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Abstract

Understanding how the human brain is structured, and how its architecture is related to function, is of paramount
importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain
diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in
structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches
involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience
that are quite often based on the analysis of complex network representation of the human brain. In recent years, this
representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope
with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model
structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review
the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de
facto, the birth of multilayer network analysis and modeling of the human brain.
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Background

Brain networks provide a map of the complex organiza-
tion, either structural or functional, of its units. In the last
decades, several experimental measurements, based on electro-
encephalography, magneto-encephalography (MEG), diffusion
tensor imaging (DTI), structural and functional magnetic reso-
nance imaging (fMRI), have been carried on to explore such an
organization [1,2].

In this context, networks consist of brain regions (i.e., the
nodes) and their structural or functional connection patterns
(i.e., the edges) obtained by evaluating cross-correlation or more
sophisticated similarity measures in space, time, and frequency
domains.

Structural networks usually represent an anatomical par-
cellation of the brain where links among neurons or regions,
encoding physical connections, are obtained from MRI, DTI, or
histological data. In DTI, one of the widest adopted techniques,
the diffusion of water molecules and the result of their interac-
tionswith tissues aremeasuredwith high accuracy, allowing the
reconstruction of nerve fibers and mapping of the human brain
in three dimensions with exceptional resolution. The functional
connectivity of the brain is usually obtained bymeasuring a spe-
cific type of physical signal (e.g., blood oxygen level – dependent
contrast as in fMRI or magnetic field as in MEG) from different
regions and then comparing pairwise signals by means of some
similarity measure (e.g., cross-correlation, transfer of entropy,
spectral coherence, etc.). If the similarity between two signals is
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Figure 1: Multilayer network representation. (a) A multilayer network consists of different networks encoded by layers, each one represented by a (possibly directed

and weighted) adjacency matrix. (b) The rank-4 multilayer adjacency tensor, representing intra- and inter-layer connectivity, is generally flattened by matricization to
a rank-2 tensor, generally known as supra-adjacency matrix, without loss of information.

statistically significant, a functional link is considered between
the corresponding brain regions. Many studies differ in the type
of signal they measure and the statistical methodology adopted
to build the functional network, but they all share the approach
described above.

Network modeling approaches successfully unveiled inter-
esting features such as small-worldness – where the under-
lying topology is highly locally clustered and the presence of
long-range connections dramatically reduces the distance be-
tween units – and modular and rich-club organization – where
the underlying topology can be coarse-grained and described as
a network of modules with highly-connected units tending to
be connected to each other more frequently than random ex-
pectation. The success of network mapping increased, in paral-
lel, the need for novel methodologies devoted to unraveling the
structure and the function of the brain at multiple spatial and
temporal scales [3,4]. However, the lack of an appropriate math-
ematical framework for the representation and analysis of
multivariate connectivity data forced many studies to neglect,
disregard, or aggregate available information in order to cope
with the high amount of underlying complexity.

More recently, researchers explored the possibility of study-
ing the human brain without necessarily either throwing out
or aggregating the data deluge available nowadays. An impor-
tant and promising approach is the use of multilayer networks
(see [5,6] for a thorough review), recently developed to provide
a mathematical framework [7] to model and analyze complex
data with multivariate and multi-scale information. Recent re-
sults from this research direction are exciting and provide new
insights about our understanding of the structure and function
of the human brain.

Multilayer network representation of the
human brain

A multilayer network consists of several distinct classical net-
works, each one encoding a specific type of information about
the system. In the following, we will briefly discuss different
types of multilayer brain networks where layers’ connectiv-
ity, measured with respect to a specific definition of similarity
(e.g., cross-correlation, spectral coherence, etc.) might encode

(i) activity in different frequency bands, (ii) time-varying activ-
ity, (iii) activity with respect to different tasks, and (iv) structural
and functional connectivity.

While standard networks can be represented by adjacency
matrices, indicating the presence and the intensity of connec-
tions among the system’s units, multilayer networks require
higher-order matrices, i.e., tensors, to be appropriately repre-
sented (see Fig. 1a) [7]. In general, the components of the multi-
layer adjacency tensor of N nodes and L layers are indicated by
Miα

jβ and encode the connectivity between unit i in layer α and
unit j in layer β, with i, j = 1, 2, . . . , N. For instance, intra-layer
connectivity in the αth layer is given by the entries Miα

jα . A stan-
dard approach is based on flattening this rank-4 tensor into a
rank-2 tensor, named the supra-adjacency matrix, with a block
structure where diagonal blocks encode intra-layer connectivity
and off-diagonal blocks encode inter-layer connectivity (Fig. 1b).

