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Abstract: Poor water solubility and low bioavailability of hydrophobic flavonoids such as rutin
remain as substantial challenges to their oral delivery via functional foods. In this study, the effect of
pH and the addition of a protein (sodium caseinate; NaCas) on the aqueous solubility and stability
of rutin was studied, from which an efficient delivery system for the incorporation of rutin into
functional food products was developed. The aqueous solubility, chemical stability, crystallinity, and
morphology of rutin (0.1–5% w/v) under various pH (1–11) and protein concentrations (0.2–8% w/v)
were studied. To manufacture the concentrated colloidally stable rutin–NaCas particles, rutin was
dissolved and deprotonated in a NaCas solution at alkaline pH before its subsequent neutralisation
at pH 7. The excess water was removed using ultrafiltration to improve the loading capacity. Rutin
showed the highest solubility at pH 11, while the addition of NaCas resulted in the improvement
of both solubility and chemical stability. Critically, to achieve particles with colloidal stability, the
NaCas:rutin ratio (w/w) had to be greater than 2.5 and 40 respectively for the lowest (0.2% w/v)
and highest (4 to 8% w/v) concentrations of NaCas. The rutin–NaCas particles in the concentrated
formulations were physically stable, with a size in the range of 185 to 230 nm and zeta potential
of −36.8 to −38.1 mV, depending on the NaCas:rutin ratio. Encapsulation efficiency and loading
capacity of rutin in different systems were 76% to 83% and 2% to 22%, respectively. The concentrated
formulation containing 5% w/v NaCas and 2% w/v rutin was chosen as the most efficient delivery
system due to the ideal protein:flavonoid ratio (2.5:1), which resulted in the highest loading capacity
(22%). Taken together, the findings show that the delivery system developed in this study can be a
promising method for the incorporation of a high concentration of hydrophobic flavonoids such as
rutin into functional foods.

Keywords: flavonoid delivery systems; milk proteins; protein self-assembly; pH-driven encapsula-
tion; ultrafiltration; functional beverages

1. Introduction

Rutin is a hydrophobic flavonoid derived from a wide range of natural food sources
such as flowers of Styphnolobium japonicum, buckwheat grains, black olives, citrus fruit,
asparagus, black tea, green tea, grapes, onion, plums, and elderflower tea. This flavonoid
molecule, which comprises quercetin (a flavonol) and rutinose (a disaccharide), has been
suggested to possess potent antioxidant properties on a molecular level. Due to its substan-
tial radical-scavenging properties on oxidising species, this bioactive compound can show
numerous therapeutic and pharmacological effects such as antidiabetic, anticancer, and
anti-inflammatory [1–4]. The beneficial health effects of rutin supplementation in patients
with diabetes mellitus through clinical trials have already been established [1–4]. This
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flavonoid has also been suggested for treating some complicated health problems such as
cerebral ischemia, owing to its antioxidant properties [5,6]. Nevertheless, both pharmaceuti-
cal and nutraceutical applications of rutin are limited because of its poor aqueous solubility,
which in turn, results in a low bioavailability [7,8]. Furthermore, flavonoids such as rutin
(with logP of 0.15—logP is defined as the logarithm of the ratio of the concentrations of
the un-ionized solute in the solvents) undergo both chemical and enzymatic degradation
once exposed to either the environment (e.g., within the structure of the food or during its
processing) or the gastrointestinal tract (GIT) [9–11].

Rutin is a glycoside consisting of the flavonol quercetin and the disaccharide rutinose
(Figure S1) [12]. Only a small proportion of this flavonoid is absorbed in the intact form,
because the microflora in the GIT metabolize this flavonoid to a variety of absorbable
compounds such as quercetin and the aglycone rutinose [13]. Although quercetin is also
a potent flavonoid with postulated health benefits similar to rutin [14,15], the level of its
absorption from the GIT is also low. Accordingly, it has been suggested that increasing
the solubility of rutin along with its encapsulation/protection may result in improving
its bioavailability [16,17]. For this reason, there have been numerous recent attempts
for delivering rutin in an encapsulated form through various delivery/encapsulation
systems [18–21].

While most of these encapsulation systems decrease the degradation of rutin, they are
not suitable for the delivery of this flavonoid through functional foods. This is because they
often provide low encapsulation efficiency and/or loading capacity, besides using toxic
solvents (e.g., chloroform) and/or complex procedures that are either expensive or difficult
to scale up in the food industry [18,22,23].

Complexation of hydrophobic flavonoids (e.g., curcumin) with proteins, such as
those from bovine milk (e.g., caseins), along with increasing their solubility using the
pH-driven method, have already been reported [24,25]. In this regard, caseins are known
to interact with hydrophobic compounds such as rutin (hydrophobic mostly due to strong
self-association of phenolic moieties), owing to the presence of both hydrophobic and
hydrophilic amino acids [26–30]. The other useful property of caseins for the delivery of
hydrophobic bioactives is their dissociation (dissociation of either micellar casein or less
organised casein aggregates in caseinates) under alkaline conditions and the subsequent
reassociation under neutral conditions [27,31].

