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Abstract
Coronaviruses (CoVs) were first discovered in the 1960s. Se-
vere acute respiratory syndrome CoV-2 (SARS-CoV-2) has 
been identified as the cause of COVID-19, which spread 
throughout China and subsequently, across the world. As 
COVID-19 causes serious public health concerns across the 
world, investigating the characteristics of SARS-CoV-2 and 
its interaction with the host immune responses may provide 
a clearer picture of how the pathogen causes disease in 
some individuals. Interestingly, SARS-CoV-2 has 80% se-
quence homology with SARS-CoV-1 and 96–98% homology 
with CoVs isolated from bats. Therefore, the experience ac-
quired in SARS and Middle East Respiratory Syndrome 
(MERS) epidemics may improve our understanding of the 
immune response and immunopathological changes in CO-
VID-19 patients. In the present paper, we have reviewed the 
immune responses (including the innate and adaptive im-
munities) to SARS-CoV, MERS-CoV, and SARS-CoV-2, so as to 
improve our understanding of the concept of the COVID-19 
disease, which will be helpful in developing vaccines and 
medications for treating the COVID-19 patients.

© 2021 S. Karger AG, Basel

Introduction

In the past two decades, there have been two major 
coronavirus (CoV) outbreaks, including the severe acute 
respiratory syndrome CoV (SARS-CoV) in 2002, and the 
Middle East Respiratory Syndrome CoV (MERS-CoV) in 
2012 [1, 2]. The recent CoV outbreak, which happened in 
the Wuhan city of China, is known as the 2019-nCoV 
outbreak and has been recently renamed as SARS-CoV-2 
outbreak or COVID-19 [3].

The first case of SARS-CoV-2 infection was reported 
with presentation of the symptoms of atypical pneumonia. 
This case was further confirmed to be caused by the novel 
CoV, SARS-CoV-2 [4]. The most potential risk for the 
spread of COVID-19 worldwide is related to travel, which 
leads to the regional and global spread of the disease [5]. 
The origin of CoVs is primarily related to animals. The out-
breaks occur when these viruses cross the species barrier 
and infect humans. SARS and COVID-19 share many sim-
ilarities in terms of their transmission and pathogenicity. 
They both cause acute respiratory illnesses and follow hu-
man-to-human transmission. Although SARS-CoV-2, 
which is responsible for COVID-19 infection, has been suc-
cessfully isolated and the viral infectivity and pathogenicity 
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have been understood, further investigations are still re-
quired to understand the viral antigenic structure, mode of 
action, and pathogenicity of this pathogen [2].

SARS-CoV-2 is a novel emerging contagious agent 
that has found a way into human civilization. The predic-
tion of Fan et al. [6] about the emergence of a future SARS 
or MERS-like CoVs epidemic in China with a probable 
bat source turned into reality when the first case of con-
centrated viral pneumonia was reported in Wuhan. Later 
on, the novel CoV, designated as SARS-CoV-2, was found 
to be responsible for the viral outbreak of pneumonia in 
Wuhan [7]. Generally, emerging and reemerging of viral 
infections belong to the RNA family of viruses since these 
viruses have high mutation rates that allow their eminent 
environmental adaptation with rapid evolution [8]. To 
date, little knowledge is available about SARS-CoV-2.

A recently published research suggests that SARS-
CoV-2 shares 79% nucleotide identity to SARS-CoV and 
51.8% identity to MERS-CoV [9], indicating a high ge-
netic homology among SARS-CoV-2, MERS-CoV, and 
SARS-CoV. In SARS-CoV and MERS-CoV-infected ani-
mal models, marked inflammatory and immune respons-
es may activate a “cytokine storm” and apoptosis of epi-
thelial and endothelial cells. Subsequently, vascular leak-
age as well as abnormal T cell and macrophage responses 
ensue and induce acute lung injury/acute respiratory dis-
tress syndrome (ARDS) or even death [10].

However, the systemic landscape of the immune re-
sponses in patients with COVID-19 is unclear. Since 
there are some similarities among the clinical features 
and immunopathogenesis of SARS-CoV-2 and those of 
SARS-CoV and MERS-CoV [11], the knowledge learned 
from SARS-CoV and MERS-CoV has important implica-
tions for understanding this new CoV [12].

In order to contain the infection and develop effective 
management systems to handle viral infections in an out-
break scenario, we should understand the nature of infec-
tion and response of the immune system to the novel vi-
rus and evaluate the similarities and dissimilarities of the 
novel virus with the viruses that had caused outbreaks in 
the past. This review aims at exploring the immune sys-
tem responses against the SARS-CoV-2, compared to the 
cases of other CoVs (SARS and MERS).

Clinical and Biochemical Indices

The most common laboratory abnormalities related to 
the new CoV include hypoalbuminemia, lymphopenia, 
decreased percentage of neutrophils, elevated C-reactive 

protein (CRP), and lactate dehydrogenase (LDH) levels, 
as well as decreased CD8 count. The viral load of SARS-
CoV-2, detected through the patients’ respiratory tracts, 
has been found to be positively linked to the lung disease 
severity. Albumin, lymphocytes, LDH, neutrophils, and 
CRP are highly correlated with acute lung injury. Age, 
viral load, lung injury score, and blood biochemistry in-
dices, albumin, CRP, LDH, lymphocytes (%), and neutro-
phils (%), are possibly the predictors of disease severity 
[13]. In addition, nonsurvivors had higher levels of neu-
trophils, D-Dimer, blood urea nitrogen, and creatinine 
than survivors [14] (Fig. 1).