The tensorial representation of multilayer networks allows
us to develop a powerfulmathematical framework to extend tra-
ditional complex network analysis such as detection of modu-
lar super-units [8,9] and identification of most central units [10].
The majority of such tools are based on the analysis of how in-
formation spreads through the multilayer system (see [11] and
references therein) and provides a suitable framework for the
structural analysis of the human brain.

While several classical network concepts have been suc-
cessfully and satisfactorily extended to multilayer systems, ap-
proaches adopted to model the human brain are mainly based
on multiplex and interconnected multiplex topologies. In both
models, the same node is usually replicated on more than one
layer, where it exhibits different connectivity patterns depend-
ing on the information encoded by the layer. A multiplex topol-
ogy is an edge-colored multigraph consisting of different layers
that are not interconnected to each other: Miα

jβ = 0 for any i, j = 1,
2, . . . , N and α, β = 1, 2, . . . , L (with α �= β), using the notation in-
troduced before. An interconnectedmultiplex topology includes
links across layers, although only the ones among the node’s
replicas are allowed: Miα

jβ = 0 for any i �= j and α �= β, whereas
Miα

iβ �= 0 for α �= β (as in Fig. 1a). Other multilayer network mod-
els are possible, but they have found a few applications in neu-
roscience, if any.

It is worth remarking that one should be cautious in the
choice of the network model to adopt for the analysis of the
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human brain, if one is interested in exploiting the tensorial al-
gebra developed to naturally extend the majority of classical
network descriptors to the multilayer realm [7]. In fact, when
interconnectivity is absent, analysis based on the multilayer ad-
jacency tensor provides the same results as classical analysis of
each layer separately.

In the following, we will consider applications involving in-
terconnected multiplex networks, and we will refer to them as
‘multiplex’, for the sake of simplicity.

Frequency-based decomposition

Frequency-based decomposition is an approach that provides a
multilayer functional representation of the human brain. In the
case of fMRI, signals are filtered and components between 0.01
and 0.1 Hz are usually kept [12–14] (see [15] for a review). The
choice of the frequency band might have a deep impact on the
functional representation of the brain. In fact, standardmethod-
ologies do not distinguish the contributions coming from dif-
ferent frequency bands, considering only one specific range.
The resulting network provides a functional map of the brain
and allows for identification of special regions that act as hubs,
i.e., units either with larger connectivity than others or with
strategic functions that maximize the information flow through
them [16–19] (see [15] for a review). It is worth remarking that
while the concept of information flow is well defined for struc-
tural networks, it requires care in the case of functional ones.
In fact, functional representations encode statistically signifi-
cant correlations between brain regions, and, strictly speaking,
the concept of information flowing through such (often non-
physical) links is poorly defined. Here, the interpretation of some
network descriptors in terms of information flow is given to bet-
ter elucidate the meaning of the descriptor in a structural con-
text, rather than to characterize physical information dynamics.

Given their functional importance, hubs mediate interac-
tions among other regions and might favor the brain’s inte-
grated operation. They are generally identified by centrality
descriptors [20], and they are of particular interest in many
applications [21–24]. Recent studies have shown that the im-
portance of each region is subjected to dramatic changes
depending on the frequency cuts [25] and that hubs might be
very different when functional connectivity is measured in dif-
ferent frequency bands [26]. These results, together with previ-
ous findings concerning the importance of topological informa-
tion measured from components above 0.1 Hz [27–29], suggest
that a novel framework for modeling and analysis of the human
brain’s functional connectivity is required.

The new framework must be able to consider functional in-
formation from different frequency bands simultaneously: in
practice, for each band it is sufficient to build a functional net-
work and then to analyze the resulting system as a whole. Mul-
tilayer networks provide the mathematical background [7] for
this purpose. In this new framework, each region of the brain is
mapped into a network node and replicated across all layers, en-
coding frequency bands, where they are connected with other
nodes by means of functional links – corresponding to signifi-
cant correlations in a specific frequency band. Themethodology
is summarized in the top panels of Fig. 2, while the result of the
procedure applied to a real human brain is visualized in Fig. 3.

Nodes are interconnected with their replicas – also known as
‘state nodes’ – across layers, and the weight of these links is, in
general, a free parameter that must be estimated from the data
or by maximizing a specific cost function [30]. For each unit, the
set of state nodes constitutes a ‘physical node’ corresponding to

a specific brain region. State nodes of a single physical node are
interconnected categorically; i.e., they build a clique.

