dehydration have been previously described'¢~'°. However,
the underlying etiology is poorly understood, so here, we set out to better understand this phenomenon. We
observed that CFTR was cleared from the plasma membrane following CS exposure with a half-life of ~10 min
(Fig. 1A,B). Consistent with our previous study*, we did not detect changes in Anol localization (Figs 1C, S1).
Similarly, we did not detect changes in the A2B adenosine receptor, a GPCR that is known to interact with CFTR*
or other proteins, including the P2Y2 receptor, or pm-GFP that bound to the plasma membrane and served as an
additional control (Figs 1, S1). It has previously been suggested that CFTR gene expression is affected by CS expo-
sure*’. However, given the rapid onset of CFTR internalization (Fig. 1A,B), it is unlikely that the change in CFTR
localizaiton was due to altered gene expression. Importantly, this time course served as a guide for our subsequent
FRET and colocalization studies. Whether or not CFTR is a monomer or a dimer is controversial*'*2. However,
we detected plasma membrane FRET between GFP-CFTR and RFP-CFTR under control conditions, which may
indicate dimerization, or may be due to CFTR's membership of a larger, macromolecular complex*’. CFTR’s solu-
bility decreases after CS exposure'® and here we found that intracellular FRET efficiency was significantly greater
after CS exposure than for air controls, suggesting abnormal CFTR aggregation/trafficking.

Pre-treatment of HEK293T cells expressing GFP-CFTR with hypertonic sucrose or dynasore had no
effect on CFTR’s cellular distribution under control conditions, but abolished CS-induced CFTR internaliza-
tion (Figs S2A,B; 2a,b), thus demonstrating that clathrin and dynamin are necessary for this effect. However,
co-expression of a dynamin dominant negative construct (dynamin¥*!4) lead to a basal internalization of CFTR
and also abolished further CS-induced changes in CFTR endocytosis. Taken together, these data indicate that
CFTR internalizes in a clathrin/dynamin-dependent fashion??. However, since dynamin*#* may also have
affected basal CFTR localization, there may be wider implications for dynamin in channel trafficking. For exam-
ple, expression of dynamin®*#4 also increases big conductance K* channel activity*. However, further studies will
be needed to fully appreciate the role of dynamin in basal CFTR localization. Colocalization between CFTR and
clathrin light chain significantly increased following CS exposure for up to an hour (Fig. S2C,D). However, this
association waned over time, suggesting that CFTR was no longer being internalized beyond 1 h of CS exposure.
These data indicated that the first step in removal of CFTR from the plasma membrane following CS exposure is
conventional and is initiated soon after CS exposure, but is not persistent. Alpha 1 anti-trypsin, a secreted pro-
tease inhibitor is also internalized in a clathrin-dependent fashion. However, alpha 1 anti-trypsin uptake is atten-
uated by cigarette smoke extract exposure®. Furthermore, phagocytosis by macrophages, which is a modified
form of endocytosis, is also attenuated following smoke exposure®. Thus, we hypothesize that clathrin-mediated
endocytosis is normal after CS exposure and that altered internalization is protein-specific.