NaCas shares similar casein compositions with casein micelles, but it differs in amounts
of calcium and phosphate [32]. Since NaCas contains both hydrophilic and hydrophobic
segments, this amphiphilicity can be beneficial for the creation of self-assembled and
colloidally stable particles in an aqueous medium. Furthermore, NaCas is a natural food
grade biopolymer with excellent biocompatibility and digestibility, as well as its low toxicity,
enabling it to be an ideal candidate for the delivery of flavonoids [33,34].

Food proteins such as caseins are nontoxic, abundant, and biodegradable. However,
when used as the carrier/coating material for the delivery of hydrophobic flavonoids, often,
a large ratio of protein to flavonoid is required. For example, the results of the screening
experiments from our laboratory (Table 1) showed that a w/w ratio of 40–80:1 was required
for the efficient manufacture of colloidally stable particles of rutin and NaCas. However, in
the case of the stable systems containing a low concentration of both NaCas and rutin, the
low concentration of solids makes the system inefficient for the delivery of rutin and its
subsequent incorporation into functional food formulations. In addition, while it is known
that hydrophobic flavonoids such as rutin have better solubility at alkaline pH [16,17,35],
to the best of our knowledge, there is no comprehensive systematic study reporting the
behaviour (chemical stability and crystallinity) of rutin under various pH conditions.
Therefore, the current study aimed at studying the effect of pH (1 to 11) and NaCas
addition (1.25:1 to 80:1, NaCas:rutin w/w) on the aqueous solubility, chemical stability,
crystallinity, and morphology of rutin. This information allowed for the preparation of
colloidally stable particles suitable for the incorporation of rutin into functional foods. Such
a delivery system containing a high concentration of rutin, encapsulated using an organic
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solvent-free method, can be added to various food products such as liquids (possibly,
milk-based beverages, juices, smoothies, and soft drinks) and semi-solids, in its original
form, or it can be dried and added to solid functional foods.

Table 1. The effect of sodium caseinate (NaCas):rutin ratio on the size, surface charge, and stability of
the particles in the encapsulation system (pH 7).

Formulation
NaCas

Concentration
(% w/v)

Rutin
Concentration

(% w/v)

NaCas: Rutin
Ratio (w/w) Size (nm) Zeta Potential

(mV)
Colloidally

Stable?

A 5 1 5 1880 ± 50 b −21.3 ± 2.2 a No
B 5 2 2.5 2120 ± 40 a −22.8 ± 1.7 a No
C 5 4 1.25 1850 ± 30 b −23.0 ± 1.5 a No
D 1 0.2 5 1380 ± 40 f −22.8 ± 1.4 a No
E 1 0.4 2.5 145 ± 70 e −23.6 ± 2.6 ab No
F 1 0.8 1.25 1490 ± 40 d −24.6 ± 1.8 c No
G 1 0.1 10 832 ± 22 h −22.6 ± 1.2 a No
H 5 0 NA 214 ± 5 qp −30.2 ± 1.5d Yes
I 1 0 NA 203 ± 8 r −31.2 ± 2.3 de Yes
J 2 0 NA 259 ± 14 o −29.7 ± 1.0 d Yes
K 2 0.1 20 1520 ± 60 d −24.2 ± 1.03 c No
L 2 0.2 10 1670 ± 60 c −25.31 ± 1.1 c No
M 2 0.4 5 1400 ± 80 f −22.4 ± 1.4 a No
N 2 0.8 2.5 1320 ± 70 g −21.1 ± 1.0 a No
O 2 1.6 1.25 1740 ± 40 i −23.5 ± 1.3 ab No
P 0.2 0 NA 172 ± 17 s −24.5 ± 0.9 c Yes
Q 0.2 0.01 20 236 ± 21 p −23.1 ± 0.9 b Yes
R 0.2 0.02 10 321 ± 27 n −22.7 ± 1.2 a Yes
S 0.2 0.04 5 450 ± 30 k −21.3 ± 1.6a Yes
T 0.2 0.08 2.5 460 ± 40 k −23.5 ± 1.4 ab Yes
U 0.2 0.16 1.25 620 ± 40 j −22.7 ± 1.4 a No
W 8 0.2 40 362 ± 17 m −25.0 ± 1.0 c Yes
X 8 0.1 80 422 ± 18 l −24.8 ± 0.8 c Yes
Y 4 0.1 40 445 ± 29 kl −30.4 ± 2.0 d Yes
Z 4 0.05 80 271 ± 22 o −31.4 ± 2.2 de Yes

WC 8 0 NA 226 ± 10 p −32.7 ± 1.2 e Yes
YC 4 0 NA 220 ± 6 p −30.3 ± 0.9 d Yes

Note: the results are means of three replicates of measurements. NA: the measurement was not applicable. The
means within the same column containing different superscripts are significantly different (p < 0.05).

2. Materials and Methods
2.1. Chemicals and Reagents

Rutin with a purity of >97% w/w (according to the manufacturer) was purchased from
Sigma-Aldrich (Castle Hill, NSW, Australia). Sodium caseinate (NaCas) 180 was from
Fonterra Co-operative Ltd. (Auckland, New Zealand). All other chemicals, including
pepsin (porcine, 436 u/mg), and reagents used in this study were of analytical reagent
grade and were obtained from either Thermo Fisher Scientific (Auckland, New Zealand) or
Sigma-Aldrich (Auckland, New Zealand).

