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Abstract

Background

The ability to predict risk allows healthcare providers to propose which patients might benefit

most from certain therapies, and is relevant to payers’ demands to justify clinical and eco-

nomic value. To understand the robustness of risk prediction models for heart failure (HF),

we conducted a systematic literature review to (1) identify HF risk-prediction models, (2)

assess statistical approach and extent of validation, (3) identify common variables, and (4)

assess risk of bias (ROB).

Methods

Literature databases were searched from March 2013 to May 2018 to identify risk prediction

models conducted in an out-of-hospital setting in adults with HF. Distinct risk prediction vari-

ables were ranked according to outcomes assessed and incorporation into the studies.

ROB was assessed using Prediction model Risk Of Bias ASsessment Tool (PROBAST).

Results

Of 4720 non-duplicated citations, 40 risk-prediction publications were deemed relevant.

Within the 40 publications, 58 models assessed 55 (co)primary outcomes, including all-

cause mortality (n = 17), cardiovascular death (n = 9), HF hospitalizations (n = 15), and com-

posite endpoints (n = 14). Few publications reported detail on handling missing data (n = 11;

28%). The discriminatory ability for predicting all-cause mortality, cardiovascular death, and

composite endpoints was generally better than for HF hospitalization. 105 distinct predictor

variables were identified. Predictors included in >5 publications were: N-terminal prohor-

mone brain-natriuretic peptide, creatinine, blood urea nitrogen, systolic blood pressure,

sodium, NYHA class, left ventricular ejection fraction, heart rate, and characteristics includ-

ing male sex, diabetes, age, and BMI. Only 11/58 (19%) models had overall low ROB,

based on our application of PROBAST. In total, 26/58 (45%) models discussed internal vali-

dation, and 14/58 (24%) external validation.

PLOS ONE | https://doi.org/10.1371/journal.pone.0224135 January 15, 2020 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Di Tanna GL, Wirtz H, Burrows KL, Globe

G (2020) Evaluating risk prediction models for

adults with heart failure: A systematic literature

review. PLoS ONE 15(1): e0224135. https://doi.

org/10.1371/journal.pone.0224135

Editor: Pasquale Abete, Universita degli Studi di

Napoli Federico II, ITALY

Received: June 26, 2019

Accepted: September 24, 2019

Published: January 15, 2020

Copyright: © 2020 Di Tanna et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The "minimal

dataset," defined as the data set used to reach the

conclusions drawn in the manuscript with related

metadata and methods, and any additional data

required to replicate the reported study findings in

their entirety, are presented within the paper and

Supporting Information files in full (see Tables and

appendix information). The full SLR data extraction

file, including all information extracted from each

publication, are available on Harvard Dataverse:

https://dataverse.georgeinstitute.org/dataset.

xhtml?persistentId=hdl:20.500.12611//XCFNMI.

The file is password protected and the password

https://doi.org/10.1371/journal.pone.0224135
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224135&domain=pdf&date_stamp=2020-01-15
https://doi.org/10.1371/journal.pone.0224135
https://doi.org/10.1371/journal.pone.0224135
http://creativecommons.org/licenses/by/4.0/
https://dataverse.georgeinstitute.org/dataset.xhtml?persistentId=hdl:20.500.12611//XCFNMI
https://dataverse.georgeinstitute.org/dataset.xhtml?persistentId=hdl:20.500.12611//XCFNMI


Conclusions

The majority of the 58 identified risk-prediction models for HF present particular concerns

according to ROB assessment, mainly due to lack of validation and calibration. The potential

utility of novel approaches such as machine learning tools is yet to be determined.

Registration number

The SLR was registered in Prospero (ID: CRD42018100709).

Introduction

Heart failure (HF) is a primary cause of death and disability throughout the world [1], and as

advancing age is a distinct predictor of in-hospital mortality and complications in HF [2], the

prevalence and incidence of HF is predicted to continue to rise as the population ages [1, 3].

Focused research has led to the approval of various therapies for HF management, including

angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, neprilysin inhibi-

tors, beta-blockers, and mineralocorticoid receptor antagonists [4, 5]. With an integrated man-

agement strategy, survival rates among patients with HF have improved [3, 6], although

outcomes can be highly variable. In parallel with an increasing prevalence and incidence of

HF, the economic burden attributable to HF is also predicted to rise [7, 8], particularly given

the chronic nature of HF and the high risk of (re)hospitalization [8]. In the United States,

increasing efforts have been made to reduce the 30-day readmission rate, and hospitals with a

high readmission ratio face substantial financial penalties from the Centers for Medicare &

Medicaid Services [9]. It would therefore be of benefit to healthcare providers and payers to be

able to stratify patients based on risk of future outcomes, to optimize treatment strategies

across patients with different needs. This affords the opportunity to propose which HF patients

might benefit most from given therapies, while also responding to the payers’ demands for

clinical and economic value.

A number of risk prediction models have been published to statistically predict the risk of

future outcomes associated with HF. Despite these models, clinicians seem reluctant to adopt

them in daily practice [10], possibly due to their reliability at the patient level being poor, the

variety of approaches to choose from, and/or the complexity of statistical methodologies [11].

Clinicians are aware that HF increases a patient’s cardiovascular (CV) risk, and this complexity

may mean that clinicians are reluctant to employ a risk-specific model when they see all

patients as high risk. As such, risk prediction models are more likely useful for informing

healthcare systems to look for at-risk patients and follow-up to improve outcomes. A number

of authors have reviewed available risk prediction models, in an attempt to guide and inform

healthcare providers and payers of their relative merits [11–15]. For example, Rahimi et al.

concluded that several of the models were well-validated and had clinical value, but also that

models varied, particularly with regards to their statistical approach, sample size, population

characteristics, and parameters employed for model development [12]. As such, no one model

could be clearly recommended.

Via a systematic review of the literature (SLR), we sought to identify and quality assess pub-

lished risk prediction models for HF. Our aim was to understand the methodological develop-

ment and validation of relevant models, in order to assess the current landscape and,

moreover, to inform subsequent efforts in the development of risk prediction tools for HF.
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The most commonly reported risk predictors were also investigated, and discrimination and

calibration of the models analyzed. As potential for bias is a consideration in risk prediction,

each identified model was assessed according to the Prediction model Risk Of Bias ASsessment

Tool (PROBAST) [16, 17].

