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Fibronectin plays an essential role in tissue development and regeneration. However, the

effects of fibronectin knockout (FN1-KO) on stem cells’ proliferation and differentiation

remain unknown. In this study, CRISPR/Cas9 generated FN1-KO in human infrapatellar

fat pad-derived stem cells (IPFSCs) was evaluated for proliferation ability including cell

cycle and surface markers as well as stemness gene expression and for differentiation

capacity including chondrogenic and adipogenic differentiation. High passage IPFSCs

were also evaluated for proliferation and differentiation capacity after expansion on

decellularized ECM (dECM) deposited by FN1-KO cells. Successful FN1-KO in IPFSCs

was confirmed by Sanger sequencing and Inference of CRISPR Edits analysis (ICE)

as well as immunostaining for fibronectin expression. Compared to the GFP control,

FN1-KO cells showed an increase in cell growth, percentage of cells in the S and

G2 phases, and CD105 and CD146 expression but a decrease in expression of

stemness markers CD73, CD90, SSEA4, and mesenchymal condensation marker

CDH2 gene. FN1-KO decreased both chondrogenic and adipogenic differentiation

capacity. Interestingly, IPFSCs grown on dECMs deposited by FN1-KO cells exhibited

a decrease in cell proliferation along with a decline in CDH2 expression. After induction,

IPFSCs plated on dECMs deposited by FN1-KO cells also displayed decreased

expression of both chondrogenic and adipogenic capacity. We concluded that FN1-KO

increased human IPFSCs’ proliferation capacity; however, this capacity was reversed

after expansion on dECM deposited by FN1-KO cells. Significance of fibronectin in

chondrogenic and adipogenic differentiation was demonstrated in both FN1-KO IPFSCs

and FN(–) matrix microenvironment.

Keywords: fibronectin, infrapatellar fat pad-derived stem cell, proliferation, chondrogenic differentiation,

adipogenic differentiation

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00321
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00321&domain=pdf&date_stamp=2019-11-15
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zuoqin_yan@163.com
mailto:xzhang@llu.edu
mailto:mpei@hsc.wvu.edu
https://doi.org/10.3389/fbioe.2019.00321
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00321/full
http://loop.frontiersin.org/people/766069/overview
http://loop.frontiersin.org/people/806790/overview
http://loop.frontiersin.org/people/837534/overview
http://loop.frontiersin.org/people/68224/overview


Wang et al. FN1-KO and Stem Cell Differentiation

INTRODUCTION

As a connective tissue, articular cartilage is susceptible to damage
caused by trauma or osteoarthritis (OA). However, its healing
response to injury is limited due to its avascular nature (Benedek,
2006). Despite many pre-clinical studies having been performed,
the regeneration of functional articular cartilage for clinical use
remains a challenge (Karnes et al., 2014). An increasing body
of evidence indicates that mesenchymal stem cells (MSCs) have
great potential for cartilage engineering and regeneration (Jones
and Pei, 2012; Pizzute et al., 2015). After first being isolated
from bone marrow (Friedenstein et al., 1976), MSCs have been
found in a variety of tissues including infrapatellar fat pad
(IPFP) (Sun et al., 2018a). IPFP-derived MSCs (IPFSCs) are
easily accessible and have better chondrogenic potential than
bone marrow-derived MSCs (BMSCs) (Hindle et al., 2017).
IPFSCs from OA patients were shown to possess comparable
chondrogenic potential as those from non-OA donors (Liu et al.,
2014), supporting the feasibility of using patients’ autologous
cells for regeneration. However, MSCs including IPFSCs were
reported to inevitably suffer from cell senescence due to in vitro
expansion or donor age (Li and Pei, 2012; Lynch and Pei, 2014).

Recent studies indicate that microenvironment, provided by
extracellular matrix (ECM), plays an important role in the
regulation of stem cell stemness (Pei, 2017; Sun et al., 2018b). For
instance, decellularized ECM (dECM) has been demonstrated to
rejuvenate human IPFSCs (He and Pei, 2013), synovium-derived
MSCs (SDSCs) (Li et al., 2014), and human BMSCs (Pei et al.,
2011a). Fibronectin (FN), one of the major fibrillary components
in ECM, is implicated in the proliferation and differentiation
processes of MSCs (Chang et al., 2008; Kalkreuth et al., 2014).
However, while most evidence relies on the effect of fibronectin
ligands on cell behavior (Linask and Lash, 1988; Budd et al.,
1990; Sapudom et al., 2015), with a few reports investigating
the effect via fibronectin knockout (FN1-KO) (Liu et al., 2010;
Lukjanenko et al., 2016), there is no evidence of the impact of
FN1-KO on adult stem cells’ chondrogenic capacity. Therefore, in
this study, the FN1-KO approach was used to investigate the role
of fibronectin in guiding IPFSCs’ chondrogenic and adipogenic
differentiation given the close relationship between these two
lineages (Zhou et al., 2019) and in this specific type of stem
cells (Sun et al., 2018a). Furthermore, the role of fibronectin on
IPFSCs’ proliferation and bi-lineage differentiation was evaluated
via dECM deposited by FN1-KO IPFSCs, in other words, a
three-dimensional FN(–) matrix microenvironment.