Internalized CFTR normally passes through early and late endosomes and then either returns to the plasma
membrane via recycling endosomes or is degraded in lysosomes*®. After CS exposure, CFTR levels significantly
increased in the early, but not late, or recycling endosomes (Fig. 3). Consistent with the rapid clearance of CFTR
from the plasma membrane (Fig. 1), some of these changes, e.g. association with clathrin, were quite rapid and
occurred within 5 min (Fig. 2), i.e. before CFTR internalization reached a steady state (~30 min, Fig. 1). These data
may indicate that CFTR maturation from early to late endosomes is disrupted by CS. Alternatively, endosomal
function may be normal and CFTR trafficking may be abnormal after CS exposure. Further experimentation will
be required to differentiate between these two possibilities. However, given that few proteins other than CFTR
have been reported to be internalized after CS exposure, it is likely that CFTR internalization, not endosomal
maturation, is affected following CS exposure. Whilst we did not detect CFTR entering recycling endosomes after
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Figure 7. Activation of calcineurin is required for CS-induced CFTR internalization. (A) Representative
confocal microgrpahs showing the effect of pre-treatment with vehicle, 1 uM cyclosporin A (CsA) or 10nM
okadaic acid on GFP-CFTR localization in HEK293T cells exposed to air or CS. (B) Bargraph showing mean
intracellular GFP-CFTR fluorescence after exposure to air (open bars) or CS (closed bars) with treatment as
indicated. N =235-300 cells from 3 independent experiments. (C) Changes in calcineurin phosphatase activity
were measured by ELISA after pre-treatment with EGTA (gray bars) or recombinant calcineurin (closed bars).
Data have been normalized to total phosphatase activity. (D) Changes in calcineurin activity under conditions
employed in (A). Data have been normalized to air exposed samples (n =7 cultures per condition from 4
separate experiments) Air exposure (open bars); CS exposure (closed bars). (E) Typical XZ confocal images
of airway surface liquid (ASL) height labelled with tetramethylrhodamine-dextran in HBECs pretreated with
vehicle or cyclosporin A and then exposed to air or CS. Images were taken 30 min post- air or CS exposure.
(F) Time course showing changes in ASL height under the conditions indicated (n = 7-8 cultures per time
point from 3 donors). @, air + vehicle; Aair+ CsA; ll CS+ vehicle; ¥, CS+ CsA. *p < 0.01 different to air;
p < 0.05 different to CS; *p < 0.05 different to t =0. Scale bars are 10 pm.

CS exposure, we observed increased colocalization between CFTR and the cis-Golgi marker GM130 post-CS,
which peaked at 60 min and waned beyond this time point (Fig. 4). In mammalian cells, enzymes and cargo
proteins such as furin and the mannose-6-phosphate receptor are shuttled bi-directionally between early and
late endosomes and the Golgi apparatus*”*%. Indeed, the trans-Golgi network receives approximately 5% of its
glycoproteins from the plasma membrane®’. Not only does retrograde trafficking occur between the plasma mem-
brane, the endosomes and the Golgi, bidirectional trafficking between the Golgi and the ER is well documented,
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and is thought to be dependent on COPI and COPII vesicles!’. Since CFTR is not increased in late or recycling
endosomes after CS exposure, we surmise that CFTR routes from early endosomes to the Golgi after CS exposure.

Endosomes form contact sites with the ER, which increases as the endosome matures'!, suggesting that these
organelles can directly interact. The ER-resident protein STIM1 aggregates to the ER-plasma membrane junction
and is in contact with plasma membrane proteins, and direct contacts exist between the plasma membrane and
the ER>. However, despite the documented contact sites between endosomes, the plasma membrane and the ER,
the transfer of mammalian proteins from the plasma membrane to the ER is less common. We have previously
shown that CS-internalized CFTR does not reach lysosomes and instead has a perinuclear location'®. GFP-CFTR
also became perinuclear within ~10 min post-CS exposure (Fig. 1A,B). CS increased CFTRs colocalization with
two different ER markers (STIMI and calreticulin), which persisted after association with both early endosomes
and the Golgi apparatus had waned. This suggested (i) that CFTR’s perinuclear location is the ER and (ii) that
this is CFTR’s terminal location after CS exposure (Fig. 4B,C). This internalization from the plasma membrane
and subsequent increase in colocalization with ER markers was observed not only with GFP-CFTR, but also
upon performing pulse chase-type experiments with HA-tagged CFTR (Fig. 5A,B) and with endogenous CFTR
expressed in airway epithelia (Fig. 5C,D). Importantly, our data also indicate that this transition occurs rapidly,
since co-localization occurred within 5min post-CS exposure (Fig. 4). Whether or not CFTR can move directly
from the plasma membrane to the ER via plasma membrane ER junctions, or whether it must first pass through
early endosomes and/or the Golgi apparatus is not known. There is also the perplexing question of why CFTR
is shuttled to the ER. CS exposure triggers an unfolded protein response in the ER’!. Thus, we speculate that an
accumulation of CFTR in the ER may facilitate the unfolded protein response and the cellular adaptation to the
stress of CS exposure.