Innate Immune Responses to SARS-CoV-2

Based on the available accumulated data for previous 
CoV infections, the innate immune response plays a cru-
cial role in the protective or destructive responses and 
may open a window for immune intervention. Active vi-
ral replication postpones the hyperproduction of inter-
feron (IFN) type I and influx of neutrophils and macro-
phages, as the major sources of pro-inflammatory cyto-
kines [15].

Cytokines and Chemokines
Cytokines and chemokines have been long thought to 

play an important role in immunity and immunopathol-
ogy during virus infections. A rapid and well-coordinated 
innate immune response is the first line of defense against 
viral infections, but dysregulated and excessive immune 
responses may cause immunopathology [16]. Although 
there is no direct evidence for the involvement of pro-
inflammatory cytokines and chemokines in lung pathol-
ogy during SARS and MERS, correlative evidence from 
patients with severe disease suggests a role for hyper-in-
flammatory responses in the human CoV (hCoV) patho-
genesis [10].

Analysis of serum cytokine levels and lymphocyte 
composition suggests that SARS-CoV-2 infection is as-
sociated with lymphopenia (particularly in CD4+ T cells 
and CD8+ T cells, but not in B cells), overproduction of 
cytokines such as interleukin (IL)-1, IL-6, IL-8, IL-2 re-
ceptor (IL-2R), IL-10, tumor necrosis factor-alpha 
(TNF-α), C-C motif chemokine 2 (CCL2), CCL3, CCL5, 
and decreased IFN-γ-expression in CD4+ T cells in se-
vere COVID-19, being correlated with COVID-19 dis-
ease severity. Levels of IL-6, IL-2R, IL-10, and TNF-α 
were mildly elevated or within the normal range in mod-
erate cases but markedly elevated in most severe cases. 
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These cytokines are probably produced by highly inflam-
matory cells that have been implicated in a cytokine storm 
[17]. It is believed that dysregulated host immune re-
sponse and cytokine storm are correlated with disease se-
verity and poor prognosis during SARS-CoV and MERS-
CoV infection [1, 18]. Unregulated levels of inflamma-
tory cytokines, which may lead to activated T-helper-1 
(Th1) cell responses, have been observed in COVID-19 
patients [19]. However, in SARS-CoV-2 patients, exces-
sive secretion of IL-4 and IL-10 has been reported, which 
may suppress inflammation via T-helper cell-2 (Th2) [15] 
(Fig. 2).

While SARS-CoV productively infects airway and al-
veolar epithelial cells, infection of hematopoietic cells 
such as dendritic cells (DCs), monocyte-macrophages, 
and other peripheral blood mononuclear cells (PBMCs) 
is abortive. SARS-CoV infection of DCs induces low-lev-
el expression of antiviral IFN-α and IFN-β cytokines, 
moderate upregulation of pro-inflammatory cytokines 

TNF-α and IL-6, and a significant upregulation of inflam-
matory chemokines [20]. Similarly, SARS-CoV-infected 
macrophages show delays in the secretion of pro-inflam-
matory cytokines [20]. The delayed but excessive produc-
tion of these cytokines and chemokines is thought to in-
duce a dysregulated innate immune response to SARS-
CoV infection. High serum levels of pro-inflammatory 
cytokines and chemokines have been found in SARS pa-
tients with severe disease, compared to individuals with 
uncomplicated SARS infection [21, 22]. These studies im-
ply that dysregulated and/or exaggerated cytokine and 
chemokine responses by SARS-CoV-infected airway epi-
thelial cells, DCs, and macrophages could play an impor-
tant role in SARS pathogenesis.

Similar to the case of SARS, MERS-CoV infection of 
human airway epithelial cells induces significant but de-
layed IFN and pro-inflammatory cytokine (IL-1β, IL-6, 
and IL-8) responses [23]. Interestingly, there was a sig-
nificant upregulation in the expression level of IL-17 in 

Fig. 1. The illustration of escalating phases of COVID-19 disease 
progression, with associated signs and symptoms from the onset 
to recovery or death. Infection with SARS-CoV-2 (COVID-19) 
can be classified into three stages of increasing severity: early infec-
tion, pulmonary phase, and hyperinflammation phase. The first 
phase is related to the onset of the disease and is generally charac-
terized by the development of influenza-like symptoms from mild 
to moderate. Some individuals recover and some progress to the 

second phase. In phase 2, it is possible to detect pneumonia-like 
symptoms evidenced as lung opacities. Phase 3 is characterized by 
hyperinflammation and sepsis of lungs and patient often requires 
ICU and most of them, unfortunately, cannot overcome the infec-
tion and eventually die. SARS-CoV-2, Severe acute respiratory 
syndrome coronavirus-2; ICU, intensive care unit; ARDS, acute 
respiratory distress syndrome; LDH, lactate dehydrogenase; CRP, 
C-reactive protein.
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MERS-CoV-infected patients [24]. Th cells, especially 
Th17 cells, produce the pro-inflammatory cytokine IL-17 
via the signal transducer and activator of transcription-3 
(STAT3) and NF-κB signaling pathways [25]. MERS-
CoV infection promotes the secretion of Th17 cytokines, 
which can recruit neutrophils and monocytes to the site 
of infection or inflammation and lead to the activation of 
other downstream cytokine and chemokine cascades, 
such as IL-1, IL-6, TNF-α, transforming growth factor-
beta (TGF-β), IL-8, and monocyte chemoattractant pro-
tein-1 (MCP-1) [26].