MATERIALS AND METHODS

IPFSC Harvest and Culture
Approval for this study was obtained from the Institutional
Review Board. Human adult IPFPs were harvested from six
young patients with acute meniscus or anterior crucial ligament
tear (fourmale and two female, average 22 years old). These IPFPs
were minced and sequentially digested with 0.1% trypsin (Roche,
Indianapolis, IN) for 30min and 0.1% collagenase P (Roche) for
2 h to separate cells. After filtration and centrifugation, obtained
IPFSCs were pooled and cultured in growth medium [Minimum

Essential Medium–Alpha Modification (αMEM) containing 10%
fetal bovine serum (FBS), 100 U/ml penicillin, 100µg/ml
streptomycin, and 0.25µg/ml fungizone (Invitrogen, Carlsbad,
CA)] at 37◦C in a humidified 21% O2 and 5% CO2 incubator.
The medium was changed every 3 days.

Single-Guide RNA (sgRNA) Design,
Plasmid Construction, and Virus
Production
The CHOPCHOP website (https://chopchop.rc.
fas.harvard.edu/) was consulted to design high-
performance sgRNAs targeting FN1 (Zhang et al., 2016)
sgFN1a (GCTGTAACCCAGACTTACGG) and sgFN1b
(GCAAGCGTGAGTACTGACCG) were used in this study.
Lentiviral vectors that express Cas9 (driven by the SFFV
promoter) and sgRNA (driven by the U6 promoter) were
constructed with a NEBuilder HiFi DNA Assembly Kit (New
England Biolabs, Ipswich, MA). The vectors were verified by
Sanger sequencing of the inserts. A standard calcium phosphate
precipitation protocol was utilized for lentivirus production. The
lentiviral vectors were condensed 100-fold by centrifugation at
6,000 × g for 24 h at 4◦C to reach biological titers of ∼1 × 10
(Hindle et al., 2017)/ml.

Lentiviral CRISPR/Cas9 Mediated FN1-KO
Lentiviral CRISPR/Cas9 was used to generate FN1-KO in human
IPFSCs according to a previous report (Zhang et al., 2017).
Passage 1 human IPFSCs were transduced at a multiplicity
of infection (MOI) of two with scramble sgRNA sequence-
containing vector (green fluorescence protein control lentivirus
particles, copGFP) or CRISPR/Cas9 vectors (sgFN1a and
sgFN1b) in the presence of 4µg/ml of protamine sulfate
(MilliporeSigma, Burlington, MA). After 24 h, the medium was
changed to αMEM with 10% FBS and 2µg/ml of puromycin
(MilliporeSigma) for selection. Five days after transduction and
puromycin selection, DNA fragments surrounding the Cas9-
sgRNA target sites were polymerase chain reaction (PCR)
amplified. Sanger sequencing and Inference of CRISPR Edits
(ICE) were used to evaluate the frameshift-induced knockout
efficiency (Li et al., 2018). Meanwhile, immunofluorescence
staining for fibronectin was also used to confirm transduction
efficiency in the dECMs deposited by normal cells (normal ECM),
Cas9-sgFN1a transduced cells (sgFN1a ECM), and Cas9-sgFN1b
transduced cells (sgFN1b ECM).

dECM Preparation and
Immunofluorescence Staining
The protocol to prepare dECM was detailed in a previous
report (Li and Pei, 2018). Briefly, tissue culture plastic
(TCP) was pre-coated with 0.2% gelatin (MilliporeSigma) at
37◦C for 1 h, followed by treatment with 1% glutaraldehyde
(MilliporeSigma) and 1M ethanolamine (MilliporeSigma) at
room temperature (RT) for 0.5 h, respectively. Passage 5
IPFSCs from the copGFP, sgFN1a, and sgFN1b groups were
seeded on pre-coated TCP (6,000 cells/cm2) until they reached
100% confluence, followed by addition of L-ascorbic acid
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phosphate (Wako Chemicals, Richmond, VA) in the medium
at a working concentration of 250µM for an additional 7
days (Pizzute et al., 2016). Then, cells were incubated in 0.5%
Triton X-100 (MilliporeSigma) containing 20mM ammonium
hydroxide (Sargent-Welch, Skokie, IL) at 37◦C for 5min. After
the cells were removed, dECMs were rinsed with phosphate
buffered solution (PBS) and stored in PBS containing 100 U/ml
penicillin, 100µg/ml streptomycin, and 0.25µg/ml fungizone at
4◦C until use.

dECMs were fixed in 4% paraformaldehyde, blocked
with 1% bovine serum albumin (BSA), and incubated with
primary antibody against human fibronectin (cat no. HFN
7.1; Developmental Studies Hybridoma Bank, Iowa City,
IA). After rinsing with PBS, dECMs were incubated with
secondary antibody [Donkey anti-Mouse IgG (H+L) Alexa
Fluor 488, Invitrogen]. Fluorescence intensity was observed
under a Zeiss Axiovert 40 CFL Inverted Microscope (Zeiss,
Oberkochen, Germany).