CFTR mutants lacking the C-terminal motifs required for normal endocytosis (K1174X and L1254X)
still internalized after CS exposure, indicating that CS-induced internalization was not mediated by altered
PDZ-binding (Fig. S3). However, whilst the C-terminus of CFTR does not appear to be important in CS-induced
CFTR trafficking, this region of CFTR can modulate CFTR surface density. For example, the CFTR-associated
ligand (CAL) is a Golgi-associated protein that possess a PDZ domain that can bind to CFTR’s C-terminus, caus-
ing increased cellular retention and decreased plasma membrane CFTR®% The C-terminus can also interact with
other proteins including microtubule-associated serine/threonine kinase 205 (MAST205), which can regulate
CFTR expression and can compete with CAL for binding®. Inhibition of CAL can increase CFTR trafficking
and has been proposed as a therapy for CF**. However, it would be interesting to see if CAL inhibition could also
reverse CS-induced CFTR internalization. Indeed, this may be a novel therapeutic approach for treating CFTR
dysfunction in COPD patients.

The cAMP-activated protein kinase A (PKA) extensively phosphorylates CFTR’s R-domain, which reduces
endocytosis®¢. Forskolin activates adenylate cyclase to raise cAMP and activate PKA. We found that forskolin
prevented CS-induced internalization of CFTR (Fig. 6A,B). Thus, to further investigate the effects of phospho-
rylation on CS-induced CFTR internalization, we used a PKA-unresponsive CFTR where 15 consensus sites
for PKA phosphorylation, primarily in CFTR’s R-domain, were mutated to alanines (CFTR!*4). Billet et al.
demonstrated that plasma membrane levels of surface biotinylated CFTR!*SA were similar to wild-type CFTRY".
However, we observed that there was an intracellular accumulation of CFTR!*4, even under control conditions,
suggesting that PKA phosphorylation may play an important role in stabilizing CFTR at the plasma membrane
(Fig. 6C,D). Compared to wild-type CFTR, the CS-induced internalization of CFTR!*5* was significantly reduced.
Since CS-induced CFTR internalization was inhibited by forskolin or the removal of the R-domains’s serines,
the phosphorylation state of CFTR was further investigated following CS exposure. Consistent with our previ-
ous observations, total CFTR decreased after lysis in mild detergent (1% NP40) with an increasing number of
cigarettes (Fig. 6E,F)'®. However, the amount of dephosphorylated plasma membrane CFTR increased after CS
exposure. Together, these data indicate that the dephosphorylation of the R-domain promotes CFTR internali-
zation. CFTR activity has been studied in humans using voltage-sensitive electrodes that can measure basal and
agonist-induced CFTR activity. Indeed, based on these functional studies, CFTR is ~50% active in vivo, suggest-
ing that it is to moderately phosphorylated in humans. That is, when measuring nasal PDs, there was a ~15mV
increase in PD when an apical low Cl~ solution was added, followed by another increase of ~15mV when isopro-
terenol was added®®. Thus, it is possible that CS could affect CFTR phosphorylation in vivo, but additional in vivo
studies will be required before this mechanism of regulation can be better understood.

Protein phosphatases, including PP2A, have previously been associated with CFTR>’. However, we found that
okadaic acid, which inhibits PP2A (and PP1) had little effect on CS-induced CFTR internalzation (Fig. 7A,B).
We have previously shown that CS induces lysosomal Ca?" release and that CS-induced CFTR internalization is
calcium-dependent®. Accordingly, we next tested whether a Ca?"-sensitive phosphatase was involved in CFTR
internalization. Pretreatment with the calcineurin inhibitor cyclosporin A, prevented CS-induced CFTR traf-
ficking (Fig. 7A,B) and CS increased cyclosporin-sensitive calcineurin activity (Fig. 7C,D). These data are cons-
itent with a previous study which demonstrated that calcineurin is stimulated by lysosomal calcium release®.
Moreover, the ability of CS to induce airway dehydration by internalizing CFTR in primary HBECs was prevented
by cyclosporin A pretreatment, suggesting that the activation of calcineurin was functionally relevant. Thus,
since CFTR internalization was forskolin/phosphorylation-sensitive post-CS (Figs 6, 7), we propose that CFTR
dephosphorylation may be a novel physiological stimulus to initiate CFTR endocytosis and that this process is
abberantly triggered by CS. Cyclosporin A has no effect on phagocytosis, a specialized form of endocytosis that
occurs in macrophages®. However, in neurons, Cyclosporin A has been shown to inhibit Ca?*-dependent endo-
cytosis®?. Thus, whether the cyclosporin A-sensitivity is due to a general inhibition of endocytosis or to direct
effects on CFTR remains to be determined.