Materials and methods

Data sources

MEDLINE, including MEDLINE in progress, EMBASE, and the Cochrane Library Database,

including the National Health Service Economic Evaluation Database and the Health Technol-

ogy Assessment Database, were searched using a combination of search terms (S1 Appendix).

Principle and practical guidelines advocated by the Cochrane Collaboration Handbook and

the Centre for Reviews and Dissemination were employed (where relevant). The SLR incorpo-

rated a standardized methodical and transparent approach that adhered to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane Collabo-

ration guidelines. The SLR was registered in Prospero (ID: CRD42018100709 see: https://

www.crd.york.ac.uk/prospero/display_record.php?RecordID=100709).

Study eligibility

English-language studies published March 1, 2013 to May 29, 2018 were retained for further

review if they involved adult patients with HF, aged�18 years, were conducted in an out-of-

hospital setting, and documented multivariable models that predicted single- or multiple-HF

outcomes in the target population, according to the search strategy (S1 Appendix). Preclinical,

pharmacokinetic, or pharmacodynamic studies were excluded. Studies were not eligible for

inclusion if they: used clinical outcomes that were considered in-hospital; focused on individ-

ual predictions or markers of risk (i.e., non-univariable as this type of model tends to report

overly optimistic findings [18]); were a letter, opinion piece, or review article; or used a dataset

that did not reflect current clinical practices.

Study selection

Titles and abstracts of identified publications were screened and relevant publications retained

for full-text review, according to National Institute for Health and Care Excellence guidance

[19] (Fig 1). Both search and screening phases were independently conducted by two trained

investigators. Any disagreements were resolved with a senior investigator.

Data extraction

For each relevant publication, the following information was extracted: study and patient char-

acteristics, candidate variables considered for derivation of the model, final model variables

and their association with the outcome, analytical methods, model discrimination, calibration,

and validation. Extracted data were examined to identify (but were not limited to): most com-

monly used candidate predictor variables, type of model and approach used to assess risk pre-

dictors, and model performance (e.g., regression approaches, measures of discrimination,

calibration, reclassification, and validation), along with their clinical utility among patients

with HF. Discriminatory ability was assessed according to standard techniques [20]. Low dis-

criminatory ability was considered as C-statistic <0.60, moderate ability as C-statistic�0.60

–<0.70, and good discriminatory ability as C-statistic�0.70 [20].
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Analysis of bias (PROBAST)

PROBAST was used to assess the risk of bias (ROB) of each risk prediction model identified

from the relevant publications, according to our interpretation of Moons et al. [16]. Each

model was assessed for applicability concerns and ROB, according to 3 or 4 domains, respec-

tively. According to guidance from Moons et al. [16], if�1 domain is considered “No [N]” or

“Probably No [PN]”, there is concern for applicability or potential for bias within that domain.

If the review questions were considered to be a good match to the study, concern regarding

applicability was rated overall “low” [16]. A publication needed to score “low ROB” in each of

the 4 domains for an overall judgment of “low ROB”. However, if�1 domain was “high ROB”,

a judgment can still be made that the study is overall “low ROB”, but specific reasons should

be provided as to why the risk can be considered low [16].

Results

Study selection

The SLR yielded 5425 citations, of which 4720 were non-duplicated citations and were further

screened. Of these, 290 were retained for full-text review, which led to 40 relevant publications

[21–60] (Fig 1). The 250 excluded publications are detailed in Fig 1, with reasons for exclusion.

Study characteristics

Sample size varied from 43 to 33,349 patients. Patients were aged 59–81 years, and 28–84% of

cohorts were male (Table 1). Study follow-up varied considerably (30 days to 5 years).

Fig 1. PRISMA flow diagram. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

https://doi.org/10.1371/journal.pone.0224135.g001
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Approximately half of selected publications (n = 17 [46%]) originated from Europe, one-third

(n = 10 [27%]) from the United States, 4 from the Asia-Pacific region (11%), and 6 were multi-

national (16%). The most common comorbidity was type 2 diabetes mellitus (T2DM) (83%

[n = 33 studies]), with prevalence of 17–57% across publications. Hypertension was also fre-

quently reported as a comorbidity (n = 28 studies [70%]), with prevalence of 12–87%.

Table 1. Characteristics of the patient populations included in the 40 retrieved publications on models of HF risk prediction.

Characteristic Studies Reporting Characteristic, n (%) Category N (%) or [Range]

Age, years 38 (95.0) --- [59.0–81.3]

Age�65 years 4 (10.0) ----- [45.1–86.2]

Male sex 37 (92.5) ----- [28.0–84.0]

Race 12 (30.0) Caucasian 10 (83.3)

Black 0 (0)

Asian 2 (16.7)

Hispanic 0 (0)

Other 0 (0)

Sample size 40 (100) ----- [49–33,349]

Study type 40 (100) Longitudinal 23 (57.5)

Cross-sectional 0 (0)

Experimental 5 (12.5)

Quasi-experimental 0 (0)

Retrospective 12 (30.0)

Study duration, years 30 (75.0) ----- [30 days–5 years]

Study region 37 (92.5) Europe 17 (45.9)

Africa 0 (0)

North America 10 (27.1)

South America 0 (0)

Asia Pacific 4 (10.8)

Global 6 (16.2)

Current smoker 9 (22.5) ----- [9–33]

Dyslipidemia 11 (27.5) ----- [6.7–74.7]

T2DM 33 (82.5) ----- [17.2–56.5]

Hypertension 28 (70.0) ----- [12–87]

MI 14 (35.0) ----- [17–63]

PAD 9 (22.5) ----- [6.1–16.2]

COPD 20 (50.0) ----- [2.0–28.3]

Atrial fibrillation 24 (60.0) ----- [8.0–63.1]

HF type 26 (65.0) Chronic HF 15 (57.7)

Acute HF 9 (34.6)