Culture of IPFSCs on TCP and dECMs
Two experiments were designed as follows: (1) TCP culture
regimen (Experiment 1), passage 5 IPFSCs from the copGFP,
sgFN1a, and sgFN1b groups were expanded on TCP; and (2)
dECM culture regimen (Experiment 2), high passage (passage 15)
IPFSCs were expanded for 7 days on TCP and dECMs deposited
by passage 5 IPFSCs from the copGFP, sgFN1a, and sgFN1b
groups in terms of copGFP ECM, sgFN1a ECM, and sgFN1b
ECM. Expanded cells were detached followed by incubation in
a pellet culture system for chondrogenic induction or culture in
T25 flasks for adipogenic induction.

Evaluation of Expanded Cells’ Growth
Rate, Surface Phenotypes, and Expression
of Stemness Genes
Cell number was counted (n = 8 T175 flasks each group) and
cell cycle was measured (the percentage of cells in the S and G2

phases) to assess expanded cell growth. After a 7-day culture of
seeded cells at 3,000 cells/cm2, the harvested cells were counted
using Countess R© (Invitrogen). For cell cycle analysis, cells were
fixed with 70% ethanol and stained with propidium iodide
(MilliporeSigma). DNA contents were measured using FACS
Calibur (BD Biosciences, San Jose, CA), and analyzed using FCS
Express software package (De Novo Software, Los Angeles, CA).

Flow cytometry was used to evaluate surface phenotypes
of expanded cells. The following primary antibodies were
used: CD73-APC (cat no. 17-0739-42; eBioScience, Fisher
Scientific, Waltham, MA), CD90-APC-Vio770 (cat no. 130-114-
863; Miltenyi Biotec, San Diego, CA), CD105-PerCP-Vio700
(cat no. 130-112-170; Miltenyi Biotec), CD146-PE (cat no. 12-
1469-42; eBioScience), and the stage-specific embryonic antigen
4-PE (SSEA4-PE; cat no. 330406; BioLegend, Dedham, MA).
Samples of each 2 × 105 expanded cells were incubated in cold
PBS containing 0.1% ChromPure Human IgG whole molecule
(Jackson ImmunoResearch Laboratories, West Grove, PA) for
30min, followed by binding with the primary antibodies at
4◦C for 30min. Fluorescence was examined by a FACS Calibur

(BD Biosciences) using FCS Express software package (De
Novo Software).

Total RNA was extracted from expanded cells (n = 4)
using an RNase-free TRIzol R© (Invitrogen). About 2 µg
of mRNA was utilized for reverse transcription with a
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems Inc., Foster, CA). Stemness genes [NANOG (assay ID:
Hs02387400_g1), SOX2 (SRY-box 2; assay ID: Hs01053049_s1),
KLF4 (Kruppel-like factor 4; assay ID: Hs00358836_m1), BMI1
(B lymphoma Mo-MLV insertion region 1 homolog; assay
ID: Hs00180411_m1), MYC (assay ID: Hs00153408_m1), NOV
(nephroblastoma overexpressed; assay ID: Hs00159631_m1),
POU5F1 (POU class 5 homeobox 1; assay ID: Hs04260367_gH),
and NES (nestin; assay ID: Hs04187831_g1)], senescent genes
[CDKN1A (cyclin-dependent kinase inhibitor 1A; assay ID:
Hs00355782_m1), CDKN2A (cyclin-dependent kinase inhibitor
2A; assay ID: Hs00923894_m1), and TP53 (tumor protein p53;
assay ID: Hs01034249_m1)], and the mesenchymal condensation
gene [CDH2 (cadherin 2; assay ID: Hs00983056_m1)] were
customized by Applied Biosystems as part of the Custom
TaqMan R© Gene Expression Assays. GAPDH (glyceraldehyde-3-
phosphate dehydrogenase; assay ID: Hs02758991_g1) was used
as the endogenous control gene. Real-time quantitative PCR
(qPCR) was performed using Applied BiosystemsTM 7500 Fast
Real-Time PCR System (Applied Biosystems). Relative transcript
levels were calculated as χ = 2−11Ct, in which 11Ct = 1E –
1C, 1E= Ctexp – CtGAPDH, and 1C= Ctct1-CtGAPDH.