Recently, the Forman-Kay lab have demonstrated that the Ca*"-sensitive kinase calmodulin interacts with
CFTR’s R-domain, leading to CFTR phosphorylaton and activation®. In contrast, we have recently demonstrated
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Figure 8. A proposed model for the endocytic pathway of CS-exposed CFTR. (A) In normal, air-exposed
airway epithelia, CFTR endocytosis into clathrin-coated vesicles (CCV), which are cleaved off the plasma
membrane by dynamin. CFTR is then trafficked to early endosomes (EE) and sorted to recycling endosomes
(RE) and back to the plasma membrane or trafficking to the late endosomes (LE) and to the lysosome for
degradation. (B) In CS-exposed epithelia, CFTR still enters CCVs in a dynamin-sensitive fashion and is
trafficked to early endosomes. However, CFTR is no longer sent to recycling endosomes, or lysosomes. Instead,
CFTR is trafficked to the ER. There are two proposed pathways for CS-induced retrograde trafficking of CFTR:
(1) Direct ER-EE contacts allow the passage of CFTR to the ER. (2) CFTR from early and/or late endosomes is
trafficked to the trans-Golgi-Network, through the Golgi and to the ER.

that elevations in Ca?* can inhibit CFTR via calcineurin®, which is consistent with our current data that CFTR
is dephosphorylated and internalized. Thus, whether CFTR is activated or inhibted by CFTR may be dependent
on the agonist that is used to elevate Ca*" and which downstream kinases and/or phosphateases are subsequently
activated. Importantly, we propose that phosphorylated CFTR has a lower rate of turnover and a longer residence
time in the plasma membrane whilst dephosphorylated CFTR is less stable in the plasma membrane and more
likely to internalize. We did not detect changes in other plasma membrane proteins after CS-exposure incluing
Anol, A2BR, P2Y2R and a GFP that was targeted to the cytosolic side of the plasma membrane (Fig. S1) and we
have previously found no inhibitory effects of CS on ENaC!¢, suggesting that this is not non-specific. However,
whether the effects of CS extend beyond CFTR to other membrane proteins, and/or can affect Ca’*-sensitive
endoctosis remains to be determined.

Wong et al. recently demonstrated that acute CS extract exposure elevated cAMP and activated CFTR®. As
these authors pointed out at the time, this activation is different to the CFTR inhibition seen by most other inves-
tigators. They attributed this to the difference in time course (i.e. they only observed CFTR activation after an
acute exposure) and dose (i.e. they observed activation with lower doses of extract). In contrast, when we have
exposed HBECs to CS, we have never observed an increase in ASL height, even though the recording period
encompassed the period of CS exposure, and even though we were able to detect cAMP-dependent changes in
ASL height in control cultures during this period'é. Thus, since Wong et al. generated CS extract by bubbling
smoke through warmed Ussing chamber solution, rather than by performing whole CS exposure, they may have
been selecting for particular chemicals (e.g. the aqueous phase) of CS. Indeed, there are ~4,000 compounds in
cigarette smoke and it is likely that many of these can interact with numerous proteins both inside cells and in
the ASL by multiple mechanisms including adduct binding, redox interactions and altered cell signalling®®-55.
Further, the potential ROS-induced elevation in cAMP seen by Wong et al. would be predicted to phosphorylate
CFTR, and be protective against CS-induced internalization, much in the fashion that we observed with forskolin
(Fig. 6A,B). However, the ROS effect may be overwhelmed by higher levels of CS exposure seen in chronic smok-
ers and observed with our whole smoke exposure system.