The first question to answer is to what extent such an
enriched representation of functional connectivity is more
valuable than other aggregated (or less rich) representations.
The answer has been recently given in De Dominico et al. (2016),
where it has been shown that each functional layer – in a range
between 0.01 and 0.25 Hz, in steps of 0.02 Hz – provides unique
information and should be neither aggregated with other lay-
ers nor neglected [30]. The result is based on the analysis of
structural reducibility [31], a modern technique grounded in
information entropy.

The irreducibility of themultilayer functional representation
of the human brain raises the necessity for multilayer analy-
sis of the underlying architecture, and a few first results have
been recently reported about the identification of hubs. In other
contexts, it has been shown that hubs in a multilayer network
might be dramatically different from hubs in each layer of the
system [32]. An intuitive example is given in the following. Let
us consider a two-layer systemwhere a certain node is in the pe-
riphery of both networks, and let us consider that such a node is
the only one common to the two layers. It is clear that this node
is crucial for the exchange of information between the two lay-
ers, and as a consequence, it will be most central with respect to
this criterion. In a classical analysis, where the layers are con-
sidered separately, the node is still peripheral and it would be
the less central (information exchange can be modeled by bits
diffusing through the system either along random walks [33] or
shortest paths [34,35] between two endpoints).

The multilayer analysis of brain regions, centrality reveals
that hubs are, in general, different from the hubs identified by
standard methodologies based on single-layer network analy-
sis. The most surprising finding is that such hubs can be used
to distinguish, with high accuracy and sensitivity (above 80% in
both cases), the brain of a schizophrenic patient from a healthy
brain in resting state [30], thus improving our understanding
of schizophrenia and opening the door to the analysis of other
brain disorders within the same framework.

Magnetoencephalography has been recently used in a sim-
ilar spirit, with layers encoding the connectivity between neu-
ral oscillations within four frequency bands, namely alpha (8–
13 Hz), beta (13–30 Hz), low gamma (30–50 Hz), and high gamma
(50–100 Hz). In this context, the mean connection strength –
averaged across the network where the functional connectiv-
ity between schizophrenic patients and controls differs most
– has been used to gain new insights about, within, and be-
tween oscillatory frequencies [36]. Two regimes of multilayer
network behavior have been identified in a system with five
layers (bands 1–4, 4–8, 8–13, 13–30, and 30–48 Hz): in the first
regime, layers are independent, while in the second regime
they are highly dependent. Results suggest that the healthy hu-
man brain operates at the transition point between these two
regimes [37].

These studies provide evidence and support for the hypoth-
esis that functional layers do not act as independent entities,
suggesting the existence of mechanisms for integration and
segregation of brain activity within and across different fre-
quency bands. Very recently, a mechanistic model for this pro-
cess has been proposed [38]. The authors have compared the
performance of two models: in model A, each brain region
generates oscillations in a single frequency; in model B, each
brain region can generate oscillations in multiple frequency
bands. Model B, named the ‘multi-frequency model’, does
not take into account cross-frequency interactions, but it still
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Figure 2: Building the multilayer functional brain. Top panels: brain activity is measured in different regions, and signals are decomposed in the frequency domain.
The frequency domain consists of (possibly overlapping) frequency bands, and for each band, coherence – or other similarity descriptors – is measured between all

pairs of regions. A similarity matrix is built for each frequency domain, and statistical analysis of significance is used to map each matrix into a functional network,
constituting a functional layer of the overall multilayer system. Bottom panels: in this case, signals are decomposed in the time domain, which consists of (possibly
overlapping) consecutive temporal snapshots. A similarity matrix is calculated for each snapshot, and the corresponding functional layer is built.

outperforms the single-frequency model in reproducing empir-
ical MEG data [38].

In a more recent work, MEG recordings during resting states
in subjects affected by Alzheimer’s disease have been used to
build a multilayer network where layers represent functional
connectivity in different frequency bands (2–4, 4–8, 8–10.5, 10.5–
13, 13–20, 20–30, and 30–45 Hz). The study has provided evidence
that regional connectivity in unhealthy subjects was abnormally
distributed across frequency bands – a feature with no counter-
part in healthy individuals – revealing an abnormal loss of inter-
frequency centrality in memory-related association areas. The
proposed methodology has led to high-classification accuracy
(78.4%) and sensitivity (91.1%) of subjects, confirming the su-
perior performance of multilayer analysis as compared to more
traditional approaches [39].

All the results briefly described in this section support and
reinforce the possibility of adoptingmultilayer techniques as po-
tential non-invasive biomarkers for neurodegenerative diseases
and mental disorders.