2.2. The Effect of pH on the Solubility, Crystallinity, and Morphology of Rutin

Rutin was mixed with Milli-Q® (MilliporeSigma, Burlington, MA, USA) water at
various concentrations (0.01 to 10% w/v) and the pH of the mixtures increased gradually
(while stirring at 300 rpm) until the full dissolution was achieved. At that point, the
concentration of rutin was gradually increased until it was no longer soluble. Then, the
pH was increased further until the complete dissolution. This process was repeated until
the maximum targeted solubility (10 w/v%) was achieved at pH 11. Samples were taken at
each pH point (i.e., pH 1–11) and at each concentration of rutin. The solubility of rutin was
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calculated based on its recovery after centrifugation (3000 g, 25 ◦C, 10 min) of the samples
and analysing the amount of soluble rutin in the supernatant using high-performance
liquid chromatography (HPLC) analysis, following the method reported previously [17,35].

To study the crystallinity of rutin at each pH, samples of rutin at each pH were stored
in a desiccator with silica beads (25 ◦C) to dry and crystallize. The dried materials were
ground using a mortar and pestle and then were analysed for the degree of crystallinity
at 20.0 ◦C using a Rigaku Rapid image-plate detector (Rigaku, The Woodlands, TX, USA)
set at 127.40 mm. The Cu Kα radiation (λ = 1.540562 Å) was generated by a Rigaku
MicroMax007 microfocus (rotating anode generator; Rigaku, The Woodlands, TX, USA)
and an Osmic-Rigaku metal multi-layer optic device (Rigaku, USA) was used for focus-
ing and monochromation. Samples were mounted in Hampton CryoLoops (Hampton
Research, Aliso Viejo, CA, USA), and data collection was under the control of RAPID II
software (Version 2.4.2, Rigaku, USA). The data were background corrected and converted
to a line profile with 2DP programme (Version 1.0.3.4, Rigaku, USA), and the resulting
diffractograms were compared using CrystalDiffract software (Version 6.5.5, CrystalMaker
Software Ltd., Oxfordshire, UK). A 2θ angle range of 5◦ to 100◦ was used for the analysis of
all the samples.

The morphology of the ground rutin crystals was studied using an environmental
scanning electron microscope (SEM, FEI Quanta 200, Waltham, MA, USA) at an accelerating
voltage of 20 kV. Small amounts of the samples were mounted onto aluminium stubs (using
double-sided tape), sputter-coated with approximately 100 nm of gold (Baltec SCD 050
sputter coater), and then viewed under the microscope.

2.3. The Effect of NaCas on the Solubility of Rutin under Various pH Conditions

In order to determine the optimum amount of both rutin and NaCas to achieve the best
loading, various concentrations of rutin (0.01–4% w/v) were dissolved in a solution of NaCas
(0.2–8% w/v) at pH 11, which was then acidified down to pH 6, where the precipitates were
formed. A duration of 15 min between each pH adjustment was allowed, and samples
were taken along the process at every pH point (i.e., pH 11, 9, 8, 7, and 6; pH below 6 was
not considered as the sample withdrawal was not practical due to the co-precipitation of
NaCas and rutin). The withdrawn samples were left for 30 min for the complete formation
of the possible precipitates. Each sample was then divided into two equal parts; the first
part was centrifuged (3000× g, 20 ◦C, 10 min) in the Amicon Ultra-15 Centrifugal Filter
Units containing a cellulose membrane with a molecular weight cut-off of 10 kDa (Ultracel-
100K, Millipore, Burlington, MA, USA) to remove both precipitates and colloidally stable
complexes, while the second part was simply filtered using a 0.45 µm membrane (Millipore)
to remove the precipitates only. The concentration of rutin in the ultrafiltrates, as well as
the filtrates (the second part), was determined using HPLC analysis [17], and the rutin
recovery% was calculated correspondingly. As the control, the same concentration of rutin
(1%) was also treated and analysed the same way as the rutin–NaCas mixture. In this study,
for simplicity, the recovery % of rutin is referred to as its solubility.

2.4. Formation of the Colloidally Stable Systems (Rutin–NaCas Particles)

The ratio of 2.5:1 (NaCas:rutin w/w) was selected due to the best loading capacity
achieved (Table 2; Formulation UF4). This was decided based on the results of the sys-
tematic screening of various formulations of NaCas and rutin and on the understanding
of the solubility and stability of rutin at different pH values. The effect of NaCas (at var-
ious concentrations) on the solubility of rutin and the physical stability of rutin–NaCas
complexes at different ratios and conditions (explained in the previous sections) were
measured. Therefore, rutin was dissolved in a NaCas solution at pH 11, and the solu-
tion was mixed (300 rpm) for 30 min and then heated to 80 ◦C. The neutralization of the
rutin–NaCas solution was carried out using HCl (0.1–1 M), and the mixture was high-shear
mixed (33,000 rpm, 3 min, 20 ◦C). The excess water was then removed using ultrafiltration
(Amicon® Ultra-15 Centrifugal Filter Units; Millipore, USA), and the dispersions were
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stored at 4 ◦C until further analysis. The colloidal stability was assessed based on the data
obtained from particle size and zeta potential analyses, as explained in the next section.

Table 2. The properties of the concentrated rutin-sodium caseinate (NaCas) nanoparticles (pH 7).