Other 2 (7.7)

HF subtype 19 (47.5) Congestive HF 2 (10.5)

Acute decompensated HF 7 (36.8)

HFrEF 5 (26.3)

HFpEF 1 (5.3)

Left-sided HF 1 (5.3)

Right-sided HF 0 (0)

Other 3 (15.8)

COPD, chronic obstructive pulmonary disease; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection

fraction; MI, myocardial infarction; PAD, peripheral arterial disease; T2DM, type 2 diabetes mellitus.

https://doi.org/10.1371/journal.pone.0224135.t001
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Only 26 of retrieved publications specified HF type (65%). The majority of these publica-

tions evaluated chronic HF (n = 15/26 [58%]), 9 evaluated acute HF (35%), and the remainder

were classified as “other” (2/26 [8%]) (Table 1). Nineteen studies documented HF subtypes; of

these 5 reported data specific for reduced ejection fraction (EF) and just 1 for preserved EF.

Characteristics of risk prediction studies

Nearly half of studies (n = 18 [45%]) failed to provide any indication of data collection period.

Of studies that did report study period, data were collected from 2001 to 2015. Few studies

reported detail regarding how missing data were handled (n = 11 [28%]); the most common

approach being multiple imputation procedures (n = 6 [55%]) (Table 2). Of the 14 studies that

reported missing data (35%), the percentage of complete cases ranged between 86% and 100%.

Thirty-nine studies (98%) evaluated candidate predictors during model development. Cox

regression was used by approximately half of studies (n = 22 [55%]). As would be expected,

hazard ratios (n = 25 [64%]) and odds ratios (n = 12 [31%]) were most often used for estimat-

ing risk. All publications employed discrimination methods to assess prognostic utility of their

model(s). Area under the curve-receiver operating characteristic (AUC-ROC) (n = 19 [48%])

and C-statistic (n = 18 [45%]) were most often used (Table 2).

Beyond model discrimination, steps for evaluating model performance were suboptimal.

Less than half of retrieved publications evaluated model fit through calibration methods

(n = 16 [40%]). Approaches to correctly classify patients according to severity of HF risk were

not widely reported, with net reclassification improvement (NRI) (n = 14 [35%]) or integrated

discrimination index (IDI) (n = 6 [15%]) used by a minority of studies (Table 2). Interpreta-

tion of these observations is hampered by lack of similarity in approach, particularly as some

studies utilized category-dependent NRIs, whereas others a category-free NRI technique. Only

20 studies performed an estimation of internal model validation (50%), with bootstrapping

most commonly used. External validation was less frequently reported (n = 10/40 [25%]), with

the majority of these publications (n = 8/10 [80%]) employing an external model cohort for

comparison (Table 2).

Risk prediction model outcomes

Within the 40 studies, 55 (co)primary outcomes were assessed, including all-cause mortality

(n = 17), CV death (n = 9), HF hospitalizations (n = 15), and composite endpoints (n = 14)

(Table 3). Across the 53 outcomes that reported discriminatory values (2 did not), only 1 had

“low” discriminatory ability based on a C-statistic of 0.59 (HF hospitalization) [35], the major-

ity were considered “good” (C-statistic�0.70; n = 31) or “moderate” (C-statistic�0.60 –<

0.70; n = 31), as discussed in detail below.

All-cause mortality. Of the 17 model outcomes that predicted all-cause mortality, 3

assessed CV mortality as a co-primary endpoint, 3 HF hospitalization, and 5 composite out-

comes (Table 3). The median [range] of final candidate variables entered for selection during

model development was 10 [2–48], and following candidate variable selection through multi-

variable modeling, 5 [1–14] variables were retained.

Discriminatory value was assessed for all 17 all-cause mortality outcomes, based on C-sta-

tistic (n = 10) or reported as AUC-ROC (n = 7). Relevant model outcomes showed predictive

C-statistic values considered “moderate” or “good”, ranging between 0.655 and 0.840

(Table 3). Eight model outcomes provided C-statistics according to a base model in an effort

to determine the incremental value when retaining candidate variables into the final model,

these C-statistics ranged between 0.677 and 0.826. Internal validation was carried out by 8
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model outcomes (47%), primarily by bootstrapping. Just 3 (18%) performed external

validation.

Table 2. Methods reported for model development and validation in the 40 retrieved publications on models of HF risk prediction.

Characteristic Studies Reporting Characteristic, n (%) Category N (%) or [Range]

Missing data reported 14 (35.0) ----- -----

Methods for handling missing data 11 (27.5) Multiple imputation 6 (54.5)

Nearest neighbor approach 0 (0)

Complete case analysis 1 (9.1)

Corresponding median value 1 (9.1)

Other 3 (27.3)

Percentage of complete cases 10 (25.0) ----- [85.8–100]

Evaluation of candidate predictors 39 (97.5) Binary logistic regression 1 (2.6)

Multivariable logistic regression 8 (20.5)

Mutually adjusted logistic regression 1 (2.6)

Stepwise logistic regression 1 (2.6)

Multivariable Cox regression 12 (30.8)

Stepwise Cox regression 9 (23.1)

Reduced Cox regression 1 (2.6)

Machine learning algorithm� 2 (5.1)

Purposeful variable selection 1 (2.6)

Other 3 (7.6)

Odds ratio 12 (30.8)

Measure of risk estimate reported 39 (97.5) Hazard ratio 25 (64.1)

Relative risk 0 (0)

Incidence 0 (0)

Other 2 (5.1)

C-statistic 18 (45.0)

Method of discrimination assessed 40 (100) AUC-ROC 19 (47.5)

Kaplan-Meier 2 (5.0)

Concordance index for survival† 1 (2.5)

Hosmer-Lemeshow goodness-of-fit 5 (31.3)

Method of calibration assessed 16 (40.0) Fine-Gray 2 (12.5)

Greenwood-Nam-D’Agostino 1 (6.25)

Gronnesby and Borgan 2 (12.5)

Pseudo R2 1 (6.25)

Observed and predicted correlation 3 (18.7)

Other 2 (12.5)

----- -----

NRI assessed 14 (35.0) ----- -----

IDI Assessed 6 (15.0) Bootstrapping 14 (73.7)

Internal validation assessed 19 (47.5) Cross-validation 2 (10.5)

Split population 3 (15.8)

External cohort comparison 8 (88.9)

External validation assessed 9 (22.5) Other 1 (11.1)

Other 1 (11.1)

�Machine learning algorithms employed either a Naïve Bates Model, or a Random Forest approach.
†The method of Therneau was used to determine the concordance index for predicting survival. AUC-ROC, area under the curve-receiver operating characteristic

curve; NRI, net reclassification improvement; IDI, integrated discrimination index.

https://doi.org/10.1371/journal.pone.0224135.t002
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Table 3. Predictive performance of 55 model outcomes from the 40 retrieved publications on risk prediction in HF.