It seems that cytokine storm can initiate viral sepsis 
and inflammatory-induced lung injury that leads to other 
complications such as pneumonitis, ARDS, respiratory 

failure, shock, organ failure, and even death [27]. It has 
been reported that patients in the intensive care unit have 
higher plasma levels of many innate cytokines, IFN-γ-
inducible protein 10 (IP-10), MCP-1, macrophage in-
flammatory protein-1a, and TNF-α, and these clinical 
features have an association with disease progression and 
severity [24].

Interferons
The effective innate immune response against viral 

infections relies heavily on the IFN type I responses and 
its downstream cascade that culminates in controlling 
viral replication and induction of efficient adaptive im-
mune response [28]. To counter innate antiviral cyto-

Fig. 2. Manifestations of COVID-19 in body. Spike protein on the 
virion binds to ACE2, a cell-surface protein. TMPRSS2, an en-
zyme, helps the virion enter. The virion releases its RNA. Some 
RNA is translated into proteins by the cell’s machinery, and some 
of these proteins form a replication complex to make more RNA. 
Then, RNAs are assembled into a new virion in the Golgi and re-
leased. Infection with SARS-CoV-2 leads to activation of innate 
immunity and DCs, which will drive the induction of virus-specif-
ic T-cell and B-cell responses. Hyperinflammation by innate and 
adaptive leads to cytokine storm through inflammatory cytokine 

secretion. COVID-19 manifestations including pulmonary in-
volvement, ARDS, encephalitis, renal injury, intestinal flora dis-
turbance, and pneumonia are well recognized. CTL, cytotoxic T 
lymphocyte; TFH, T follicular helper cell; TH, T-helper cell; Treg, 
regulatory T cell; DCs, dendritic cell; SARS-CoV-2, Severe acute 
respiratory syndrome coronavirus-2; ARDS, acute respiratory dis-
tress syndrome; ACE2, angiotensin-converting enzyme 2; IFN, in-
terferon; GM-CSF, granulocyte-macrophage colony-stimulating 
factor; IL, interleukin; TNF, tumor necrosis factor.
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kine responses, SARS-CoV and MERS-CoV encode sev-
eral structural and nonstructural proteins (NSPs) that 
antagonize antiviral immune responses. SARS-CoV en-
codes nsp1, nsp3-macrodomain, nsp3 deubiquitinase, 
as well as ORF3b, ORF6, and ORF9b subvert antiviral 
responses via antagonizing IFN and interferon-stimu-
lated gene responses [29]. Additionally, structural pro-
teins such as the membrane (M) and nucleocapsid (N) 
proteins dampen IFN signaling by inhibiting TBK1/
IKKe [30, 31]. Similarly, MERS-CoV structural proteins 
M and N and accessory proteins ORF3, ORF4a, and 
ORF4b antagonize IFN responses [32, 33]. Structural 
and NSP antagonisms of IFN responses further amplify 
inflammatory responses by promoting unrestrained vi-
rus replication, resulting in an increased viral pathogen-
associated molecular pattern that further dampens IFN 
signaling. The lack of IFN signaling also leads to an ex-
cessive accumulation of Ly6Clow monocytes and neutro-
phils [10].

Early evidences have demonstrated that SARS-CoV-2 
is sensitive to IFN-I/III pretreatment in vitro, perhaps to 
a greater degree than SARS-CoV-1 [34, 35]. Moreover, 
IFN induced transmembrane family proteins inhibit 
SARS-CoV-2 entry, as demonstrated for SARS-CoV [36] 
although their action in promoting infection has been 
also described for other CoVs [37].

The results of several studies on testing antiviral treat-
ments against SARS-CoV replication indicate that ad-
ministration of IFN type I inhibits SARS-CoV growth in 
cell culture as well as viral replication in cynomolgus ma-
caques and mouse models [38, 39]. In response to viral 
infections, mononuclear phagocytes induce IFN-I and 
IFN-III production, resulting in inflammasome activa-
tion, induction of pathogenic Th1 and Th17 cell respons-
es, recruitment of effector immune cells, and cytokine re-
lease syndrome pathology [40]. A study conducted by 
Chu et al. [41] has demonstrated that monocyte-derived 
DCs (Mo-DCs) infected with MERS-CoV exhibit no ex-
pression of IFN-β despite the marginally early expression 
of IFN-α. However, another recent study has failed to 
stimulate the pro-inflammatory innate response and pro-
duction of IFN type I in vitro in cultured infected cells, 
including primary human airway epithelial cells, and Mo-
DCs infected with MERS-CoV [42]. The mechanisms be-
hind this response may be initially related to interference 
with the NF-κB signaling pathway, which is usually re-
sponsible for the induction of pro-inflammatory respons-
es [43]. The effect of applying IFN-α in MERS-CoV-in-
fected cells has been 50–100 folds greater than that in 
SARS-CoV-infected cells [44].