Formulation
NaCas

Concentration
(%)

Rutin
Concentration

(%)

NaCas: Rutin
Ratio (w/w) Size (nm) Zeta Potential

(mV)

Encapsulation
Efficiency

(EE, %)

Loading
Capacity
(LC, %)

UF1C 66.81 0 NA 218 ± 7 b −26 ± 3 b NA NA
UF1 66.81 1.67 40 208 ± 5 c −38.7 ± 1.5 d 83 ± 4 a 2.03 ± 0.06 d

UF2C 39.64 0 NA 167 ± 13 e −13.5 ± 0.9 a NA NA
UF2 39.64 1.98 20 230 ± 4 a −36.8 ± 1.5 c 80 ± 4 bc 3.78 ± 0.12 c

EUF3C 5.68 0 NA 157 ± 4 f −16.2 ± 0.8 b NA NA
FUF3 5.68 1.14 4.98 185 ± 6 d −37.0 ± 1.1 c 81 ± 3 b 13.4 ± 0.5 b

UF4C 5.04 0 NA 162 ± 9 e −16.7 ± 0.9 b NA NA
UF4 5.04 2.02 2.5 204 ± 6 c −38.1 ± 1.7 d 75.8 ± 2.2 c 21.7 ± 1.1 a

Note: the results are means of three replicates of measurements. NA: the measurement was not applicable. The
means within the same column containing different superscripts are significantly different (p < 0.05).

2.5. Particle Size and Zeta Potential Analyses

A Malvern Zetasizer Nano (Malvern Instruments Ltd., Worcestershire, UK) was used
for measuring the particle size of particles smaller than 600 nm and the surface charge of all
particles (Malvern Instruments Ltd., Malvern, UK). Size of the particles bigger than 600 nm
(identified during the screening experiments) was measured by a Mastersizer (Malvern
Instruments Ltd., Malvern, UK). The samples (pH 7) that were required to be analysed by
the Zetasizer were diluted (1:16) in Milli-Q water.

2.6. Encapsulation Efficiency (EE) and Loading Capacity (LC)

To measure the amount of rutin encapsulated inside NaCas particles (EE), the samples
were centrifuged (3000× g, 20 min, 22 ◦C). First, to release the total fraction of rutin, the
supernatants were disrupted in heated ethanol (70 ◦C; 1:1 v/v) [36] prior to their filtration
using a 0.45 µm membrane filter (Thermo Scientific, Waltham, MA, USA). Based on our
previous study [17], rutin is soluble in ethanol at a concentration of about 4% w/v. The
concentration of rutin in the supernatant was then determined by HPLC analysis using
a developed isocratic method, based on a previously published method [35] with slight
modification. The HPLC machine was equipped with UV–Visible and diode-array detectors
(Agilent Technologies, 1200 Series, Santa Clara, CA, USA) and a reverse-phase Prevail™
C18 column (4.6 cm × 150 mm and 5 µm particle size; Grace Alltech, Columbia, MD, USA).
Acidic Milli-Q water (pH 3.50, 1% acetic acid) and methanol at a volume ratio of 50:50 were
used for the mobile phase that was pumped at a flow rate of 1 mL/min (sample injection
volume of 5 µL). Rutin was detected at the wavelength of 356 nm at a retention time of
about 4.8 min. Standard solutions (0.01–1 mg/mL) of pure rutin (>97%) in the mobile phase
were used for the calibration of the HPLC column and plotting the standard curve, before
the quantification of rutin in the samples. The chromatographic peaks of analytes were
identified and quantified by comparison of retention times with the rutin standard and by
peak integration using the external standard method.

Finally, the encapsulation efficiency (EE) of rutin was calculated using the following
formula:

EE (%) = (Csup/Ctotal) × 100 (1)

where Ctotal is the total (initial) concentration of rutin (w/v) in the system, and Csup is the
rutin concentration (w/v) in the supernatant phase of the system. Loading capacity (LC)
was calculated using the following equation:

LC (%) = (Csup/weight of the particles (after drying)) × 100 (2)
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2.7. Release Kinetics of Rutin during the Simulated Gastric Digestion

Control NaCas or rutin–NaCas mixtures were mixed with a fasting solution (contain-
ing 3.2 mg/mL pepsin) and fed into the human gastric simulator (HGS) at 37 ◦C. Notably,
control rutin could not be used for this part of the study due to its insolubility in water
(under digestion conditions), leading to its precipitation at the bottom of the digestion unit.

100 g of the sample was mixed with 12 mL fasting solution, and this was fed into the
HGS. The conditions were set as explained in a previous publication [37]. Then, the fasting
solution was pumped into the HGS at a rate of 0.6 mL/min, while the pepsin (16 mg/mL)
was pumped into the HGS at a rate of 0.15 mL/min. The experiment was run for 180 min.