First Author

(Year)

Data

Collection

Period

Primary

Outcome

Assessed

No. of

Candidate

Predictors

No. of

Retained

Predictors

Base Model

C-Statistic

Predictive

Model

C-Statistic

Incremental

C-Statistic�
Calibration

Assessed†
NRI

Value‡
IDI

Value

All-cause mortality
Barlera S (2013)

[24]

2002–2005 All-cause

mortality

25 14 0.693 0.700 0.007 Yes 0.048 NR

Behnes M (2016)

[25]

NR All-cause

mortality

3 1 0.826 0.835 0.009 Yes 0.335 0.027

Bjurman C (2015)

[28]

2010 All-cause

mortality

3 3 NR 0.740 NA No 0.560 NR

Cabassi A (2013)

[29]

NR All-cause

mortality

13 1 NR 0.702 NA Yes 0.089 0.036

Carluccio E (2013)

[30]

NR All-cause

mortality

14 5 0.740 0.810 0.07 No 0.630 0.087

Carrasco-Sanchez

FJ (2014) [31]

2009–2010 All-cause

mortality

2 1 NR 0.770 NA Yes NR NR

Demissei BG

(2016) [34]

NR All-cause

mortality

48 6 0.750 0.840 0.09 No 0.860 NR

Eapen ZJ (2013)

[35]

2005–2009 All-cause

mortality

NR 12 NR 0.750 NA Yes NR NR

Ford I (2015)§ [37] NR All-cause

mortality

41 10 0.677 0.682 0.005 No NR NR

Freudenberger RS

(2016)§ [39]

2002–2010 All-cause

mortality

30 8 NR 0.655 NA No NR NR

Jackson CE (2016)

[43]

2007–2009 All-cause

mortality

9 6 0.721 0.730 0.009 No 0.330 NR

Jin M (2017) [44] 2012–2015 All-cause

mortality

10 3 NR 0.699 NA No NR NR

Keteyian SJ (2016)

[45]

NR All-cause

mortality

10 4 NR 0.690 NA No NR NR

Lassus J (2013)

[47]

NR All-cause

mortality

13 2 NR 0.730 NA No 0.203 0.08

Lenzi J (2016) [48] 2011–2012 All-cause

mortality

4 4 0.730 0.840 0.11 Yes NR NR

Nymo SH (2017)§

[53]

NR All-cause

mortality

6 6 0.747 0.754 0.007 Yes 0.65 NR

Uszko-Lencer N

(2017) [58]

NR All-cause

mortality

8 8 NR 0.736 NA No NR NR

CV mortality
Adabag S (2014)

[21]

NR CVD mortality 18 6 NR 0.750 NA Yes NR NR

Ahmad T (2014)§

[22]

NR PFD 3 3 0.820 0.890 0.07 Yes NR NR

Ahmad T (2014)§

[22]

NR SCD 3 3 0.680 0.750 0.07 Yes 0.110 NR

Bjurman C (2015)§

[28]

2010 CVD mortality 3 3 NR 0.680 NA No 0.450 NR

Ford I (2015)§ [37] NR CVD mortality 41 10 0.683 0.690 0.007 No NR NR

Masson S (2018)§

[50]

NR CVD mortality 1 1 NR NR NA Yes 0.141 NR

Nymo SH (2017)§

[53]

NR CVD mortality 6 6 0.756 0.761 0.005 Yes 0.65 NR

Ramirez J (2017)§

[54]

2003–2004 SCD 12 6 0.720 0.770 0.05 No NR NR

(Continued)
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Table 3. (Continued)

First Author

(Year)

Data

Collection

Period

Primary

Outcome

Assessed

No. of

Candidate

Predictors

No. of

Retained

Predictors

Base Model

C-Statistic

Predictive

Model

C-Statistic

Incremental

C-Statistic�
Calibration

Assessed†
NRI

Value‡
IDI

Value

Ramirez J (2017)§

[54]

2003–2004 PFD 10 4 0.750 0.760 0.01 No NR NR

HF hospitalization
Álvarez-Garcı́a J

(2015) [23]

2007–2011 HF

hospitalization

44 3 NR 0.720 NA Yes NR NR

Behnes M (2016)§

[25]

NR HF

hospitalization

3 1 0.766 0.777 0.011 Yes 0.223 0.009

Betihavas V (2015)

[26]

NR HF

hospitalization

27 6 NR 0.800 NA No NR NR

Cubbon RM

(2014) [32]

2006–2009 HF

hospitalization

13 6 NR 0.770 NA Yes NR NR

Fleming LM

(2014) [36]

2007–2011 HF

hospitalization

25 8 NR 0.690 NA Yes NR NR

Formiga F (2017)

[38]

2013–2014 HF

hospitalization

18 18 NR 0.649 NA No NR NR

Frigola-Capell E

(2013) [40]

2005–2007 HF

hospitalization

6 4 NR 0.627 NA Yes NR NR

Eapen ZJ (2013)§

[35]

2005–2009 HF

hospitalization

NR 12 NR 0.590 NA Yes NR NR

Ford I (2015)§ [37] NR HF

hospitalization

41 12 0.695 0.702 0.007 No NR NR

Krumholz HM

(2016) [46]

NR HF

hospitalization

110 3 NR 0.650 NA No NR NR

Leong KT (2017)

[49]