Chondrogenic Induction and Analysis
For chondrogenic induction, aliquots of 0.3× 106 expanded cells
were centrifuged at 500 g for 7min in a 15-ml polypropylene
tube to make a pellet. After overnight incubation (day 0), pellets
were grown in a serum-free chondrogenic induction medium
[high-glucose Dulbecco’s modified Eagle’s medium (DMEM)
with 40µg/ml proline (MilliporeSigma), 100 nM dexamethasone
(MilliporeSigma), 100 U/ml penicillin, 100µg/ml streptomycin,
0.1mM ascorbic acid-2-phosphate, and 1× ITSTM Premix (BD
Biosciences)] with the supplementation of 10 ng/ml transforming
growth factor beta3 (TGFβ3; PeproTech, Rocky Hill, NJ) for
up to 18 days. Chondrogenic differentiation was assessed using
histology, immunohistochemistry, and qPCR.

Representative pellets (n = 3) were fixed in 4%
paraformaldehyde at 4◦C overnight, followed by dehydrating in
a gradient ethanol series, clearing with xylene, and embedding
in paraffin blocks. Five-micrometer-thick sections were
stained with Alcian blue (MilliporeSigma) staining for sulfated
glycosaminoglycan (GAG). For immunohistochemical staining
(IHC), consecutive sections were incubated with primary
antibody against type II collagen (cat no. II-II6B3; Developmental
Studies Hybridoma Bank) followed by the secondary antibody
of biotinylated horse anti-mouse IgG (Vector, Burlingame,
CA). Immunoactivity was identified using Vectastain ABC
reagent (Vector).

Total RNA was extracted from chondrogenically induced
pellets (n = 4) using an RNase-free TRIzol R© (Invitrogen).
After reverse transcription, chondrogenic marker-related genes
[SOX9 (SRY-box 9; assay ID: Hs00165814_m1),ACAN (aggrecan;
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assay ID: Hs00153936_m1), COL2A1 (type II collagen; assay
ID: Hs00156568_m1), and PRG4 (proteoglycan 4; assay ID:
Hs00981633_m1)] and hypertrophic marker genes [COL10A1
(type X collagen; assay ID: Hs00166657_m1) and MMP13
(matrix metallopeptidase 13; assay ID: Hs00233992_m1)] were
customized by Applied Biosystems as part of the Custom
TaqMan R© Gene Expression Assays. GAPDH was used as
the endogenous control gene. Each experiment was repeated
three times.

Adipogenic Induction and Analysis
When cells reached 90% confluence in T25 flasks, they were
cultured for 21 days in adipogenic medium (growth medium
supplemented with 1µM dexamethasone, 0.5mM isobutyl-1-
methyxanthine, 200µM indomethacin, and 10µM insulin). Cells
in T25 flasks (n = 3) were fixed in 4% paraformaldehyde and
stained with a 0.6% (w/v) Oil Red O (ORO) solution (60%
isopropanol, 40% water) for 10min. Intracellular lipid-filled
droplet-bound staining was recorded under a Nikon TE300
phase-contrast microscope (Nikon, Tokyo, Japan).

Total RNA was extracted from adipogenically induced cells
(n = 4) using an RNase-free TRIzol R© (Invitrogen). After reverse
transcription, adipogenic marker genes [LPL (lipoprotein lipase;
assay ID: Hs00173425_m1), PPARG (peroxisome proliferator-
activated receptor gamma; assay ID: Hs01115513_m1), FABP4
(fatty acid-binding protein 4; assay ID: Hs01086177_m1), and
CEBPA (CCAAT enhancer binding protein alpha; assay ID:
Hs00269972_s1)] were customized by Applied Biosystems as
part of the Custom TaqMan R© Gene Expression Assays. GAPDH
was used as the endogenous control gene. Each experiment was
repeated three times.

Statistical Analysis
Mann–Whitney U test was used for pairwise comparison. All
statistical analyses were conducted with SPSS 20.0 statistical
software (SPSS Inc., Chicago, IL). P < 0.05 was considered
statistically significant.

RESULTS

FN1-KO Cell Model and Influence on
IPFSCs in Proliferation and Stemness
In this study, CRISPR/Cas9 was used to generate knockout
FN1 in human IPFSCs. To confirm the success of FN1-KO,
Sanger sequencing and ICE analysis were conducted and the
results revealed 74% indels for sgFN1a (Figure 1A) and 96%
indels for sgFN1b (Figure 1B). This result was in line with
our immunofluorescence data (Figure 1C). We found that,
compared to abundant expression of fibronectin in “normal
ECM” deposited by non-transduced IPFSCs, “sgFN1a ECM”
and “sgFN1b ECM” exhibited considerably less expression of
fibronectin, particularly for the sgFN1b ECM group.

In order to determine whether fibronectin influences stem
cell proliferation, cell increase was measured (Figure 2A) and
cell cycle was monitored (Figure 2B) during cell expansion.
We found that IPFSCs from both sgFN1a and sgFN1b
groups grew faster than those from the copGFP group.