For the accurate control of the gastric emptying, 15 mL of digesta was removed out from
the stomach every 20 min, equalling the gastric emptying rate of 0.75 mL/min. The contraction
frequency was 3 times/min, simulating the actual contraction of the human stomach. A heater
equipped with a thermostat was used for maintaining the temperature of the HGS at 37 ◦C
throughout the experiment. The maximum digestion time was 180 min, with the samples taken
at intervals of 20, 40, 80, 120, and 180 min, with 0 min sample being the control. The initial pH
in the HGS was defined as the pH of the dispersion. With the ingestion of the fasting solution
(0.6 mL/min pH 1.5) and gastric emptying of 15 mL/20 min, the pH in the HGS at different
times was assumed to be that of the emptied digesta because the set-up (roller contraction)
prevented easy access into the HGS [37]. The digesta taken at different time points were sieved
with a 1 mm pore-sized mesh and dried at 105 ◦C overnight in a vacuum oven to obtain the
dry weight for each sample from different intervals. The protein content in the aqueous phase
during time-dependent hydrolysis by pepsin was determined using the Biuret assay [38].

2.8. Statistical Analysis

All samples were prepared in triplicate, and all measurements were repeated three
times. Mean values of data and standard deviations were calculated using Excel 2016
(Microsoft Redmond, VA, USA), and the significant differences between treatments were
evaluated using SPSS 20 Advanced Statistics (IBM, Armonk, NY, USA). One-way analysis
of variance (ANOVA) was performed with the Tukey’s multiple-comparison test at p < 0.05
for the mean comparison.

3. Results and Discussion
3.1. The Effect of pH on Aqueous Solubility, Stability, and Crystallinity of Rutin

Different concentrations of rutin (0.01–5% w/v) were dispersed in water, and after
30 min, the dispersions were centrifuged, and the concentration of rutin in the supernatant
was determined (Figure 1). At a low concentration (0.01% w/v), most of the rutin was
soluble in water regardless of the pH, which corresponds with the results of our previous
study where the aqueous solubility of the same rutin product was evaluated [17], as well
as the results of other studies [1,39].

Figure 1. The effect of pH on the aqueous solubility (recovery) of different concentrations of rutin
(0.01–5%). The results are means of three replicates of measurements.
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In the case of the dispersion containing 5% rutin, most of the rutin (about 90%) was
soluble at pH 9, but the solubility started to decrease below this pH (Figure 1). This
was expected, as a pH below 9.0 is outside the major pKas of rutin (ranging from 7.1
to 11.65) [40,41]. This is in agreement with the results of another published report [42],
where a slight degradation of rutin was found at pH 11.0 at 21 ◦C, over a 30 min time
period, which could be attributed to the decomposition of this flavonoid into phenolic
acids under an alkaline environment (i.e., pH 11). Buchner [43] reported that although
rutin concentration remained almost unchanged when kept under weak acidic conditions
(pH 5), it depleted to approximately 20% after 5 h when the pH was constantly adjusted to
8. Additionally, similar to many other flavonoids, oxidative degradation of rutin is also
possible [43,44]. Not only do flavonoids such as rutin degrade if kept at alkaline pH for a
prolonged period, but the products of alkaline nature are not desirable for the incorporation
into most food products since they can result in undesirable changes in sensorial and
organoleptic properties of such products.

We studied the crystallinity and morphology of the fabricated crystals by growing rutin
crystals under controlled humidity (desiccator; see Section 2.2). The XRD data presented
in Figure 2 revealed that the dried rutin particles at pH 11 and 10 were amorphous, but
small crystals started to grow at pH 9. However, at pH < 8, all particles were in crystalline
form, while at pH close to 1.0, crystalline rutin was not present. The change in rutin
crystallinity over this pH range may be associated with the protonation state of the various
phenolic OH groups in the rutin molecule, although for strongly acidic conditions, loss
of rutin crystallinity could possibly be attributed to oxidative damage [45]. Based on
the 13C cross-polarization magic-angle spinning (CP-MAS) nuclear magnetic resonance
(NMR) spectroscopy of quercetin and its monosodium salt [45], the signals of carbon atoms
C1′−C6′ in ring B of neutral quercetin were reported to overlap with the C1′−C6′ signals
for its monosodium salt. For the monosodium salt, the chemical shift for C-3 in ring A
was unchanged compared to neutral quercetin, whereas the signal for C-7 was shifted
upfield, indicating the site of phenol deprotonation [45]. The rutin samples that showed
crystalline diffraction all shared the same diffraction pattern, indicating a common chemical
composition that was attributed to neutral rutin.

Figure 2. The effect of pH on the crystallinity of rutin encapsulated in NaCas (1%).

The crystallinity results obtained for rutin at various pH conditions in the current study
were confirmed using SEM (Figure 3). At pH 11, 10, and 9, rutin particles shared a common
arrowhead-like morphology that was distributed throughout the specific micrographs. The
crystals that formed at the pH close to the neutral pH were more granular and similar to
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those previously reported [17,39,46]. At pH 9, both morphologies appeared to be present.
The particles formed at pH 1 were less crystalline than those formed at 2≤ pH≤ 8, which is
in close agreement with crystallinity data shown in Figure 2. The surprisingly low intensity
for crystalline rutin at pH 5 and 6, compared to pH 4 and 7, is attributed to imprecision
in placing identical masses of sample in the nylon loop. Possibly, at pH 1, 10, and 11,
rutin is not in the crystalline form. Thus, based on these observations, it is confirmed that
rutin is highly soluble at alkaline pH, but its solubility decreases dramatically at pH < 9;
nonetheless, its behaviour under such conditions in terms of chemical stability is yet to be
fully understood.

Figure 3. The effect of pH on the morphology (scanning electron micrographs) of rutin crystals grown
under controlled humidity. pH values and scale bars can be found at the bottom of each micrograph.