2010–2012 HF

hospitalization

27 7 NR 0.760 NA No NR NR

Masson S (2018)§

[50]

NR HF

hospitalization

1 1 NR NR NA Yes 0.205 NR

Shameer K (2017)

[55]

2014 HF

hospitalization

4205 105 NR 0.780 NA No NR NR

Sudhakar S (2015)

[56]

2011–2013 HF

hospitalization

19 19 NR 0.610 NA No NR NR

Zai AH (2013)

[60]

2008–2011 HF

hospitalization

10 10 NR 0.637 NA No NR NR

Composite endpoint
Bhandari SS

(2016) [27]

2006–2011 Composite

endpoint

2 2 0.670 0.680 0.01 No 0.254 NR

Demissei BG

(2017) [33]

NR Composite

endpoint

47 17 0.618 0.634 0.016 No NR NR

Demissei BG

(2016)§ [34]

NR Composite

endpoint

48 6 0.630 0.680 0.05 No 0.400 NR

Eapen ZJ (2013)§

[35]

2005–2009 Composite

endpoint

NR 10 NR 0.620 NA Yes NR NR

Ford I (2015)§ [37] NR Composite

endpoint

41 12 0.676 0.683 0.007 No NR NR

Freudenberger RS

(2016)§ [39]

2002–2010 Composite

endpoint

NR NR NR 0.660 NA No NR NR

Hummel SL

(2013) [41]

NR Composite

endpoint

13 6 NR 0.716 NA No NR NR

Huynh QL (2016)

[42]

2014–2015 Composite

endpoint

3 3 0.760 0.830 0.07 No 0.174 0.077

(Continued)
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CV mortality. Of the 9 model outcomes that predicted CV mortality, including sudden

cardiac death and pump failure, 3 also modeled all-cause mortality and 1 HF hospitalization.

The median [range] of final candidate variables was 6 [1–41], with 4 [1–10] retained within the

final model, similar to the number retained for all-cause mortality (Table 3). Of the 9 CV mor-

tality model outcomes, 3 reported C-statistic for model discrimination, 3 reported AUC-ROC,

1 used Kaplan-Meier assessment, and 2 used the Therneau’s survival concordance index. The

8 relevant model outcomes displayed “moderate” or “good” discriminatory values, with a

model C-statistic ranging between 0.680 and 0.890 (Table 3). Only 1 model outcomes per-

formed internal validation [53] and none external validation.

HF hospitalization. Admission to hospital for HF was the most common endpoint,

assessed in 15 models. Of the overall outcomes, 3 additionally assessed all-cause mortality and

1 CV mortality. The median [range] of candidate variables for HF hospitalization was the

highest of the 4 outcome categories (19 [1–4205]), although the median number of retained

variables was equivalent to those retained for composite endpoints (7 [1–105]). Discrimination

was most commonly assessed using the C-statistic (n = 7) or reported as AUC-ROC (n = 7),

with 1 model outcomes using Kaplan-Meier assessment. C-statistics ranged between 0.59 and

0.80 (Table 3). Eapen et al. had the largest sample size (33,349 subjects), and a “low” discrimi-

natory value of 0.59 for HF hospitalization [35]. This study assessed all-cause mortality and

composite endpoints using different models, and reported good (0.75) and modest (0.62) dis-

crimination, respectively [35] (Table 3). The majority of the predictive model outcomes for HF

hospitalization were unable to determine incremental values, as only 2 included a base model.

Seven model outcomes (47%) included an assessment of internal validation; 3 (20%) discussed

external validation.

Composite endpoints. Fourteen model outcomes assessed composite outcomes, with

median [range] candidate variables of 7 [1–48], of which the same median number (7 [1–17])

were retained in the final model. The majority of model outcomes (n = 13/14) reported

Table 3. (Continued)

First Author

(Year)

Data

Collection

Period

Primary

Outcome

Assessed

No. of

Candidate

Predictors

No. of

Retained

Predictors

Base Model

C-Statistic

Predictive

Model

C-Statistic

Incremental

C-Statistic�
Calibration

Assessed†
NRI

Value‡
IDI

Value

Meijers WC

(2015) [51]

NR Composite

endpoint

29 1 0.712 0.745 0.033 No –0.048 0.011

Montero-Perez-

Barquero M

(2015) [52]

2008–2013 Composite

endpoint

8 8 NR NR NA Yes NR NR

Nymo SH (2017)

[53]

NR Composite

endpoint

6 6 0.728 0.736 0.008 Yes 0.65 NR

Upshaw JN (2016)

[57]

2001–2005 Composite

endpoint

12 12 NR 0.720 NA Yes NR NR

Vader JM (2016)

[59]

NR Composite

endpoint

NR 9 NR 0.670 NA No NR NR

Vader JM (2016)§

[59]

NR Composite

endpoint

NR 10 NR 0.690 NA No NR NR

�Difference between base model and predictive model reported.
†Calibration values not shown due to heterogeneous types of calibration models used.
‡Both categorical and continuous reclassification values are displayed according to publication.
§Co-primary endpoints reported.

CVD, cardiovascular disease; HF, heart failure; IDI, integrated discrimination index; NA, not applicable; NR, not reported; NRI, net reclassification improvement; PFD,

pump failure death; SCD, sudden cardiac death.

https://doi.org/10.1371/journal.pone.0224135.t003
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methods of discrimination, most commonly using C-statistic (n = 7) or reporting as

AUC-ROC (n = 5); 1 used Kaplan-Meier assessment. When composite outcomes were the

endpoint, applicable models displayed “moderate” or “good” discriminatory ability, with C-

statistics ranging between 0.620 and 0.745 (Table 3). Six studies (6/13 [46%]) did not report a

base model to allow calculation of incremental C-statistic. Eight models (57%) included an

assessment of internal validation. Six model outcomes (43%) employed external validation,

which was the highest proportion of all 4 outcome categories.