From an ion transport perspective, multiple groups, including ours, have demonstrated that CFTR is the only
apical membrane channel affected by CS, whilst ENaC and Anol are surprisingly unperturbed by this expo-
sure, both in HBECs and in humans'®%. We speculate that the observed effect on calcineurin (Fig. 7) likely
affects membrane proteins beyond CFTR. However, more studies will be required to fully-understand calcineu-
rin’s impact on other proteins. Moreover, the R-domain of CFTR is extremely flexible and in addition to being
able to interact with other intracellular domains, such as the nucleotide binding domains, it also promiscuously
interacts with many other proteins and thus may serve as the hub of the extensive CFTR interactome. Thus, we
hypothesize that CS-exposure and subsequent calcineurin-induced CFTR dephosphorylation of the R-domain
alters CFTRs interactome, leading to CFTR internalization and subsequent retrograde trafficking to the ER, as
summarised in Fig. 8. Although complex, discerning the mechanism of internalization of CFTR by CS is of gen-
eral interest in regards to both COPD and other CFTR-related diseases such as CF. Furthermore, the new finding
that plasma membrane proteins accumulate in the ER may yield a better understanding of how CS affects cells in
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multiple organs of the body. Finally, our results also suggest that CFTR internalization after CS exposure should
be studied in the context of an altered ER/unfolded protein response.

Methods

All methods were carried out in accordance with UNC'’s policies, guidelines and regulations.

Solutions. Pyruvate Ringer’s solution (in mM): 120 NaCl, 12 NaHCO3, 24 HEPES, 1.2 MgCl,, 5.2 KCI, 1
NaPyruvate, 10 Glucose, 1.2 CaCl,, 0.25 EGTA, 0.1% Albumin (w/v), pH 7.4. Phosphate-buffered saline (PBS)
(in mM): 2.7 KCl, 1.8 KH,PO,, 137 NaCl, 9.9 Na,HPO,, pH 7.4. In some cases, (PBS**) was supplemented with
1 mM MgCl, and 1 mM CaCl,. Pierce’s lysis buffer: 25 mM Tris-HCI pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%
NP-40 (v/v) and 5% glycerol (v/v). Biotinylation lysis buffer: 0.4% sodium deoxychlorate (w/v), 50 mM EGTA,
10mM Tris HCI, 1% NP40 (v/v) and 1X protease inhibitor. Borate buffer (in mM): 85 NaCl, 4 KCl, 15 NaB,O,
Tris-buffered saline with Tween 20 (TBST): 137 mM NaCl, 20 mM Tris, 0.1% Tween-20, pH 7.4.

Cell culture. Human embryonic kidney (HEK) 293T cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with 4.5 g/L glucose, supplemented with 100 Units/mL penicillin, 100 ug/mL streptomycin,
and 10% foetal bovine serum (FBS, Sigma Aldrich, v/v). Baby Hamster Kidney (BHK) cells stably expressing wild
type CFTR (BHKCF™R) or mutated CFTR lacking all 15 PKA phosphorylation sites (CFTR!**) were cultured in
DMEM:F12 medium supplemented by 100 Units/mL penicillin and 100 pg/mL streptomycin, 10% FBS (v/v) and
50 mg/mL methotrexate (Teva Pharmaceuticals). Human bronchial epithelial cultures (HBECs) were obtained
from main stem and lumbar bronchi from human excess donor lungs. The protocols used were approved by the
University of North Carolina Medical School Institutional Review Board (grandfathered under the CF Center
Tissue Procurement and Cell Culture Core IRB protocols)’!. Informed consent for tissue sample donation was
obtained from all participants and/or their legal guardians. Primary HBECs were seeded on collagen coated
0.4 pm polyester membrane semi-permeable 12 mm culture inserts (Corning, transwell-clears) and maintained
at air liquid interface for 3-4 weeks at 37 °C and 5% CO, or plated onto glass coverslips and imaged 24 h later.