Upregulation of IFN type I and interferon-stimulated 
genes is not observed until 2 days after infection. It has 
been reported that IFN deficiency does not exacerbate 
SARS-CoV disease in animals, while treatment with IFN 
type I was helpful in controlling SARS-CoV replication 
[29].

Evasion Mechanisms by CoV
CoVs have developed several mechanisms to inhibit 

IFN-I induction [45]. In order to prevent IFN release, 
CoV proteins can inhibit several steps of the signal trans-
duction pathway that bridges the IFN-α receptor 1 sub-
unit (IFNAR1) and IFNAR2 to the STAT proteins that 
activate transcription. In the case of SARS-CoV-1, these 
mechanisms include IFNAR1 degradation by ORF3a 
[46], decreased STAT1 phosphorylation by NSP1 [47], 
and antagonism of STAT1 nuclear translocation by ORF6 
[48]. However, SARS-CoV-2 ORF6 shares only 69% se-
quence homology with SARS-CoV-1, suggesting that this 
function may not be conserved. In support of this notion, 
SARS-CoV-2 infection fails to limit STAT1 phosphoryla-
tion, unlike what happens in SARS-CoV-1 infection [49].

SARS-CoV-2 can evade by inhibiting the production 
of type I/III IFNs by the infected cells [50]. In fact, pa-
tients with severe COVID-19 show remarkably impaired 
IFN-I signatures, compared to mild or moderate cases 
[51]. CoV-mediated antagonism of innate immunity be-
gins with evasion of PRR sensing. CoVs can avoid PRR 
activation through inhibiting recognition and antagoniz-
ing PRR action [52, 53]. Viral RNA is guanosine-capped 
and methylated at the five ends by CoVs NSPs 10, 13, 14, 
and 16 [52], thereby resembling host messenger RNA 
(mRNA) to promote translation, prevent degradation, 
and evade RIG-I like receptor sensing [53]. SARS-CoV-1 
and SARS-CoV-2 ORF9b indirectly suppress mitochon-
drial antiviral signaling protein via its association with 
mitochondrial membrane (Tom) 70 [54].

Macrophages and DCs
Mucosal immune responses to infectious agents are 

orchestrated and regulated by myeloid cells with special-
ized functions, including conventional DCs (cDCs), Mo-
DCs, plasmacytoid DCs, and macrophages [55]. A grow-
ing body of evidence highlights dysregulated myeloid re-
sponses that potentially drive the COVID-19 hallmark 
syndromes, such as ARDS, cytokine release syndrome, 
and lymphopenia [56].

MERS-CoV infects and replicates inside macrophages 
and subsequently induces the expression of major histo-
compatibility complex class I molecules (MHC-I), MHC-
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II, and stimulation-related genes [57]. Due to homeosta-
sis, macrophages and DCs act as vehicles and seem to dis-
seminate viruses through the efferent lymphatic system. 
Meanwhile, activation of DC and macrophage by SARS-
CoV leads to excessive pro-inflammatory cytokine re-
sponses [58].

The studies performed on pulmonary tissues of pa-
tients with severe COVID-19 disease have revealed an ex-
pansion of inflammatory monocytes and Ficolin-1+ 
monocyte-derived macrophages at the expense of tissue-
resident reparative alveolar macrophages [59]. Addition-
ally, alternative macrophages can increase airway hyper-
sensitivity, thus exacerbating SARS-associated fibrosis 
[60]. Some studies ascertain the role of lung-resident and 
recruited granulocytes in SARS-CoV-2 control and 
pathogenesis [61, 62]. In contrast to their early protective 
role, neutrophil NETosis and macrophage crosstalk can 
trigger later-stage inflammatory cascades [63], under-
scoring the overall pathogenic nature of damage-sensing 
host responses. Existing evidences reveal that high levels 
of macrophage CXCL10/IP-10 and CCL2/MCP-1 and 
neutrophil chemoattractant CXCL2 and CXCL8 facilitate 
the migration of these immune cells to the site of infec-
tion, which is consistent with infiltration of mononuclear 
cell in lung tissues of COVID-19 patients [64].

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are innate immune effec-

tor cells that lack the expression of rearranged antigen 
receptors, namely T-cell and B-cell receptor. The ILC 
family is divided into two main groups: the cytotoxic nat-
ural killer (NK) cells and the noncytotoxic helper ILCs, 
which include ILC1, ILC2, and ILC3 [65]. Conventional 
NK cells include CD56brightCD16+ NK cells and CD-
56dimCD16+ cells that are specialized in cytokine produc-
tion or cytotoxicity, respectively.