This phenomenon was also supported by cell cycle data, in
which both Cas9-sgFN1a and Cas9-sgFN1b transduced IPFSCs
exhibited a higher percentage of cells in the S phase (%S).
Our flow cytometry data suggested that FN1-KO decreased
the expression of SSEA4 (Figure 2C) in both percentage and
median and CD73 (Figure 2D) and CD90 (Figure 2E) in median
but increased expression of CD105 (Figure 2F) in median
and CD146 (Figure 2G) in both percentage and median in
human IPFSCs.

To find out whether fibronectin affected stem cell stemness,
a list of stemness genes was assessed using qPCR in FN1-
KO IPFSCs and the control groups. Most stemness genes
including NANOG, SOX2, KLF4, BMI1, and MYC were down-
regulated in FN1-KO IPFSCs; however, some stemness genes,
NOV and POU5F1 (also known as OCT4), were down-regulated
in the sgFN1a group but slightly up-regulated in the sgFN1b
group (Figure 2H). Interestingly, NES was up-regulated in
both sgFN1a and sgFN1b groups compared with the copGFP
group (Figure 2H). We also found that all senescence-related
genes were down-regulated in the FN1-KO IPFSCs, including
CDKN1A, CDKN2A, and TP53 (Figure 2I). Since fibronectin is
linked with mesenchymal condensation, CDH2, a condensation
marker, was also evaluated using qPCR. The data showed that
CDH2 expression in IPFSCs dramatically decreased in line with
the extent of FN1-KO (Figure 2J).

Effects of FN1-KO on IPFSCs in
Chondrogenic and Adipogenic
Differentiation
To ascertain whether FN1-KO affected IPFSCs’ differentiation
capacity, chondrogenesis (Figure 3) and adipogenesis (Figure 4)
were evaluated using histology, immunostaining, and qPCR. A
pellet culture system was employed for chondrogenic induction.
After an 18-day chondrogenic incubation, FN1-KO IPFSCs
yielded pellets with a smaller size and incomplete (rough)
surface compared to the copGFP group, particularly for the
sgFN1b group. This discrepancy was observed in Alcian blue
staining for sulfated GAGs and IHC for type II collagen,
two typical chondrogenic markers. The pellets from FN1-
KO IPFSCs were weakly stained for both GAGs and type
II collagen (Figure 3A); these results were validated at the
mRNA levels by qPCR analysis demonstrating that FN1-
KO significantly decreased the expression of chondrogenesis-
related genes including SOX9, ACAN, COL2A1, and PRG4 but
increased hypertrophy-related genes in terms of COL10A1 and
MMP13 (Figure 3B).

After a 21-day adipogenic induction, Oil Red O staining
showed that, compared to the copGFP group, FN1-KO
significantly decreased lipid droplets in induced IPFSCs,
particularly for the sgFN1b group (Figure 4A). The staining data
were further confirmed by qPCR data for typical adipogenic
genes. The data showed that, compared to the copGFP group,
the sgFN1a group had significantly lower expression of LPL,
FABP4, and CEBPA but not PPARG, whereas the sgFN1b group
had remarkably lower expression of all of the four adipogenic
genes (Figure 4B).
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FIGURE 1 | Knockout of FN1 in IPFSCs. Human IPFSCs were transduced with scramble sgRNA sequence-containing vector (green fluorescence protein control

lentivirus particles, copGFP) or CRISPR/Cas9 vectors (sgFN1a and sgFN1b). Five days after transduction, amplicons targeting the Cas9-sgFN1 cleavage sites were

subject to Sanger sequencing and ICE analysis. Representative diagrams of indel mutations were induced by sgFN1a (A) and sgFN1b (B). FN1-KO was also

confirmed by immunofluorescence staining for fibronectin in the dECMs deposited by normal cells (normal ECM) and Cas9-sgFN1a/b transduced cells (sgFN1a ECM

and sgFN1b ECM, respectively) (C).

Impact of dECMs Deposited by FN1-KO
Cells on IPFSCs in Proliferation and
Stemness
In order to determine the influence of FN(–) matrix
microenvironment on IPFSCs’ proliferation, we compared

passage 15 IPFSCs grown on sgFN1a ECM, sgFN1b ECM,
copGFP ECM, and TCP. We found that all dECM groups

exhibited higher cell increase (Figure 5A) and percentage of

cells in the S and G2 phases (Figure 5B). Compared to the

copGFP ECM group, a decline in cell growth and percentage of
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FIGURE 2 | Cell proliferation capacity in human IPFSCs after FN1-KO. FN1-KO cells were compared with copGFP in cell increase (A), percentage of cells in the S and

G2 phases (B), and surface markers [SSEA4 (C), CD73 (D), CD90 (E), CD105 (F), and CD146 (G)] by flow cytometry; stemness genes (NANOG, SOX2, KLF4, BMI1,