Plasmids. Wild-type CFTR N-terminally labelled with GFP or RFP as indicated were gifts from Dr. Bruce
Stanton at Dartmouth College (USA). Exotope/HA-CFTR was a gift from Drs. John Riordan and Martina
Gentzsch at UNC-Chapel Hill (USA). Anol-GFP was a gift from Dr. Criss Hartzell at Emory University (USA).
Cathepsin B-mCherry was a gift from Dr. Bonnie Sloane (Wayne State University, USA). P2Y2-R-GFP was a
gift from Dr H. Kendal Harden at UNC-Chapel Hill (USA) and A2BR-GFP was sub-cloned and generated in
house. mRFP-clathrin light chain was a gift from Dr. Ari Helenius (Addgene plasmid # 14435). Rab5-DsRed;
Rabl1-DsRed and Rab7-DsRed were a gift from Dr. Sandra Schmid (Addgene plasmid # 34682 and # 34683,
respectively); BHK cells stably expressing CFTR!*5* were kindly provided by Dr. Jack Riordan (UNC-Chapel
Hill). BHK cells stably expressing wtCFTR were kindly provided by Dr. Martina Gentzsch (UNC-Chapel Hill).
GFP- CFTR was subcloned into vector pcDNA3.172. Site-directed mutagenesis was performed using the Quick
Change Site Directed Mutagenesis Kit (Agilent Technologies). Primers were designed using Quick Change
Primer Design program (Agilent Technologies) and purchased from Eurofins/ MWGOperon. The plasmid was
transformed into XL 10-Gold Ultracompetent cells (Agilent Technologies) according to manufacturer’s protocol.
The plasmid was then amplified by mini-prep (Qiagen) and all mutant plasmids were verified by sequencing
across the open reading frame before use. Premature stop codons were introduced to generate truncation muta-
tions (GFP-CFTRY?**X and GFP-CFTRX!174%),

Cigarette smoke exposure. Kentucky 3R4F Reference Cigarettes were used in all smoke exposure exper-
iments. An LM1 smoke machine (Borgwaldt) was used to perform all CS exposures and a Cambridge filter pad
placed in the line to remove the autofluorescent particulate phase?. All cigarettes were smoked with a puff volume
of 35mL over a duration of 2s. Approximately 13 puffs of CS were applied at a rate of 1 puff every 30s.

Immunocytochemistry. For all internalization assays, cells (HEK293T and BHKCF™®) were seeded at 75,000
cells per well on 25 mm glass coverslips in 6 well plates. HEK293T cells were transfected 24 h after seeding with
0.5-1pg DNA according to manufacturer’s instructions. Experiments were performed 48h after transfection.
BHKCFTR cells were used for experiments 48 h post-seeding. All cells were exposed to CS or air as described
previously. After CS or air exposure, cells were incubated over time in 1 mL media at 37 °C before fixing in 4%
paraformaldehyde for 5min at room temperature or 100% methanol for 15min at —20 °C. Following fixation,
cultures were blocked at room temperature with agitation for 1 h in PBS with 10% (vol./ vol.) normal goat serum
and 5% (vol./ vol.) bovine serum albumin. In some cases, wild-type or CFTR%A were labelled with monoclonal
anti-CFTR 596 and 570 antibodies purchased from Cystic Fibrosis Foundation Therapeutics and kindly provided
by Dr J. Riordan (UNC-Chapel Hill). Calreticulin was detected with anti-calreticulin polyclonal IgG antibody
(Affinity BioReagents) and GM130 was detected with anti-GM130 D6B1 rabbit monoclonal IgG antibody (Cell
Signalling Technology). Cells were washed and incubated with secondary antibody anti-rabbit labelled with Alexa
Fluor 488, 568 or 633 or anti-mouse labelled with Alexa Fluor 488 (Life Technologies).