NK Cells
Multiple studies have reported reduced numbers of 

NK cells in the peripheral blood of COVID-19 patients, 
which is associated with the severity of the disease [66, 
67]. Although lung NK cells are susceptible to infection 
with the influenza virus, they do not express angiotensin-
converting enzyme 2 (ACE2) and, therefore, are unlikely 
to be directly infected by SARS-CoV-2 [68]. However, 
frequencies of NK cells expressing CD16 and/or KIRs are 
decreased in the blood following SARS-CoV-2 and SARS-
CoV infection, respectively [69]. In vitro, CXCR3 ligands 
(CXCL9-11) are increased in SARS-CoV-2-infected hu-
man lung tissue [70], and CXCR3-ligand-producing 

monocytes are expanded in the lungs of COVID-19 pa-
tients [59]. This suggests that the CXCR3 pathway might 
facilitate NK cell recruitment from the peripheral blood 
to the lungs in the COVID-19 patients. Interaction with 
virus antigen causes both cytokine production by NK 
cells and lysis of infected cells through antibody-mediat-
ed cellular cytotoxicity [71]. These findings suggest that 
triggering NK cell activation may contribute not only to 
the resolution of infection but also to the cytokine storm 
in ARDS. Ex vivo NK cells from peripheral blood of CO-
VID-19 patients have reduced intracellular expression of 
CD107a, granulysin, and granzyme B, suggesting the im-
paired cytotoxicity and production of cytokines [72].

Adaptive Immune Responses

Adaptive immune responses are the key players against 
viral infections. CD4+ T cells facilitate virus-specific an-
tibody production through T-dependent activation of B 
cells. However, CD8+ T cells are cytotoxic and kill virus-
infected cells [73]. As the immune system cannot effec-
tively control the virus in the acute phase (pneumonia 
phase), the patient state will become severe or critical 
type. It seems that T cells and B cells are further reduced, 
while inflammatory cytokines and D-Dimer continue to 
increase in the severe type patients [74].

Cell-Mediated Responses
When a virus is inhaled and infects respiratory epithe-

lial cells, DCs phagocytose the virus and present antigens 
to T cells. Effector T cells function through killing the in-
fected epithelial cells, and cytotoxic CD8+ T cells produce 
and release pro-inflammatory cytokines which induce 
cell apoptosis [75]. Both activated CD8+ cells and anti-
MERS-CoV antibodies have been reported to be crucial 
for the clearance of the initial infection and protection 
against a subsequent challenge with the virus, respective-
ly. This finding implies that the response to MERS-CoV 
generally occurs through antibody-mediated immunity. 
Hence, the antiviral effects of the depleted cells may be 
important during later infection time points, leading to 
the persistence of viral infection and promotion of viral 
survival. SARS-CoV triggers and amplifies the immune 
response. The exacerbation of cytokine production, ex-
cessive recruitment of immune cells, and the uncontrol-
lable epithelial damage generate a vicious circle for infec-
tion-related ARDS [76]. Both CD4+ and CD8+ T cells 
isolated from human peripheral blood, tonsils, spleens, 
and lymphoid organs could be infected with MERS-CoV 
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but not with SARS-CoV. This infection pattern might be 
attributed to the low expression of the SARS-CoV recep-
tor, namely ACE2, in T cells [77].

Evidence strongly indicates that Th1 type response is 
a key for successful control of SARS-CoV and MERS-
CoV and this is probably true for SARS-CoV-2, as well. It 
has been shown that the patients infected with SARS-
CoV-2 also had high levels of IL-1, IFN-γ, IP-10, and 
MCP-1, probably leading to activated Th1 cell responses 
[15]. On the other hand, SARS-CoV-2 infection also initi-
ated increased secretion of Th2 cytokines (e.g., IL-4 and 
IL-10) that suppress inflammation, a finding that differs 
from the case of SARS-CoV infection [78].

Flow cytometric analyses of PBMCs obtained from 
symptomatic COVID-19 patients have shown a signifi-
cant influx of granulocyte-macrophage colony-stimulat-
ing factor-producing, activated CD4+ T cells and CD14+ 
HLA-DRlo monocytes [79]. Another study reported a sig-
nificantly increased PBMC frequency of polyclonal gran-
ulocyte-macrophage colony-stimulating factor+ CD4+ T 
cells capable of prodigious ex vivo IL-6 and IFN-γ pro-
duction in patients with severe COVID-19 [80].

Xu et al. [81] showed that peripheral blood of a patient 
with severe COVID-19 had a strikingly high number of 
CCR6+ Th17 cells, further supporting the occurrence of 
a Th17 type cytokine storm in this disease. Elevated Th17 
responses or enhanced IL-17-related pathways are also 
observed in MERS-CoV and SARS-CoV patients [82]. In 
MERS-CoV patients, higher IL-17 with lower IFN-γ and 
IFN-α levels have a worse outcome than the reversed phe-
notype [83].

Additionally, a study has reported reduced frequencies 
of regulatory T cells (Treg cells) in severe COVID-19 cas-
es [84]. Since Treg cells have been shown to help resolving 
ARDS inflammation in mouse models [85], the loss of 
Treg cells might facilitate the development of COVID-19 
lung immunopathology [86].

In severe COVID-19, T cells seem to be more activated 
and may exhibit a trend toward exhaustion based on the 
continuous expression of inhibitory markers such as pro-
grammed death 1 (PD-1) and T-cell immunoglobulin-3 
as well as an overall reduced activity and cytotoxicity. 
Conversely, recovering patients were found to have an 
increase in the count of follicular helper CD4+ T cells 
(TFH) as well as decreasing levels of inhibitory markers 
along with enhanced levels of effector molecules such as 
granzyme and perforin [87].