MYC, NOV, POU5F1, and NES) (H), senescent genes (CDKN1A, CDKN2A, and TP53) (I), and the mesenchymal condensation gene (CDH2) (J) by qPCR. GAPDH

was used as an endogenous control. Data are shown as bar charts. * indicates a significant difference compared to the corresponding copGFP group (P < 0.05).

cells in the S and G2 phases was observed in the dECM groups
deposited by FN1-KO IPFSCs. Our flow cytometry data also
showed that, compared to the TCP group, all dECM-expanded
cells exhibited increased expression of SSEA4 (Figure 5C) in
both percentage and median but decreased expression of CD73
(Figure 5D) and CD90 (Figure 5E) in median and CD105
(Figure 5F) in both percentage and median, which were further

strengthened in those grown on dECMs deposited by FN1-KO
cells (Figures 5C–F).

To determine the effect of FN(–) matrix microenvironment
on high passage IPFSCs’ stemness, our qPCR data showed
that, despite a dramatic up-regulation of all tested stemness
genes including NANOG, SOX2, KLF4, BMI1, MYC, NOV,
POU5F1, and NES in human IPFSCs grown on copGFP ECM
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FIGURE 3 | Chondrogenic potential of human IPFSCs after FN1-KO. Human IPFSCs were chondrogenically induced in a pellet culture system for 18 days. The effect

of fibronectin on chondrogenic capacity of human IPFSCs was evaluated using gross observation of 18-day pellets, Alcian blue staining (Ab) for sulfated GAGs and

immunohistochemical staining (IHC) for type II collagen (Col2) (A). qPCR was used to evaluate expression of chondrogenic marker genes (SOX9, ACAN, COL2A1,

and PRG4) and hypertrophic marker genes (COL10A1 and MMP13) (B). GAPDH was used as an endogenous control. Data are shown as bar charts. *indicates a

significant difference compared to the corresponding copGFP group (P < 0.05).

compared to TCP, up-regulation of most stemness genes was
diminished in IPFSCs after expansion on dECMs deposited
by FN1-KO IPFSCs (Figure 5G). Interestingly, the FN(–)
matrix microenvironment yielded expanded IPFSCs with higher
expression of CDKN2A and TP53, but lower expression of
CDKN1A (Figure 5H). Not surprisingly, compared to those
grown on TCP, expansion on copGFP ECM yielded IPFSCs with
up-regulation of CDH2 expression; however, dECMs deposited
by FN1-KO cells produced expanded cells with significantly
lowered expression of CDH2 (Figure 5I).

Effects of dECMs Deposited by FN1-KO
Cells on IPFSCs in Chondrogenic and
Adipogenic Differentiation
We next wondered whether the FN(–) matrix microenvironment
played a negative role in determining IPFSCs’ differentiation
preference. After chondrogenic induction, high passage IPFSCs
grown on copGFP ECM yielded 18-day pellets with a larger size
andmore intensive staining of Alcian blue for sulfated GAGs and

of IHC of type II collagen compared to those plated on TCP;
however, this advantage of dECM expansion was diminished
when high passage IPFSCs were expanded on dECMs deposited
by FN1-KO cells (Figure 6A). These histological findings were
supported by qPCR results showing that expansion on copGFP
ECM yielded 18-day pellets with significantly higher expression
of chondrogenic markers SOX9, ACAN, COL2A1, and PRG4 as
well as hypertrophic markers COL10A1 and MMP13. However,
expansion on dECMs deposited by FN1-KO cells yielded 18-
day pellets with declining expression of these marker genes,
particularly for the dECM deposited by Cas9-sgFN1b transduced
cells (Figure 6B).

After adipogenic induction, we found that, compared to the
TCP group, expansion on copGFP ECM yielded IPFSCs with
less intensive staining of Oil Red O for lipid droplets, which
further decreased if IPFSCs were pre-grown on dECMs deposited
by FN1-KO cells (Figure 7A). This finding was consistent with
qPCR data, in which expansion on TCP yielded IPFSCs with
the highest expression of adipogenic marker genes LPL, PPARG,
FABP4, and CEBPA after induction followed by expansion on
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FIGURE 4 | Adipogenic potential of human IPFSCs after FN1-KO. Human

IPFSCs were adipogenically induced in differentiation medium for 21 days. The

effect of FN1-KO on adipogenic capacity of human IPFSCs was evaluated

using Oil Red O staining for liquid droplets (A) and qPCR for adipogenic marker

gene (LPL, PPARG, FABP4, and CEBPA) expression (B). GAPDH was used as

an endogenous control. Data are shown as bar charts. *indicates a significant

difference compared to the corresponding copGFP group (P < 0.05).

copGFP ECM with the least expression in dECMs deposited by
FN1-KO cells, particularly for the dECM deposited by Cas9-
sgFN1b transduced cells (Figure 7B).