For surface labelling studies, HEK293T cells were seeded as described above on cover slips and transiently
transfected with 0.5 ug HA-CFTR. After 24 h, cells were cooled to 4°C in HEK293T media that also contained
1% BSA and 5% normal goat serum for 1 h. We then added mouse anti-HA conjugated to Alexa-488 in BSA/goat
serum for 1h. After 3 washes at 4 °C in ice-cold PBS, cells were placed in media, warmed up to 37 °C and exposed
to air or CS as described above. Cultures were then fixed in 4% PFA for 30 min at room temperature and blocked
for 1 h with PBS containing BSA and goat serum. Some cultures were fixed at 4°C and not exposed to air or CS,
as an additional naive control. All cultures were then probed with the rabbit anti-calreticulin antibody (Affinity

SCIENTIFIC REPORTS |

(2019) 9:13655 | https://doi.org/10.1038/s41598-019-49544-9


https://doi.org/10.1038/s41598-019-49544-9

www.nature.com/scientificreports/

BioReagents), washed, stained with a goat anti-rabbit secondary antibody, stained with DAPI and then imaged
on the SP8 confocal microscope.

Where indicated, HEK293T cells were transiently co-transfected with 0.5-1 ug wild-type GFP-CFTR alone,
or GFP-CFTR and Anol-mCherry, rab5-DsRed, rab7-DsRed, rab11A-DsRed and mRFP-clathrin light chain. All
cultures were imaged on a Leica SP 5 or SP8 confocal microscope using a 63 x 1.40 or 100 x 1.49 numerical aper-
ture plan apochromatic Leica oil objectives. To measure internalization, fluorescence was quantified using Image J
software (NTH Freeware, http://rsb.info.nih.gov/ij/). In brief, images were opened up as 8 bit, grayscale stacks and
regions of interest were drawn around portions of the plasma membrane and intracellularly (excluding the area
that obviously contained the nucleus). 6 cells per coverslip were analysed, which included 6 plasma membrane
and 6 intracellular regions. In all cases, mean fluorescence intensity was obtained. Since the background fluores-
cence was close to zero, no background subtraction occurred.

To determine the percentage co-localization, images were overlaid, and the mean Pearson’s correlation coef-
ficient was determined using the LAS-AF software (Leica) in order to yield the percentage colocalization.: The
following calculation was automatically used by the LAS AF software to determine the percentage colocalization
rate between colocalized areas and background within the ROL Percent colocalization = colocalization area/area
foreground, where area foreground = image area/area background.

Acceptor-photobleaching Forster resonance energy transfer. FRET was performed as described®.
HEK293T cells co-transfected with 0.5 g GFP-CFTR and 0.5 ug RFP-CFTR were treated with air or CS and
fixed 48 h after transfection. Forster resonance energy transfer (FRET) experiments were performed using a
Leica SP5 confocal microscope with a 63 x 1.30 NA plan apochromatic glycerol immersion objective. The donor
(GFP-CFTR), was excited at 488 nm and the emission collected between 495 nm to 549 nm, and the acceptor
(RFP-CFTR) was excited at 561 nm and emission collected between 580 nm to 654 nm. The FRET efficiency was
measured using Image] by measuring a change in donor fluorophore fluorescence intensity after photobleaching
of the acceptor fluorophore, using the following calculation: FRET efficiency (%E) = ((donorP*®eah — donor-
prebleachy /d g orpostbleach) 5 100. All data presented as mean FRET efficiency (%E) & (standard error of
measurement).