Since most epitopes identified for both viruses con-
centrate on the viral structural proteins, it will be infor-
mative to map the epitopes identified with SARS-CoV/

MERS-CoV with those related to SARS-CoV-2. In SARS-
CoV, lymphocyte epitopes were extensively mapped for 
the structural proteins, that is, S, N, M, and E proteins 
[88]. Although all SARS-CoV surface proteins, including 
S, M, E, and N proteins, were involved in T cell respons-
es, S protein contributed to most of the T-cell recognition 
epitopes. In patients recovering from mild COVID-19, 
robust T cell responses specific for viral N, M, and S pro-
teins detected by IFN-γ ELISPOT, were weakly corre-
lated with neutralizing antibody concentrations (like 
convalescent SARS-CoV-1 patients) [89]. Identification 
of overlapping epitopes among the three viruses can be 
useful for designing a cross-reactive vaccine that pro-
vides protection against all three types of human CoV in 
the future [27].

In SARS-CoV survivors, the magnitude and frequency 
of specific CD8+ memory T cells exceeded that of CD4+ 
memory T cells, and virus-specific T cells persisted for at 
least 6–11 years, suggesting that T cells may confer long-
term immunity [90]. Both virus-specific CD4+ and CD8+ 
T cells were detected in all patients at average frequencies 
of 1.4 and 1.3%, respectively, and very limited frequency 
of CD4+ T-cell central memory or CD8+ T-cell effector 
memory and effector memory RA cells. This study is no-
table for the use of large complementary peptide pools 
comprising 1,095 SARS-CoV-2 epitopes [91].

In the acute phase of SARS-CoV infection, rapid re-
duction of lymphocytes in peripheral blood [92], mainly 
T lymphocytes, is observed, and both CD4+ and CD8+ T 
lymphocytes are decreased. However, CD4+ T cells are 
more susceptible to infection. Depletion of CD4+ T cells 
is associated with reduced pulmonary recruitment of 
lymphocytes and neutralizing antibody and cytokine pro-
duction, resulting in a strong immune-mediated intersti-
tial pneumonitis and delayed clearance of SARS-CoV 
from lungs [93]. The loss of lymphocytes precedes even 
the abnormal changes on the chest X-ray [94]. After a 1-
year follow-up of SARS patients, CD3+, CD4+, and CD8+ 
T cells recovered rapidly during the disease recovery pe-
riod, and CD8+ T lymphocytes returned to normal with-
in 2–3 months after onset. The memory CD4+ T cells 
returned to normal 1 year after onset, whereas other cell 
counts including total T lymphocytes, CD3+ cells, CD4+ 
cells, and naive CD4+ T cells were still lower than healthy 
controls [95].

It seems that lymphopenia in SARS and COVID-19 
patients is more likely caused by cytokines such as IFN-I 
and TNF-a may inhibit T-cell recirculation in blood by 
promoting retention in lymphoid organs and attachment 
to the endothelium [96] or endogenous or exogenous glu-
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cocorticoids which ultimately led to apoptosis of lympho-
cytes, rather than direct viral infection of these cells [97, 
98].

Antibody-Mediated Responses
The antibody-mediated humoral response is crucial 

for preventing viral infections. A subset of these antibod-
ies, which reduce viral infectivity by binding to the sur-
face epitopes of viral particles and thereby blocking the 
entry of the virus to the infected cell, is defined as neutral-
izing antibodies [99].

Virus neutralizing antibodies induced by vaccines or 
infected viruses play vital roles in controlling viral infec-
tion [100]. They target S1-RBD, S1-NTD, or the S2 re-
gion, blocking the binding of RBDs to their respective 
receptors and interfering with S2-mediated membrane 
fusion or entry into the host cell, thus inhibiting viral in-
fections [101]. Most of them target the RBD, while a few 
of them target regions in the S2 subunit or the S1/S2 pro-
teolytic cleavage site [102].

It has been reported that neutralizing antibodies de-
cline within 2–3 months in COVID-19 recovered pa-
tients. One mathematical model has also suggested short-
ly durable immunity [103]. The durability of neutralizing 
antibodies in other human CoV may be relevant for com-
parison. Among the seven pathogenic CoVs of human 
beings, HCoV-229E, HCoV-NL63, HCoVOC43, and 
HCoV-HKU1 cause mild disease (common cold), where-
as SARS-CoV, MERS-CoV, and SARS-CoV-2 are highly 
pathogenic. Antibody titers lack longevity and wane sub-
stantially 1 year after infection in common cold CoV; 3 
years in SARS-CoV; and persist for 2 years after recovery 
from severe MERS-CoV infection [104]. As SARS-CoV-2 
infection has usually asymptomatic or mild clinical pre-
sentation, like common cold CoV, rapidly waning anti-
body responses following primary infection or immuni-
zation (compared to severe cases) may allow susceptibil-
ity to reinfection. The secretory IgA as protective 
neutralizing antibody against SARS-CoV-2 should also 
be explored because mucosal immunity provides protec-
tion through intranasal immunization against closely re-
lated SARS-CoV and MERS-CoV [105]. In a study on 175 
COVID-19 recovered patients with mild symptoms, 
SARS-CoV-2-specific neutralizing antibodies were de-
tected at the convalescent phase of infection from days 10 
to 15 after the onset of the disease and remained thereaf-
ter. The titers of neutralizing antibodies were variable in 
different patients. Plasma neutralizing antibody titers in 
elderly and middle-aged patients were significantly high-
er. Neutralizing antibody titers were correlated positively 

with CRP levels and negatively with the lymphocyte 
counts of patients. It could be suggested that other im-
mune responses, including T cells or cytokines, may con-
tribute to the recovery of these patients [106].