Paczkowska [47], in a study that aimed to modify the properties of rutin (e.g., chemical
stability, solubility, antibacterial activity, dissolvability, and permeability), reported slow
decomposition of rutin in 0.2 M NaOH with or without beta-cyclodextrin (even slower in
0.5 M HCl), and a small increase in solubility on binding to beta-cyclodextrin.

3.2. The Effect of NaCas on Solubility and Stability of Rutin

In order to understand the effect of NaCas on the solubility of rutin at different
pH values, we carried out a separate experiment at a constant ratio of NaCas:rutin (1:1
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w/w). A solution of rutin of the same concentration (i.e., 1% w/v) was considered as the
control. As shown in Figure 4, there was substantially less rutin recovered from the rutin–
NaCas mixture than from the rutin solution by itself in the pH range from 11 to 7, which
might indicate a degree of association between the two compounds (i.e., NaCas and rutin).
However, there was a dramatic decrease in rutin solubility at pH < 8.0 for both the control
rutin and the rutin–NaCas mixture. This was due to the precipitation of rutin at pH < 8.0,
as explained earlier (Section 3.1, Figure 1), as well as in our previous publications [16,17].

Figure 4. The effect of NaCas on the recovery of rutin from the NaCas–rutin mixture (1%). The results
are means of three replicates of measurements.

There were low recoveries observed for rutin in both samples (i.e., control free rutin
and rutin–NaCas) at pH 6.0 and below. As mentioned earlier (Section 3.1), although it was
possible to dissolve 10% (w/v) rutin at pH 11.0, dramatic precipitation of 5% w/v rutin at pH
< 8.0 was apparent (Figure 1) due to the substantial decrease in the solubility of rutin, due
to protonation of phenolate groups (Figure 2; Figure 3). This was also observed visually,
where the rutin precipitates and/or rutin–NaCas co-precipitates could be seen at pH < 8.

We also determined the chemical stability of rutin (1% w/v) using HPLC analysis:
when rutin was dissolved at pH 11.0 and kept at this pH for 30 min, there was about a
10% decrease in its initial concentration. The degradation of rutin under alkaline condi-
tions may be associated with the decomposition of rutin into small phenolic acids and its
derivate quercetin [48]. As mentioned in Section 1, quercetin is also a potent flavonoid with
suggested health benefits similar to rutin [14,15]; although similar to rutin, the level of its
absorption from the GIT is also low. At pH < 6, the solubility curves for both control rutin
and rutin–NaCas solutions were essentially baselined, confirming that almost all rutin was
precipitated at this pH regardless of its association with NaCas (Figure 4).

Although the interactions between NaCas and rutin have not received much attention,
the binding behaviour of quercetin (the aglycone rutin derivative) with β-casein has been
studied before [24], and it has been reported that quercetin could form a 1:1 complex with
β-casein, possibly due to both hydrogen bonding and van der Waals interactions [24]. The
molecular docking studies [24] also suggested the hydrophobic core of β-casein as the bind-
ing site for quercetin, where the quercetin molecule made five hydrogen bonds and a host of
van der Waals contacts with hydrophobic side chains and charged amino-acid side chains.
Another important finding [24] was that the molecular dynamics simulation suggested
that quercetin could interact with β-casein, with little effect on β-casein’s rather minimal
secondary structure elements but with significant compaction of the protein molecule on
binding quercetin. Altogether, the results presented in this section (Figure 4) confirm that
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such interactions may exist and that such an approach can be used for the delivery of rutin;
i.e., the association of rutin and NaCas in a controlled manner can lead to better solubility
and stability of rutin at pH 7–8.

3.3. Characteristics of the Concentrated Rutin–NaCas Particles

Table 1 shows the formulations that were screened to determine the best NaCas:rutin
ratio in terms of size, surface charge, and physical stability of the particles at neutral pH.
The visual appearance of some of these formulations can also be seen in Figure S2. While
some of the formulations presented in Table 1 produced stable dispersions (where no phase
separation or precipitation was observed) with a highly negative surface charge (i.e., col-
loidally stable formulations), the NaCas:rutin ratio in such formulations was comparatively
high. Some of the stable formulations (including Q, T, W, and Z) were selected for further
processing (i.e., concentration by ultrafiltration) in order to improve the loading of rutin
into NaCas.

The particle size of the concentrated formulations (Table 2) varied from 157 to 230
nm and the zeta potential from −13.5 to −38.7 mV, depending on protein:flavonoid ratio,
which is in agreement with the results previously reported [25,43]. In general, when the
control sample (i.e., containing only NaCas) was compared with the sample containing
rutin–NaCas particles, the presence of rutin increased the particle size, leading to increased
particle surface area by a factor somewhat less than 2, while also substantially shifting
the surface charge of the particles to more negative values by a factor of >2 (except for
UF1C and UF1). This would indicate that rutin not only influences particle size but also
influences surface charge on the particles. Other researchers [43] have reported that the
interactions between the cationic amino acid residues of casein and carboxylate groups of
pectin resulted in the formation of larger particles when compared with the control NaCas.