Model predictors

From the 38 retrieved publications that did not employ machine learning, 105 distinct predic-

tor variables were identified. The 12 most commonly used variables (in >5 publications) were

derived from pathophysiological pathways linked to poor health in HF (Fig 2). These included

surrogates of demographic, anthropometric, clinical, and laboratory measures. N-terminal

prohormone brain natriuretic peptide (NT-proBNP) and age were most commonly included

(n = 11 studies each), followed by T2DM and male sex (n = 10 studies each), systolic blood

pressure (SBP) (n = 9 studies), blood urine nitrogen (BUN) and creatinine (n = 8 studies

each), heart rate and left ventricular EF (n = 7 studies), sodium, body mass index (BMI), and

New York Heart Association (NYHA) class (n = 6 studies each) (Fig 2).

Shameer et al. [55] and Krumholz et al. [46] used machine learning and included 4205 and

105 candidate variables, respectively. Despite these large numbers of variables, they did not

consider the commonly identified distinct predictors, given in Fig 2. Shameer et al. displayed

“good” discriminatory ability with C-statistic of 0.77 [55], suggesting this approach might be

promising for predicting relevant outcomes. Conversely, Krumholz et al. documented that a

number of socioeconomic, health status, adherence, and psychosocial indicators were not

dominant factors for predicting 30-day readmission risk, and model discrimination remained

“modest” (C-statistic = 0.65) [46].

Identification of HF subgroups

Five studies (13%) looked to classify a “high-risk” patient subset. The groups were typically

defined according to the highest scoring category, based on each of the included publication’s

risk scoring. Álvarez-Garcı́a et al. [23] demonstrated that patients who presented with 20–30

points on the Redin-SCORE, had a 5-fold increase (i.e., 5.9% vs. 0.9%) in the cumulative inci-

dence of 30-day HF readmission vs. patients scoring 0–19 points [23]. Uszko-Lencer et al. [58]

reported 2-year survival probability among patients classified with “high scores” (i.e., BAR-

DICHE-score >16 points) was 58% vs. 97% in the low BARDICHE-score group (�8 points).

Using the Echo Heart Failure Score, Carluccio and colleagues [30] reported that all-cause mor-

tality increased progressively with higher scores (0–5 points). Notably, patients with a score of

5 had an all-cause mortality HR 13.6 points higher than if they had a score of 0. When evaluat-

ing “high-risk” on the Heart Failure Patient Severity Index (i.e., decile 10), Hummel et al. [41]

noted a 57% increase in 6-month all-cause death and hospitalization (composite), vs. an 8%

increase in 6-month combined event rate for those classified as “low-risk” (deciles 1–4).

PROBAST

In total, 58 distinct models were identified from the 40 publications. By applying our assess-

ment of PROBAST [32, 35], 11 models (19%) were classified as overall low ROB, 4 (7%) as

overall unclear, and the majority (43 [74%]) as overall high ROB (Fig 3). Of the 11 models con-

sidered overall low ROB, (co)primary outcomes across the 4 categories were modeled.

Although 11 models (from 7 studies) were rated as overall low ROB according to our
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assessment of PROBAST, only 3 models had “Yes [Y]” or “Partial Yes [PY]” in all domains of

PROBAST. The other 8 models were considered overall low ROB according to PROBAST,

despite being rated “Unclear” within at least one Domain (1–3). Of the overall low ROB mod-

els, 4 also had an “N” in 1 category of Domain 4. For example, Cubbon et al. [32] had an “N”

in Domain 4.1 (“Were there a reasonable number of participants with the outcome?”), due to

the events per variable (i.e., subjects/variables) being <10 [16]; however, as this model assess-

ing HF rehospitalization was externally validated, it was considered overall low ROB according

to Moons et al. [16]. Eapen et al. [35] developed 3 models, and split their data set 70%/30%

leading to an “N” in Domain 4.3 (“Were all enrolled participants included in the analysis?”).

The authors used the 30% split to validate 70% of their data, and as the models were also cali-

brated, these models were considered overall low ROB according to our interpretation of

Moons et al. [16].

Most of the models considered as overall high ROB had a “Y” in multiple signaling ques-

tions, but in particular for Domain 4, which assessed model design and validation (S2 Appen-

dix). Zai et al. [60] was rated high ROB on all 4 domains, mainly through lack of reporting. Of

the 43 models rated overall high ROB, 32 were ranked “Low” or “Unclear” on the first 3 PRO-

BAST domains assessing participants, predictors, and outcomes, but were classified overall

high ROB due to “N” or “PN” in�1 aspect of Domain 4 (S2 Appendix). Most often, for these

32 models and overall, an “N” was included in Domain 4.8, which assessed model overfitting

and optimism, particularly involving internal validation [16, 17]. For example, Ford et al.

assessed 4 co-primary outcomes using 4 models [37]. Ford et al. [37] had an “N” in Domain

4.8 as the models were not reported as being internally validated, and a “PY” in Domains 4.2

and 4.9, as information was reported in the appendix only. As the study did not report infor-

mation on if the models were externally validated, the models were rated overall high ROB.

When the 58 models were assessed according to applicability concerns, just 6 models (from

5 studies) were rated with overall “High” applicability concern. The majority (52 models) were

considered overall “Low” concern, following assessment of applicability to participants, pre-

dictors, and outcomes (S2 Appendix).

Discussion

Publications on risk prediction models have become more common in recent years, but dis-

tinct prediction models frequently exist for the same outcome or target population. As such,

healthcare professionals, policy makers, or guideline committees have competing information

regarding which prediction models should be used or recommended [61, 62]. To aid these

decisions, SLRs of risk prediction models are increasingly demanded and performed [11–15].

In this review of the past 5 years, we identified 40 studies that reported 58 multivariable models

for risk prediction in HF. Despite risk prediction models varying widely, a number of common

distinct predictor variables were incorporated into these identified models. As CV disorders

manifest from multiple pathophysiological pathways, a multivariable approach would likely

offer additional incremental value beyond the use of single predictors.