Cell surface biotinylation. Cultures were cooled to 4°C and washed 3x in ice cold PBS**. The cultures were
then agitated at 4 °C with 100 pg/uL biotin in borate buffer on the apical surface of the monolayer. FBS (10% vol./
vol.) was applied to the basolateral side and was maintained throughout incubation with biotin to ensure biotiny-
lation of only the apical membrane. Excess biotins unable were quenched with 10% FBS. Cells were washed with
ice cold PBS** before lysis with 100 uL biotinylation lysis buffer at room temperature for 10 mins. The lysates were
centrifuged for 5min at 5000 x g to remove cell debris. Protein concentrations were calculated using the Bradford
assay (Pierce) and samples were diluted in lysis buffer to ensure the same amount of protein was loaded in each
tube. The lysates were rotated overnight with NeutrAvidin beads (ThermoFisher). The following day, the beads
were washed 3 times with ice cold PBS and eluted with 10% 2-mercaptoethanol and 2x lithium dodecyl sulphate
(LDS) buffer (Biorad; 40% glycerol (v/v), 4% lithium dodecyl sulfate, 4% Ficoll-400, 0.8 M triethanolamine-Cl pH
7.6,0.025% phenol red, 0.025% Coomassie G250, 2mM EDTA disodium). The membrane fractions were loaded
on a gel and gel electrophoresis was performed at 150 mV for 1 h. The gels were then transferred, overnight at
4°C to PDVF membranes. Membranes were blocked in 5% milk for 1h at room temperature and probed for total
CFTR with primary anti-CFTR 596 IgG2b and for dephosphorylated CFTR with primary anti-CFTR 217 IgG1
purchased from the Cystic Fibrosis Foundation Therapeutics and kindly provided by Dr J. Riordan (UNC). The
membranes were washed a minimum of 3 x 10 min in TBST and probed with anti-mouse conjugated to horserad-
ish peroxidase (Jackson ImmunoResearch). Blots were detected with Clarity enhanced chemiluminescence (ECL;
Biorad) and visualised using a Chemidoc western blot imager (Biorad).

Measurement of calcineurin phosphatase activity. Calcineurin activity was determined using a col-
orimetric assay as per manufacturer’s instructions (Enzo Life Sciences). HEK293T cells were seeded onto 60 mm
culture dishes at a density of 10° per dish and tested 24 h later. Following treatment, cells were washed twice with
ice-cold Tris buffered saline solution (20 mM Tris, 150 mM NaCl, pH 7.2) and lysed in a solution containing
(in mM); 50 Tris, 0.1 EDTA, 0.1 EGTA, 1 DTT, 0.2% NP-40, pH 7.5 with a protease inhibitor tablet and stored
at —80°C. Excess phosphates and nucleotides were removed from the lysates by passing the samples through a
chromatography column and the desalted samples were stored at —80 °C. To ensure an equal amount of protein
was run in the assay for each sample, a bicinchoninic acid (BCA) assay was run according manufacturer’s instruc-
tions. 3 ug of protein per sample was used for the calcineurin phosphatase assay. Total phosphatase activity in the
samples was detected by addition of the phosphopeptide substrate, RII, in assay buffer. The assay plate was then
equilibrated to the reaction temperature of 37 °C for 10 min and sample lysates were added to the assay plate at
37°C for 30 min. The free phosphate was then measured by the addition of Biomol Green reagent and colour was
allowed to develop for 30 min at 37 °C. Absorbance was measured at 620 nm and data were background corrected.

Airway surface liquid height measurements. The airway surface liquid of primary well-differentiated
HBECs was labelled with PBS containing tetramethylrhodamine-dextran (1 mg/mL). Perfluorocarbon (50 uL)
was added to all cultures mucosally to prevent dehydration of the airway surface liquid during imaging as
described?’. XZ images were obtained at 20 predetermined points per culture using a Leica SP8 confocal micro-
scope with an automated stage and a 63X glycerol immersion objective.

Automated image acquisition. HEK293T cells were seeded at a density of 40,000 per well on 96 well
plates. Cells were transfected using Lipofectamine 2000 (ThermoFisher Sci, Waltham, MA) following the
manufacturer’s protocol. 24 h later, fluorescence was imaged using a Cytation 5 automated imaging system as
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described”. Before exposing cells to CS, media was replaced with 25 ul of FluoroBrite. Cells were then exposed to
CS using a Borgwaldt LX-1 smoke machine coupled to a 3D-printed manifold that allowed for direct CS exposure
to 96 well plates as described and reimaged 1h later”.

Image analysis and statistics. All quantification of images was performed using Image] (NIH Freeware,
http://rsb.info.nih.gov/ij/) or LAS-AF (Leica). Graphs were produced using Prism 4.00 (GraphPad Software). All
data are given as mean &+ SEM unless stated otherwise and were checked for normal distribution. Where applica-
ble, statistical significance was calculated using the Kruskal-Wallis test with Dunn’s multiple comparison post-test
or two-way ANOVA with Dunn’s or Sidak’s multiple comparison post-test as appropriate. P values of <0.05 were
considered significant.
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