The encapsulation efficiency and loading capacity of rutin in the concentrated systems
were about 76–83% and about 2–22%, respectively. The visual appearance of the final
systems containing high concentrations of rutin can also be seen in Figure S3. Thus, the for-
mulation containing 5% NaCas and 2% rutin was chosen due to the ideal protein:flavonoid
ratio (2.5:1), which resulted in the highest loading capacity (about 22%). The particles man-
ufactured in the present study exhibited greater values for both EE and LC when compared
with those reported in the previous studies for a different matrix for rutin [49–51].

Caseins have already been suggested as delivery vehicles for hydrophobic bioac-
tive molecules due to their ability to self-assemble or co-assemble to form some supra-
structures [43,52,53]. As caseins contain a high content of proline, they therefore exist in
the form of an open structure, and they are highly accessible for proteolytic cleavage in the
digestion tract. These special properties of caseins can be used as a mechanism for the target
release/delivery of various hydrophobic compounds such as hydrophobic flavonoids [52].
The particles in selected mixtures of rutin and NaCas are colloidally stable, which indicates
some degree of the complexation between rutin and NaCas. Using dynamic light scattering
and ultracentrifugation, the dissociation of NaCas at high alkaline pH and its subsequent
reassociation after decreasing the pH to close to neutral has been previously confirmed [35].
Such consequent neutralization of NaCas was used for the encapsulation of curcumin in
colloidally stable self-assembled particles of casein [35]. Although the system developed
in the current study is based on the self-assembly of the NaCas, which was previously
used for the delivery of curcumin [35], we have overcome the problem of poor loading
of rutin through the systematic investigation of its aqueous solubility under various pH
conditions and its interaction with NaCas, possibly through the molecular interactions
between rutin and NaCas [24,54], besides the effect of rutin on the potential cross-linking
of casein molecules. Therefore, this system, with a high concentration (mass ratio of 2.5:1,
NaCas:rutin w/w) of rutin, may be able to release rutin efficiently in the digestive tract.
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3.4. In Vitro Digestion of the Rutin–NaCas Complexes and Rutin Release Behaviour

The pH profile, particle size, and the appearance of rutin–NaCas particles (NaCas:rutin
ratio of 2.5 w/w) vs. control NaCas throughout the simulated gastric digestion are shown in
Figure 5. Both control NaCas and rutin–NaCas complexes exhibited the same pH profile at
the early stage of gastric digestion, but this behaviour changed after around 80–120 min
of digestion such that the sample containing rutin resulted in a lower pH. Hydrolysis
of caseins by pepsin at acidic conditions increases pH due to the formation of a basic
carboxylate moiety that picks up protons upon hydrolysis of peptide bonds. If this process
is retarded, as in the rutin–casein complex, then the pH decreases more rapidly as more of
the highly acidic SGF is added in the simulated digestion. Figure 5A shows this retarded
hydrolysis for the rutin–casein complex. This is confirmed in Figure 6A, which shows
that protein concentrations at times longer than around 40 min remained higher in the
case of the rutin–casein complex than for sodium caseinate alone. Effective protection of
casein by rutin against hydrolysis was provided at the mid-to-late stages of digestion, as is
apparent in Figure 6A. Rutin is subsequently released during the second phase of digestion
(where the complexes reach the small intestine). This then makes the NaCas–rutin species,
compared to rutin alone, more favourable in terms of the oral delivery of this flavonoid.

The particle size analysis of the samples (including both phases and immediately after
the withdrawal) during the gastric digestion (Figure 5B) showed that both control NaCas and
rutin–NaCas complexes followed a similar pattern in terms of the increase in particle size,
with particle size increasing initially before decreasing at longer times beyond 100 min. This
may also be another indication that the rutin–casein complexation can result in delaying the
release of rutin, as well as the aggregation of the protein (i.e., NaCas). This can also be seen
from the pictures presented in Figure 5C, where the aggregation of the protein particles in the
absence of rutin (Figure 5C1) can be observed directly after 20 min, while such aggregation
could not be seen in the case of rutin–NaCas complexes until the sample was digested for at
least 40 min. Therefore, in the case of rutin–NaCas complexes, the precipitation of protein was
less than the control NaCas, which may be attributed to the possible interactions between
rutin and caseins [43,55], as explained in the previous sections. Nevertheless, as seen in
Figure 5C, after 120 min and in the case of the rutin–NaCas sample, such aggregations start to
disappear, which agrees with the decrease in the particle size data reported in Figure 5B and
the increasing extent of hydrolysis apparent in Figure 6A.