DISCUSSION

In this study, we used CRISPR/Cas9 technology to investigate
the role of fibronectin in IPFSCs’ proliferation and
chondrogenic/adipogenic differentiation via direct FN1-KO
in IPFSCs and indirect growth on dECMs deposited by FN1-KO
IPFSCs. We found that FN1-KO increased IPFSCs’ proliferation
but decreased the proliferation of high passage IPFSCs grown
on FN(–) dECM. Furthermore, FN1-KO had a negative effect
on chondrogenic and adipogenic differentiation of IPFSCs,
which was also reflected in high passage IPFSCs grown on
FN(–) dECM.

The effect of fibronectin on stem cell proliferation remains
controversial. Song et al. reported no effect of fibronectin on
human BMSCs (Song et al., 2008); however, others reported that
fibronectin promotes stem cell proliferation (Kalkreuth et al.,
2014; Tao et al., 2018). In our study, we found that FN1-
KO increased IPFSCs’ proliferation, which was accompanied by
up-regulation of CD105 and CD146 and down-regulation of
senescence-associated genes. CD146, a putative surface marker

of MSCs, is negatively linked with cellular senescence. For
instance, CD146 expression was dramatically decreased in
human umbilical cord blood-derived MSCs (UCB-MSCs) after
long-term in vitro expansion; human UCB-MSCs with high
CD146 expression exhibited a high rate of growth and telomerase
activity as well as a notably lower expression of p16, p21, and
p53 (Jin et al., 2016). Intriguingly, FN1-KO down-regulated
most stemness genes except NOV, POU5F1, and NES in human
IPFSCs. Interestingly, despite an increase of cell growth and
percentage of cells in the S and G2 phases and SSEA4 expression
in all dECM groups, expansion on dECMs deposited by FN1-
KO cells yielded IPFSCs with decreased cell growth and cell
cycling. Similar to previous reports (Zhang et al., 2015a,b; Pizzute
et al., 2016), dECM expansion decreased expression of CD73,
CD90, and CD105 in IPFSCs, which was strengthened in the
sgFN1b ECM group. We also found that, compared to the
TCP group, expansion on dECM deposited by copGFP cells
exhibited the highest levels of stemness gene expression, which
were diminished if grown on dECMs deposited by FN1-KO
cells including POU5F1 and NES. Interestingly, CDKN2A and
TP53 were up-regulated in IPFSCs after expansion on dECMs
deposited by FN1-KO cells. Since few reports are available on
interpretation of the interconnection among stem cells and
surface markers and stemness gene expression, more research is
needed to clarify the correlation.

Fibronectin promoted chondrogenic differentiation of mouse
chondrogenic progenitor cells when fibronectin was included in
the culture medium (Tao et al., 2018) and of human embryonic
stem cells when cells were cultured on fibronectin type III
domain-coated substrates (Cheng et al., 2018). Fibronectin
matrix assembly was reported to be critical for cell condensation
during chondrogenesis (Singh and Schwarzbauer, 2014). Given
that fibronectin treatment could significantly decrease COL10A1
andMMP13 expression (Tao et al., 2018), it is reasonable to detect
a dramatic increase of these two hypertrophic marker gene levels
in FN1-KO IPFSCs. Considering that CDH2, a mesenchymal
condensation marker, could enhance stem cell aggregation and
subsequent chondrogenic differentiation (Goldring et al., 2006),
decreased expression of CDH2 in FN1-KO IPFSCs in our study
might be responsible for the down-regulation of chondrogenic
markers and incomplete surface of chondrogenic pellets.

In accord with previous reports (Pei, 2017), dECM-expanded
high passage IPFSCs exhibited an enhanced chondrogenic
differentiation, perhaps due to the sequestration of TGFβ in
ECM (Horiguchi et al., 2012), which promoted dECM-expanded
IPFSCs’ stemness and amplified TGFβ-mediated chondrogenesis
(Pei et al., 2011b). Similar to the appearance of pellets from
FN1-KO IPFSCs, we found a rough exterior in the pellets
of IPFSCs grown on dECMs deposited by FN1-KO cells,
suggesting that human IPFSCs’ differentiation preference is
markedly influenced by FN(–) matrix microenvironment. It was
found that deletion of fibronectin from young generating
muscles reproduced the aging phenotype (Lukjanenko
et al., 2016). Since a young environment contributed to an
improved revitalization effect on aged progenitor cells (Conboy
et al., 2005), it is reasonable to speculate a compromised
rejuvenation effect of dECM resulted from FN1-KO related
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FIGURE 5 | Proliferation capacity of human IPFSCs after expansion on the dECMs deposited by FN1-KO cells. Passage 15 human IPFSCs were compared after

expansion on dECMs deposited by Cas9-sgFN1a/b transduced cells (sgFN1a ECM and sgFN1b ECM, respectively) with those deposited by copGFP (copGFP ECM)

and those grown on TCP (TCP) as controls in cell increase (A), percentage of cells in the S and G2 phases (B), and surface markers [SSEA4 (C), CD73 (D), CD90 (E),

and CD105 (F)] by flow cytometry; stemness genes (NANOG, SOX2, KLF4, BMI1, MYC, NOV, POU5F1, and NES) (G), senescence genes (CDKN1A, CDKN2A, and