Neutralizing IgGs against SARS-CoV reached a peak 
in serum during the convalescent phase and diminished 
after recovery [107]. A previous study has shown that an-
tibodies from some recovered SARS-CoV-2 patients 
might cross-react or neutralize SARS-CoV from other 
patients [108]. Like SARS-CoV-1 infection [109], sero-
conversion occurs in most COVID-19 patients between 7 
and 14 days after the onset of symptoms, and antibody 
titers persist in the weeks following virus clearance [110].

It seems that antibodies binding the SARS-CoV-2 in-
ternal N protein and the external S glycoprotein are com-
monly detected [111]. The S protein is highly immuno-
genic, and specific antibodies against the RBD can neu-
tralize and block virus interactions with ACE2 as the host 
entry receptor [112]. SARS-CoV-2 S protein can bind to 
ACE2 with a higher affinity compared to SARS-CoV S 
[113]. The high affinity of the S protein for human ACE2 
may lead to a great human-to-human transmission of 
SARS-CoV-2. Due to the key role of the S protein, it is the 
main target for antibody-mediated neutralization [12].

In a previous study, RBD-specific CD19+ IgG+ mem-
ory B cells were single-cell sorted from COVID-19 do-
nors between days 9 and 28 after the onset of symptoms. 
From their antibody gene sequences, many SARS-CoV-
2-specific monoclonal antibodies were produced. The 
monoclonal antibodies had a diverse repertoire, relative-
ly low or no somatic mutations, and variable binding re-
activity, with dissociation constants reaching 10−8 to 10−9, 
like antibodies isolated during acute infections. In addi-
tion, two potent neutralizing SARS-CoV-2 RBD-specific 
monoclonal antibodies were characterized that did not 
cross-react with the RBD of SARS-CoV-1 or MERS-CoV 
[114]. Together, these results demonstrate that antibody-
mediated neutralization is virus-specific and likely driven 
by the binding of epitopes within the RBD.

It was demonstrated that the IgM response to SARS-
CoV-2 occurred and was maximized before the IgG anti-
body response. Furthermore, the IgM antibody response 
began to decline at week 3 of the illness (Fig. 3), while the 
IgG antibody response persisted and was maintained in 
patients with COVID-19. Severe cases of COVID-19 
tended to have a more vigorous response in both IgG and 
IgM antibodies to COVID-19 illness. Importantly, the 
timing of IgM and IgG antibody occurrence in patients 
varies greatly, and this variation in timing may be associ-
ated with age as well as a comorbidity [115].
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Vaccine Candidates against SARS-CoV-2

Since the emergence of SARS-CoV-2, the scientific 
community has been working restlessly to find both 
short-term therapeutic approaches and a long-term vac-
cine solution to reduce spread and curb COVID-19 mor-
bidity and mortality. The three main criteria which should 
be taken into consideration while developing a vaccine 
are speed, scale-up manufacturing, and global access. The 
astonishing efforts by researchers across the globe in 
terms of scale and speed of vaccine development have fas-
tened the vaccine development journey from bench to 
bedside within a few months only. Along with speeding 
up the development process, it is equally important to 
evaluate the effectiveness and safety of vaccine at each 
step, and this has been the major hurdle for researchers 
in establishing the vaccine’s efficacy so far.

Live-Attenuated Vaccines
The most common traditional method which involves 

manually weakened live pathogen which is no longer able 
to induce infection but able to induce immune response 
and, hence, mimic features of natural infection. It is ca-
pable of inducing both humoral and cellular immune re-
sponses. Live-attenuated vaccines on intranasal adminis-
tration induce secretion of IgA and, hence, provide local 
mucosal immunity [116]. These vaccines are popular to 
induce strong lifelong immune responses within 2 doses. 
These are easy to produce for some viruses but challeng-

ing for complex pathogens. Codagenix Biotec Inc., col-
laboration with the Serum Institute of India Ltd., devel-
oping a live-attenuated SARS-CoV-2 vaccine in which 
the sequence of the target gene of interest has been 
changed by swapping its optimized codons with nonop-
timized ones [117].

Nucleic Acid Vaccines

Plasmid-Based DNA Vaccines
DNA vaccine eliminates the need for using live viruses 

hence having a better safety profile. The manufacturing 
process of plasmid DNA is relatively straightforward, and 
the double-strand DNA molecules are more stable than 
virus, protein, and mRNA and can be freeze-dried for 
long-term storage. The main prohibitory factor for the 
plasmid DNA vaccine is the low transfection efficacy, re-
quiring transfection modalities. For example, the Inovio’s 
COVID-19 vaccine candidate, INO-4800, uses a hand-
held electroporation device, CELLECTRA [118]. The 
vaccine is injected intradermally along with electrodes, 
and then an electric pulse is applied to open the cell mem-
brane, allowing the plasmid to enter the cells.

mRNA Vaccines
mRNA is an emerging, noninfectious, and a noninte-

grating platform with almost no potential risk of inser-
tional mutagenesis. The immunogenicity of the mRNA 
can be minimized, and alterations can be made to in-