Although there are no systematic data available for the rutin–casein complexations
thus far, such complexations between other polyphenols and milk proteins are known
to occur [56–59]. Zhao [58] studied the interactions between proteins such as casein and
phenolic compounds such as tannic acid and gallic acid and the effect of such interac-
tions on the properties of proteins. Phenolic compounds changed the structure of the
proteins that lead to a significant decrease in their digestibility and reduced the degree of
protein hydrolysis during gastrointestinal digestion [58]. Additionally, it is also known
that some polyphenols may not only bind onto different sites of proteins at their low
concentrations, but can also covalently cross-link protein molecules when present at higher
concentrations [59–61]. Rawel [59] confirmed the interactions between whey proteins and
both quercetin and rutin that resulted in blocking the lysine, tryptophan, and cysteine
residues. These researchers [59] reported that the phenolic reactant was covalently bound
to a β-lactoglobulin (β-Lg) molecule, while the fractions of high molecular protein were
also detected by polyacrylamide gel electrophoresis (SDS-PAGE), possibly due to the cross-
linking of β-Lg with quercetin. It has also been suggested that compared to smaller phenolic
compounds (e.g., phenolic acids), the polyphenolic compounds with higher molecular
weight can make stronger cross-links with proteins. This is due to the presence of several
aromatic rings on these molecules, meaning that there are more sites for the possible reac-
tions to take place [60]. In a previous study [61], polyphenols have also been suggested as
cross-linkers of protein-based products such as gelatin gels and gelatin-based coacervates
for use as novel ingredients in the food industry. These researchers [61] observed that such
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a cross-linking led to denser polymeric networks that prevented the possible extension of
the peptide chains at the pH away from the isoelectric point.
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Figure 5. The behaviour of control NaCas and rutin–NaCas nanocomplexes (NaCas:rutin ratio of
2.5 w/w) throughout the simulated gastric digestion. (A) pH profile; (B) particle size; (C) appearance
(C1: control NaCas, C2: rutin–NaCas). Columns of the same colour containing different letters are
significantly different at p < 0.05.
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Figure 6. Protein release behaviour (A) and rutin release behaviour (B) of the rutin–NaCas nanocom-
plexes during the simulated gastric digestion.

Furthermore, we studied the protein hydrolysis behaviour of both control NaCas
and rutin–NaCas complexes (Figure 6A) and found that the slope of protein hydrolysis
in the case of control NaCas was steeper than the rutin–NaCas complexes. After 40 min
of digestion, the protein concentration curve of the control rutin started to show a steady
linear decrease to about 10 mg/mL, whereas in the case of the rutin–NaCas particles, such
a decrease was not seen until the end of the digestion period.

Such a hydrolysis/release profile may protect rutin from early release due to the lower
rate of casein hydrolysis in the case of rutin–NaCas particles when compared with the
hydrolysis rate of caseins in NaCas control. This slower hydrolysis may partially be owed to
the hydrophobic interactions between NaCas and rutin, indicating that the self-assembled
NaCas particles can be appropriate for the delivery of hydrophobic flavonoids such as
rutin [25,31]. Most protein-based particles developed for the oral delivery of flavonoids
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such as rutin are easily degraded in the stomach by proteases, which in turn leads to the
rapid release of the encapsulated flavonoid before it arrives in the small intestine [62,63].
This makes the applications of such delivery systems limited, a challenge that we have
addressed in this current research, where the encapsulation of rutin by NaCas retarded
the hydrolysis of casein and consequent release of rutin (to then precipitate out under
acidic conditions). In other words, this delivery system can protect rutin under the acidic
condition of the upper part of the digestion system (i.e., stomach) and release it under the
neutral condition of the lower part. Moreover, the digestion of rutin–NaCas species could
be achieved with a higher total concentration of rutin than in the rutin alone (experiment
control).

4. Conclusions

Based on the systematic assessment of the aqueous solubility of rutin and screening
various formulations of NaCas and rutin (i.e., controlling the mass ratio of protein and
flavonoid) for the development of an efficient oral delivery towards rutin incorporation into
functional foods, the delivery system containing 5% NaCas and 2% rutin (the NaCas:rutin
ratio of 2.5:1), prepared at alkaline pH and brought to neutral pH, is considered as the most
efficient system. This system also protected rutin under the simulated gastric digestion,
with a limited release of this flavonoid under these conditions, owing to the successful com-
plexation of rutin and NaCas, suggesting that it is a promising method for the incorporation
of high concentrations of rutin into functional foods (in particular, liquid and semi-liquid
products). Although there appear to be numerous encapsulation systems suggested for the
oral delivery of rutin, most of these systems fail at addressing the required amount of rutin
(500 mg/d) to be delivered in a single dose of the final functional food product, due to the
poor aqueous solubility of this bioactive flavonoid that results in the poor loading capacity
of the corresponding delivery systems. Thus, the development of the rutin delivery system
reported in this study, using NaCas as a conventional and inexpensive food grade protein,
can pave the way for a more feasible delivery method for the incorporation of rutin into
functional food products. Yet, the improved stability of such particles and higher protection
of rutin may also be further achieved if biopolymers such as gum arabic, maltodextrin, and
pectin are used as a component of this system [43,64,65]. We are currently investigating the
potential changes in the protein composition of samples and the structure of the protein
as a function of digestion time. Further research is also currently being carried out in our
laboratory to explore the release behaviour of rutin from the rutin–NaCas particles beyond
the gastric phase, as well as the possibility of using proteins (from both animal and plant
sources) for the delivery of various hydrophobic flavonoids for their incorporation into
various functional food products.

Supplementary Materials: The following are available online, Figure S1: Chemical structure of rutin
(A) and quercetin (B); Figure S2: The effect of rutin: NaCas ratio on the physical stability (phase
separation) of the formulations before (A) and after (B) centrifugation (3000 × g, 10 min, 20 ◦C).
For the concentration of protein and rutin, please see Table 1. All the formulations were high-sheer
mixed at 33000 rpm for three 1-min cycles before centrifugation; Figure S3: The appearance of the
selected encapsulation systems for the delivery of high concentrations of rutin. For the concentration
of protein and rutin, please see Table 2.
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