Time-varying network model and task-based
decomposition

Instead of building functional layers in the frequency domain,
it might be desirable to consider the brain activity in the time

domain because temporal changes and their mapping might be
biologically meaningful. It is worth noting that historically this
was, in fact, the first multilayer approach to the analysis of brain
networks, even when a formal theory for this type of structure
was not yet available [40].

Usually, the measured blood oxygen level–dependent activ-
ity is divided into a series of time windows named snapshots,
which can be overlapping or not, and a pairwise measure of cor-
relation between regions of interest is calculated to build a func-
tional network for each snapshot. However, it is fundamental to
remark that this processing phase is far from providing a rigor-
ous and well-established method to build functional networks
from this type of data [41]. In practice, overlapping and non-
overlapping windows are not statistically independent [42,43],
their length is a free parameter, and their choice requires care-
ful inspection of the data [44,45] to avoidmapping spurious con-
nectivity fluctuations.

The resulting network is a multilayer graph where each layer
corresponds to a functional snapshot of brain activity. This ap-
proach has the advantage of building a static backbone of the
underlying functional dynamic of the human brain that can be
used, for instance, to better understand how it operates dur-
ing specific tasks or at the onset of an epileptic seizure. In
this regard, multilayer networks describing how functional con-
nectivity changes across time provide a richer framework than
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Figure 3: Visualizing the multilayer functional brain. Three-dimensional representations of the multilayer functional brain of a schizophrenic subject, based on fre-
quency decomposition (11 layers, non-overlapping frequency bands between 0.01 and 0.23 Hz). Only links with at least 6 standard deviations from themean are shown
(see [30] for further details). (a) Edge-colored representation, where connections are colored according to the frequency band and node size is proportional to their

functional versatility [30]. (b) Multi-slice representation, where each layer encodes information about a specific frequency band [73] and inter-layer connectivity is not
shown explicitly for the sake of simplicity. The color scheme is the same in the two representations.

traditional approaches [46]. In this framework, state nodes are
interconnected only with their subsequent replicas, like in a
chain. This methodology, summarized in the bottom panels of
Fig. 2, has opened the door to several studies and triggered the
development of novel theoretical measures to identify the most
influent brain regions during learning [47] and how they cluster
together in functional modules [48], to cite some of them.

The multilayer model for time-varying networks can be used
to explore the role of functional fluctuations while in a resting
state or performing specifying activities (see [3] for an up-to-date
review), where in the latter case one defines a task-based repre-
sentation of brain activity [48,49]. This type of decomposition is
of particular interest because it is possible to map the recon-
figuration of brain regions’ correlated activity between different
tasks or during a learning process [50,51].

Besides the variety of its applications, very recently this novel
framework has been used to better characterize high-level lan-
guage processing in humans by using fMRI data from 22 hu-
man subjects asked to perform a language comprehension task.
While it is known that the activity of left frontal, temporal,
and parietal cortices is very correlated, constituting a functional
system, when an individual is performing a natural language

comprehension task or she is resting, it is still poorly under-
stood how those brain regions become part of such an integrated
functional system. By identifying functional modules within the
multilayer framework, involving the generalization of classical
modularity maximization to the multilayer domain [8], it has
been shown that a stable core of mutually co-activating brain
regions emerges mainly in the left hemisphere, whereas a pe-
riphery of brain regions is developed in the right hemisphere
while co-activatingwith different regions at different times. One
might ask if the use of such a complicated computational tool is
required for this purpose. While it is possible to perform com-
munity – or any other network descriptor – analysis in each layer
separately, only by performing multilayer analysis it is possi-
ble to account for the continuity of communities – or central-
ity, influence, clusters, and so forth – over time, a key advan-
tage that has no counterpart in other single-layer or aggregated
approaches. This result, heavily based on the multilayer analy-
sis of functional brain connectivity, suggests the existence of a
trade-off between a region’s specialization and its capacity for
flexible network reconfiguration [52] and highlights the power
of this novel analytical framework to improve our understand-
ing of the brain’s functional dynamics.



6 De Domenico

While brain activity during a single task can be studied by
means of a temporal network, it has been recently shown that
the networks corresponding to different tasks can be used to
encode the layers of a multitask multilayer topology [53]. At
variance with the temporal networks described above, where
replicated nodes are interconnected across layers following the
arrow of time (i.e., node i in the layer corresponding to snapshot
τ is linked to node i in the layer(s) corresponding to τ ′ > τ ), inter-
connectivity in multitask networks is categorical (i.e., node i in
layer α is linked to all of its replicas in layers β �= α). Results from
this research direction indicate that several inter-region tempo-
ral patterns observed at rest are preserved during different tasks,
suggesting the existence of a primary intrinsic functional net-
work architecture – similar to the one observed in a resting state
– that is enriched by a secondary task-dependent functional
connectivity [53].