Fig. 3. The time kinetics between viral load, 
symptoms, and host immunoglobulins 
(IgM, IgG) in COVID-19. The onset of 
symptoms is usually 5 days after infection. 
Seroconversion may usually be detectable 
between 5–7 and 14 days after the onset of 
symptoms. Viral RNA is inversely corre-
lated with neutralizing antibody titers. 
Higher titers have been observed in criti-
cally ill patients. The humoral response in 
SARS-CoV-1 is relatively short lived, alto-
gether, suggesting that immunity with 
SARS-CoV-2 may reduce 1–2 years after 
primary infection. SARS-CoV-2, Severe 
acute respiratory syndrome coronavirus-2.
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crease the stability of these vaccines. Furthermore, the 
anti-vector immunity is also avoided as the mRNA is the 
minimally immunogenic genetic vector, allowing repeat-
ed administration of the vaccine [119]. This platform has 
empowered the rapid vaccine development program due 
to its flexibility and ability to mimic the antigen structure 
and expression as seen in the course of a natural infection 
[120].

mRNA-1273 (Moderna TX, Inc.) is a vaccine com-
posed of synthetic mRNA encapsulated in lipid nanopar-
ticle (LNP) which codes for the full-length, pre-fusion 
stabilized S protein of SARS-CoV-2. It has the potential 
to elicit a highly S protein-specific antiviral response. 
Furthermore, it is considered to be relatively safe as it is 
neither made up of the inactivated pathogen nor the sub-
units of the live pathogen [121]. The vaccine has got a 
fast-track approval from FDA. BNT162b1 (BioNTech/
FosunPharma/Pfizer) is another codon-optimized 
mRNA vaccine that encodes for the trimerized SARS-
CoV-2 RBD, a critical target of the virus nAb. The vac-
cine portrays an increased immunogenicity due to the 
addition of T4 fibritin-derived fold on trimerization do-
main to the RBD antigen. The mRNA is encapsulated in 
80 nm ionizable cationic LNPs, which ensures its effi-
cient delivery [121]. Both mRNA vaccines use a lipid-
based nanoparticle (LNP) carrier system, which also acts 
as an adjuvant. The LNPs are stabilized with polyethyl-
ene glycol, prolonging their lifespan. Scientists speculate 
that these allergic reactions might be related to either the 
lipid or the polyethylene glycol component of these vac-
cines [122].

Protein Subunit Vaccines
Subunit vaccines primarily induce CD4+ Th cell and 

antibody responses. Therefore, most of these vaccines 
contain full-length SARS-CoV-2 S protein that induces 
neutralizing antibodies, similarly to the majority of SARS 
and MERS vaccines, which had differing levels of efficacy 
[123–125]. Proteins or peptides alone are poorly immu-
nogenic and generally require not only an adjuvant but 
also repeated administration, and they are poor activators 
of CD8+ T cell responses. Furthermore, this platform is 
generally unsuitable for respiratory mucosal vaccination 
[126]. In this regard, subunit COVID-19 vaccines being 
developed by GlaxoSmithKline and Novavax use AS03 
and Matrix-M adjuvants, respectively [127].

Virus-Like Particles
These are protein multimers mimicking the struc-

ture of real virus but lacking genetic material and hence 

are noninfectious in nature. Virus-like particles (VLPs) 
act by stimulating antigen-presenting cells mediated 
activation of B- and T-cell immune responses. These 
are also involved in CD8+ cytotoxic T-cell mediated 
killing of pathogenic cells. The immune system recog-
nizes VLPs in the same way as it recognizes original vi-
rus and thereby induces immune responses [128]. VLP 
formulations because of their poor immunogenicity re-
quire adjuvants in most of the cases. VLP-based vac-
cines are well-established platform for prophylactic 
use. These are less time taking and production cost de-
pends upon the expression system used which is com-
paratively low for bacterial system than the mammalian 
expression system. The licensed vaccines based on this 
platform are currently in use for human papillomavirus 
[129]. Currently, there are two COVID-19 vaccine can-
didates developed as VLPs in clinical evaluation and 
COVID-19 vaccine candidates in preclinical evaluation 
stage developed [130].

Conclusion

The outbreak of COVID-19 caused by the novel virus 
SARS-CoV-2 started at the end of December 2019. In less 
than 2 months, it spread in many countries around the 
world. The rapid spread of SARS-CoV-2 and the unprec-
edented nature of COVID-19 have demanded urgency in 
basic science, clinical research, and vaccine strategies, and 
the scientific community has met that call with remark-
able productivity. Within months, there has been a sig-
nificant generation of scientific knowledge that has shed 
some light on the immunology of SARS-CoV-2 infec-
tions.

It is imperative that immune responses against SARS-
CoV-2 and its immunopathological mechanisms are fur-
ther elucidated to better define therapeutic strategies for 
COVID-19. Since SARS-CoV-2 is very similar to SARS-
CoV and MERS-CoV and the symptoms are also similar 
between COVID-19, SARS, and MERS, the outbreak of 
COVID-19 has created a sense of SARS and MERS recur-
ring. However, there are some remarkable differences be-
tween these CoVs, which are essential for containing the 
epidemic and treating the patients.
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