In total, 33 of the 40 studies retained >1 candidate variables in the initial assessment, and

we identified 12 most commonly used variables, as incorporated in more than 5 studies. For

example, age and male sex were frequently incorporated into the base model, in-line with

them being key risk factors for onset and survival in HF [2, 63]. Although we identified some

Fig 2. Most common predictors examined in the 40 retrieved publications on models of HF risk prediction. BMI, body mass index; BUN, blood urea

nitrogen; HF, heart failure; LVEF, left ventricular ejection fraction; NT-ProBNP, N-terminal prohormone brain natriuretic peptide; NYHA, New York Heart

Association; RHR, resting heart rate; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus.

https://doi.org/10.1371/journal.pone.0224135.g002
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commonality in predictors, 105 distinct predictors were identified. This highlights real com-

plexity in HF as a condition, but also the interrelated pathological mechanisms that are consid-

ered important for predicting risk, and in part highlights some of the confusion around

selecting the most appropriate risk prediction models by professionals [10, 14, 61]. Two publi-

cations [46, 55] reported the use of machine learning for predicting risk. Both of these studies

incorporated an extensive number of candidate variables for model selection (n = 4205 [55]

and n = 110 [46]). Machine learning has shown some promise for improving the accuracy of

risk prediction, aiming to increase the number of patients identified who could benefit from

Fig 3. Risk of bias assessment according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST) [16]. ROB, risk of bias.

https://doi.org/10.1371/journal.pone.0224135.g003
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preventive treatment, while avoiding unnecessary treatment of others [64]. Contradictorily, an

analysis of 71 studies suggested that machine learning had no superiority over logistic regres-

sion techniques for predicting risk, although comparison of studies was hindered by methodo-

logical reporting [65]. Whether such automated processes can markedly augment predictive

performance in the HF setting remains unclear and requires further investigation to define a

role in evaluating risk prediction.

Of the multivariable models identified, several models provided C-statistics according to a

base model in an effort to determine the incremental value when adding the retained candidate

variables into the final model. These studies highlight the steps taken to improve discrimina-

tory ability, the range of variables retained in different risk prediction models, and how these

seem dependent on HF outcomes and population under study. There was no particular evi-

dence to suggest that differences in sample size, data source, or HF type significantly affected

the discriminatory ability of the models to predict HF outcomes, or clear commonality in the

variables retained within the final model. However, it is unlikely that one prediction model

will suit all types of HF, and risk should be dependent on level of preserved EF [61]. Ensuring

that models properly evaluate both calibration and discrimination is a domain on PROBAST

(Domain 4.7), and 14 models did not include sufficient level of information on this domain by

our application of the tool. The majority of retrieved studies relied on AUC-ROC / C-statistic

to define discriminatory value, and newer approaches were not widely adopted [66, 67]. The

C-statistic could naively eliminate established risk factors from CV risk prediction scores [68].

However, it remained a challenge to interpret the distribution of those findings particularly as

some studies utilized category-dependent NRIs, whereas others employed a category-free NRI

technique. These techniques go beyond conventional discrimination methods by facilitating

risk reclassification of patients. Measures such as the NRI have their own limitations, for exam-

ple the NRI is often heavily influenced by the choice of cutoff points used, as well as the inclu-

sion of unnecessary predictors, and generally requires well-calibrated prediction models for

these metrics to be clinically meaningful [66, 67]. The concept of risk reclassification has

caused much discussion in the literature, with novel decision–analytic measures being pro-

posed [69]. However, as novel risk factors are discovered, sole reliance on the C-statistic to

evaluate discriminatory ability of risk predictors has been suggested as ill-advised [67]. A lim-

ited number of studies included a reliable approach to evaluate model performance, and less

than half evaluated goodness-of-fit by calibration methods. As such, there is clear room for

improving the design of risk prediction models away from reliance on the C-statistic, in paral-

lel with research into improving model performance, ensuring validity and enhancing

generalizability.

Given the wide variety in models identified, the PROBAST assessment was applied to give

further insight into model design and application. Through our application of PROBAST, 11

models (from 7 studies [21, 26, 32, 35, 53, 57, 59]) were suitably designed and published in a

way that suggests the model did not introduce bias into the assessment, highlighting that 47

were not sufficiently described. Some lacking areas that arose from analyzing the prediction

models included reporting on methods of calibration and discrimination, validation, and the

key issue of how missing data were handled using imputation or other techniques.

A lack of full reporting on aspects of validation or overfitting was the domain on which

most studies “failed” (Domain 4.8) according to our application of PROBAST. For example,

only 26/58 models included sufficient information to confirm studies were internally validated

(“Y” on Domain 4.8). The model by Ahmad et al. [22], although sufficient information across

aspects of PROBAST was reported, did not report information on internal or external valida-

tion, and therefore was rated overall high ROB, despite being rated low ROB on the first 3

domains of PROBAST, covering participants, predictors, and outcomes. The authors even
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noted that they did not carry out any method of internal validation [22]. Our observations

highlight the need for regular assessments of internal validation and goodness-of-fit, but also

the wider adoption of methods of external validation. Importantly, external validation requires

measures of both discrimination and calibration in another cohort, and only 8 studies reported

information on attempting to use an external model cohort for comparison. Although applica-

bility concerns were low, the PROBAST ROB observations suggested models were generally

prone to bias. Introduction of bias could lead to the wrong patients being identified and

treated, and ultimately costly mistakes within a healthcare system, if the model was widely

used [16, 17]. The risk that patients will be inappropriately treated could partly explain why

models are not being confidently used as an aid to HF patient management [61, 62], alongside

other concerns discussed in more detail below.

Despite 40 new publications on predicting risk in HF being published within past 5 years,

there is little evidence to suggest that any of these 58 models has been adopted by clinicians or

healthcare institutions, and no international or local guidance recommending one risk predic-

tion model over another. Indeed, <1% of patients in a European registry received any form of

prognostic evaluation [10]. Although many reasons contribute to the limited uptake, poor per-

formance of short-term assessments in guiding decision-making may have contributed [11].