Structural and functional decomposition

Understanding the interplay between brain structure, function,
and dynamics is a longstanding challenge [2–54]. The novelmul-
tilayer framework provides a unique opportunity to study, simul-
taneously, structural and functional information, and, in fact, it
has been recently used for this purpose [59,60].

The first study concerns motifs, specific subgraphs of re-
duced size (generally 3 or 4 nodes), that play a fundamental
role in the stability of the underlying system and several func-
tions [61]. The significance of a motif is usually estimated by its
occurrence with respect to a null model of the network. While
the relationship between structural and functional brain motifs
has been studied in the past [62], in Battison et al. (2016), the au-
thors have exploited the recent mathematical advances in net-
work analysis to investigate multiplex motifs [59,63].

In their setup, eachmultiplex network consists of two layers:
one reflecting anatomical connectivity – inferred from diffusion
magnetic resonance imaging – and one encoding functional re-
lationships – inferred from fMRI – among the brain regions of
healthy subjects. In this context, multiplex motifs are poten-
tially more informative than their single-layer (either structural
or functional) counterparts taken separately because a larger
number of configurations, accounting for both layers simulta-
neously, is considered. The results indicate that when a phys-
ical connection between different brain regions coexists with
a non-trivial positive correlation in their activities, the corre-
sponding motif is statistically significant; i.e., it occurs more
frequently than random expectation. As a consequence, this
works provides further quantitative support to the hypothesis
that functional connectivity is non-trivially constrained by brain
architecture.

In the same spirit, another study explored the relationship
between the structure and function of the Macaque cortical net-
work [60]. In this case, the functional layer has been derived from
simulated neural activity, whereas structural information is pro-
vided by anatomical connectivity. From the study of multiplex
clustering, involving triangles of nodes on the two layers, the
authors have investigated the emergence of functional connec-
tions that have no structural counterpart and the dependence of
the multiplex network on the neural dynamical regime.

Conclusion

Increasing evidence shows that our understanding of the human
brain cannot prescind fromusingmore complexmulti-scale and
multilayer models than a decade ago. The new models have to
account for the hierarchical organization of the brain in both

spatial and temporal dimensions, as well as its functional orga-
nization changes across temporal and frequency domains, while
interplaying with the underlying structure. The recent advances
in network science led to the development of a powerful math-
ematical framework for multilayer networks [7], topologies able
to account for the simultaneous existence of different types of
relationships between system’s units and their variation over
time [5,6,11].

The present epoch is mature enough for multilayer analysis
of the human brain to investigate the functional role of brain re-
gions in different domains. While the field is still in its infancy,
intense research activity is ongoing, based on advanced math-
ematical models to represent structural and functional con-
nectivity, their evolution over time and their interdependence.
Network science is just coming out of the multilayer revolu-
tion, which triggered hundreds of applications in all disciplines,
from life sciences to humanities, in a few years. While there are
still many theoretical challenges to tackle, such as the defini-
tion of appropriate null models to compare against the connec-
tivity of empirical multilayer systems [64–67], the outcome of
such a revolution already provides several computational tools
to identify key units in multilayer systems [7,32,34,35,68,69], de-
termine their organization in modules [8,9,70,71], reduce con-
nectivity into simpler architectures [31], and discover the hier-
archical organization of layers [72].

The application of some of these tools to the analysis of the
human brain provides exciting novel insights about the brain’s
structure and function. Nevertheless, from a methodological
point of view, it is still a challenge to define a physical mean-
ing for inter-layer connectivity, beyond purely mathematical or
computational arguments. For instance, in multiplex networks
representing multimodal connectivity or structural-functional
relationships, as well as in time-varying networks, nodes repli-
cated across different layers are linked with each other: in the
former, all the replicas are interconnected, whereas in the lat-
ter only replicas corresponding to subsequent temporal snap-
shots are connected in order to preserve the underlying causal
structure of the data. However, the weight to assign to these
inter-layer connections is a free parameter, as in the case of
frequency-based decompositions (in this last case, a partial so-
lution might be given by the analysis of cross-frequency corre-
lations).

In the future, we expect more complex structural and dy-
namical models able to account for several types of information
simultaneously. Such models will incorporate multivariate in-
formation from different domains, e.g., space, time, and fre-
quency, across different scales, from the cellular level to entire
brain regions, with the ultimate goal of shedding light on how
the interplay between structure and dynamics is related to brain
diseases and gives rise to cognition.
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