TP53) (H), and the mesenchymal condensation gene (CDH2) (I) by qPCR. GAPDH was used as an endogenous control. Data are shown as bar charts. *indicates a

significant difference compared to the corresponding copGFP group (P < 0.05).

cell aging. Interestingly, inconsistent with up-regulated
expression of hypertrophic markers in FN1-KO cells, IPFSCs
plated on dECMs deposited by FN1-KO cells exhibited a

down-regulated expression of hypertrophic marker genes.
The underlying mechanisms remain unknown and deserve
further investigation.
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FIGURE 6 | Chondrogenic potential of human IPFSCs after expansion on dECMs deposited by FN1-KO cells. Passage 15 human IPFSCs in a pellet culture system

were compared for chondrogenic capacity after expansion on dECMs deposited by Cas9-sgFN1a/b transduced cells (sgFN1a ECM and sgFN1b ECM, respectively)

with those deposited by copGFP (copGFP ECM) and those grown on TCP (TCP) as controls including gross observation of 18-day pellets, Alcian blue staining (Ab) for

sulfated GAGs, and IHC for type II collagen (Col2) (A). qPCR was used to evaluate expression of chondrogenic marker genes (SOX9, ACAN, COL2A1, and PRG4) and

hypertrophic marker genes (COL10A1 and MMP13) (B). GAPDH was used as an endogenous control. Data are shown as bar charts. *indicates a significant

difference compared to the corresponding copGFP group (P < 0.05).

Despite adipogenesis being marked by a transformation
from the fibronectin-rich stromal matrix (types I and III
collagen, β1-integrin, and fibronectin) of the preadipocytes to the
basement membrane (type IV collagen and entactin) of mature
adipocytes (Gregoire et al., 1998; Selvarajan et al., 2001), we
found that human IPFSCs after FN1-KO exhibited a dramatic
decrease of adipogenic differentiation, as evidenced by Oil
Red O staining for lipid droplets and qPCR for adipogenic
marker genes, particularly for Cas9-sgFN1b transduced cells.
This finding might be explained by the lack of fibronectin in
human IPFSCs causing the failure of fibronectin fibrillogenesis,
which is one of the crucial determinants for adipogenesis
(Kamiya et al., 2002).

Many reports evaluated the effect of fibronectin on
adipogenesis by using a fibronectin-coated surface or
supplementing with fibronectin in the culture medium. For

example, growth on fibronectin matrices inhibited adipogenesis
of 3T3-F442A cells, which could be reversed by exposure to
cytochalasin D that disrupted the actin cytoskeleton (Spiegelman
and Ginty, 1983). Fukai et al. found that the addition of
rat plasma fibronectin inhibited adipogenic differentiation
of ST-13 preadipocytes; however, the thermolysin digest of
fibronectin promoted adipocyte differentiation (Fukai et al.,
1993). Considering potential sequestration and concentration of
latent TGFβ by interaction with specific ECM components for
future activation (Horiguchi et al., 2012), it seems reasonable
that, compared to TCP culture, dECM expansion decreased
IPFSCs’ adipogenic differentiation because TGFβ is a potent
inhibitor of adipogenic differentiation through promoting ECM
synthesis including fibronectin (Gagnon et al., 1998). In this
study, we also found that this unfavorable effect of dECM on
adipogenic differentiation was further strengthened if dECMs
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FIGURE 7 | Adipogenic potential of human IPFSCs after expansion on dECMs

deposited by FN1-KO cells. Human IPFSCs were compared for adipogenic

capacity after expansion on dECMs deposited by Cas9-sgFN1a/b transduced

cells (sgFN1a ECM and sgFN1b ECM, respectively) with those deposited by

copGFP (copGFP ECM) and those grown on TCP (TCP) as controls including

Oil Red O staining for lipid droplets (A) and qPCR for adipogenic marker gene

(LPL, PPARG, FABP4, and CEBPA) expression (B). GAPDH was used as an

endogenous control. Data are shown as bar charts. *indicates a significant

difference compared to the corresponding copGFP group (P < 0.05).

were deposited by FN-KO cells. This effect might be explained by
the influence of FN(–) matrix microenvironment on expanded
human IPFSCs viamirror characters.

In summary, FN1-KO increased human IPFSCs’ proliferation
capacity; however, this capacity was reversed after expansion
on dECMs deposited by FN1-KO cells. The importance of
fibronectin in chondrogenic and adipogenic differentiation
was demonstrated in both FN1-KO IPFSCs and the FN(–)
matrix microenvironment, which might lay the foundation for
fibronectin-mediated tissue engineering and regeneration.
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