Based on a single-variable model, the GUIDE-IT trial demonstrated that NT-proBNP-guided

therapy was not more effective than usual care for improving outcomes in high-risk patients

with HF and reduced EF [70]. With such studies, clinicians may therefore see little need to

change patient management by risk prediction, seeing all patients as high risk. If risk assess-

ments are to be useful at the bedside, providers need pragmatic models that rely upon easily

accessible variables to stratify patients. Given these diverse needs and conflicting evidence of

value, further research is required to develop tools, or moreover automated techniques that

can provide clinical guidance for risk estimation, in primary care and high-risk or secondary

prevention settings [62]. Beyond these concerns, our study highlights the wide variation in sta-

tistical approach, the complexity of certain models, and lack of clear external validation, other

important considerations for decision makers when recommending any model for predicting

risk or stratifying patients according to future risk. Although statistical concerns may hinder

clinicians’ confidence with a risk model, development of an app or similar tool to simplify the

application of the model for the healthcare provider may also negate the need to fully under-

stand the statistical approach. Clear step-by-step guidance toward the correct patient popula-

tion would be needed, in an app-type approach.

In order to endorse a risk prediction model within a suitable patient group, decision makers

would need to ensure the model is generalizable, as one model may suit given patient groups

better than another [61]. Only 13% of identified studies stratified patients by HF type, despite

evidence that suggests different models should be used depending on level of preserved EF

[61]. In addition, considering patients’ “frailty index” or other functional parameters, such as

the 6-min walking distance, within the prognostic modelling of HF may provide a more multi-

dimensional picture of the patient’s risk [71–73]. Further research is needed, however, to

ensure the validity of such measures. Patient frailty, for example, can be difficult to interpret

[73] and requires additional functional parameters (such as mental, nutritional, or social com-

ponents) to provide a reasonably accurate definition of “frailty” [72]. However, recent research

demonstrated that a frailty index can predict mortality, disability, and hospitalization rates in

patients with HF, discriminating from patients without HF [74]. Configuration and use of

functional parameters is something that may become more important along with the develop-

ment of generalizable risk prediction models, but they are still being validated and debated

[71, 74]. Further exploration and understanding of automated processes [46, 55, 64] is also

needed to help researchers and clinicians gain better insight into the risks and uncertainties
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involved in the management of different types of HF patient. Collectively, future risk predic-

tion models may involve different measures of function, classification, or clinical usefulness, to

give additional insight on the prediction, which extends beyond traditional measures of cali-

bration and discrimination [69].

Some limitations need to be considered when interpreting our observations. We selected a

study window of 5 years to ensure we reflect up-to-date knowledge and treatment practices

given that HF is a dynamic condition, which often has annual treatment recommendations

imposed in many countries. However, by limiting the study window to ensure up-to-date

treatment practices were reflected, we did not capture risk prediction models that were pub-

lished prior to the 5-year window, such as MAGGIC (Meta-Analysis Global Group in Chronic

Heart Failure) or the Seattle Heart Failure Model [75, 76], which had informed contemporary

clinical guidelines [77]. Previous reviews, such as that carried out by Rahimi et al., 2014, have

included discussion and analysis of these earlier HF models in a contemporary context [12].

Our study time window started after this study by Rahimi et al., but the authors also conclude

that although models varied widely, they had some variables in common. In addition, we also

found that prediction of HF hospitalization was associated with the lowest discrimination, but

that other risk predictions had higher performance that may facilitate clinical use [12], suggest-

ing that discrimination for HF hospitalization has not improved with models developed within

the past 5 years and that learnings have not been applied. Just falling outside of our study win-

dow, Rich et al. evaluated the MAGGIC risk score (first published in 2013 [75]) for predicting

morbidity/mortality in 407 HF patients with preserved EF [78] comparing it with the Seattle

Heart Failure Model. The authors concluded the MAGGIC risk score is a valid instrument to

assess mortality and morbidity of HF patients with preserved EF and with a better calibration

for hospitalization outcome than the Seattle HF instrument. Unfortunately, neither risk model

has been assessed with PROBAST.

Each risk model differed, depending on the overall aim of the study, target population con-

sidered, length of follow-up, health procedures assessed, location of study, and accessibility to

study data, to name but a few. To this end, advocating an optimal modeling approach for use

in the HF setting is beyond the scope of this review, and we have discussed some of the limita-

tions around differences in methodologies. Time horizon and sample size varied considerably

among the studies identified, with few studies providing sufficient information to confirm

robustness and generalizability to qualify the prognosis of individual patients. More rigorous

reporting guidance would aid more complete reporting, and in turn, more accurate compari-

son of studies in an SLR. Nevertheless, by highlighting similarities in approach we hope to

inform future decision makers to optimize a model for wider use.

It is clear there is a real need to integrate risk prediction models into healthcare manage-

ment, but this must be carried out with an eye on bias and handling missing data [61]. Only

28% of studies reported on how they handled missing data. Indeed, most studies (20/40 [50%])

included no information [NI] on how missing data were handled, leading to “NI” in Domain

4.4 of PROBAST. This highlights an area in need of significant improvement in data reporting,

to ensure outcomes can be properly concluded upon. Our understanding of the retrieved mod-

els is expected to be limited to what is reported within the publication, and the PROBAST

assessment should be considered in light of this, as a number of domains were “NI” as no

information was available. As such, we cannot disregard the possibility that certain model ele-

ments of interest (e.g., as documented in technical modeling reports) may have been over-

looked by the present review. Furthermore, the PROBAST checklist is based on reviewer

decision-making regarding aspects of the model, which in itself introduces a level of profes-

sional decision-making into the assessment of each domain. Therefore, analysis of each study

as “high” or “low” ROB should be considered accordingly. As such, independent assessors may
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come to different decisions regarding domains and models. Further application of PROBAST

is therefore required before our observations can be interpreted in light of its application.

Conclusions

We identified 58 risk prediction models for HF, of which 11 (from 7 studies) were sufficiently

detailed and validated to be considered overall low ROB according to PROBAST. The risk pre-

diction models differed with regard to patient population analyzed, their statistical approach,

and modeling applied, and confirming prognostic utility was challenging due to the majority

of models not establishing a base model. A number of distinct predictors were identified in

multiple models suggesting commonality in certain key variables when predicting risk in

patients with HF. We feel there is room for improvement beyond what is currently offered in

the literature as risk prediction tools for HF, particularly by HF type.
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