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Abstract Selection against deleterious mitochondrial mutations is facilitated by germline

processes, lowering the risk of genetic diseases. How selection works is disputed: experimental

data are conflicting and previous modeling work has not clarified the issues; here, we develop

computational and evolutionary models that compare the outcome of selection at the level of

individuals, cells and mitochondria. Using realistic de novo mutation rates and germline

development parameters from mouse and humans, the evolutionary model predicts the observed

prevalence of mitochondrial mutations and diseases in human populations. We show the

importance of organelle-level selection, seen in the selective pooling of mitochondria into the

Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes.

Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to

account for the clinical data, because neither process effectively eliminates mitochondrial mutations

under realistic conditions. Our findings explain the major features of female germline architecture,

notably the longstanding paradox of over-proliferation of primordial germ cells followed by

massive loss. The near-universality of these processes across animal taxa makes sense in light of the

need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex

and recombination.

Introduction
In mammals, mitochondrial gene sequences diverge at 10–30 times the mean rate of nuclear genes

(Lynch et al., 2006; Allio et al., 2017). This difference is typically ascribed to a faster underlying

mutation rate and limited scope for purifying selection on mitochondrial genes, given uniparental

inheritance, negligible recombination, and high ploidy (Rand, 2001). At face value, weak selection

against mitochondrial mutations might seem to be consistent with the high prevalence of mitochon-

drial mutations (~1 in 200) (Elliott et al., 2008) and diseases (~1 in 5000 births) (Schaefer et al.,

2008) in human populations. But it is not consistent with the strong signal of purifying selection

(da Fonseca et al., 2008), evidence of adaptive change (James et al., 2016) and codon bias

(Yang and Nielsen, 2008) in mitochondrial genes, nor with the low transmission rate of severe mito-

chondrial mutations between generations (Stewart et al., 2008; Fan et al., 2008; Hill et al., 2014).

Despite the high rate of sequence divergence, female germline processes apparently facilitate selec-

tion against mitochondrial mutations, but the mechanisms are disputed and poorly understood

(Burr et al., 2018).

Here, we develop computational and evolutionary models that compare three hypotheses of

germline mitochondrial inheritance and selection: (i) selection at the individual level, facilitated by

mitochondrial bottlenecks; (ii) selection at the cell level through follicular atresia, which weeds out

primordial germ cells with high mutation load; and (iii) selection at the organelle level through
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selective transfer of mitochondria into oogonia during development. These modes of selection are

not mutually exclusive nor the only ones that operate (a fuller examination is provided in the Discus-

sion). The objective here is to clearly delineate the major forces involved and the effectiveness of

each in controlling mutation accumulation. Our approach incorporates important factors neglected

in earlier work, in particular the input of de novo mitochondrial mutations and their segregation over

multiple rounds of germ-cell division. This provides a realistic model of mutation, segregation and

selection allowing the three hypotheses to be tested against the observed levels of mitochondrial

mutation and fitness across a variety of species with an emphasis on the detailed clinical reports in

human populations (Elliott et al., 2008; Schaefer et al., 2008).

The idea that mitochondrial mutations are winnowed through a tight germline bottleneck is per-

vasive in the literature and has long been held to explain sharp changes in mutation load between

generations (Johnston et al., 2015; Floros et al., 2018; Stewart and Chinnery, 2015). The exact

size of the bottleneck is unclear, with estimates from mouse (Wai et al., 2008; Cree et al., 2008;

Cao et al., 2009) and human studies (Floros et al., 2018; Rebolledo-Jaramillo et al., 2014;

Guo et al., 2013; Li et al., 2016) spanning two orders of magnitude. Bottlenecks generate variance

in mutation loads among the resulting germ cells, and tighter bottlenecks produce greater variance,

offering scope for selection against mitochondrial mutations at the level of the individual

(Bergstrom and Pritchard, 1998; Roze et al., 2005; Hadjivasiliou et al., 2013). The problem with

this line of thinking is that it ignores two other forces. First, gametes are produced through multiple

rounds of cell division, leading to repeated rounds of mitochondrial segregation, which in itself gen-

erates considerable variance (Radzvilavicius et al., 2017). Second, bottlenecks induce greater input

of de novo mutations as more rounds of mitochondrial replication are required to regenerate the

extreme ploidy of mitochondrial DNA in mature oocytes. By applying realistic segregation dynamics

and mutational input, we evaluate the impact of these forces on the value of bottleneck size on indi-

vidual fitness.

Follicular atresia is another force widely considered to be critical in maintaining oocyte quality

(Krakauer and Mira, 1999; Chu et al., 2014; Haig, 2016). In humans (Albamonte et al., 2008;

Kaipia and Hsueh, 1997), the number of germ cells declines dramatically in the foetus between

mid-gestation (~20 weeks in humans) when there are 7–8 million oocytes, to late gestation when at

least two thirds of these are lost, leaving a reserve of 1–2 million at birth (Townson and Combelles,

2012). Oocyte loss continues throughout the life of an individual, eventually leading to the depletion

of the ovarian pool and loss of reproductive function at menopause (Suganuma et al., 1993;

Galimov et al., 2014; Cummins, 2004). Similar loss of female germ cells before sexual maturity is

evident in mice and several other animal species (Nezis et al., 2000; Rodrigues et al., 2009; Saida-

pur, 1978; Morita and Tilly, 1999). This attrition has historically been ascribed to cell death during

oocyte maturation (Tilly, 2001; Perez et al., 2000), but more recent findings implicate the apoptotic

loss of ‘nurse cells’ during the genesis of primary oocytes (Lei and Spradling, 2016). In either case,

differential oocyte loss offers scope for between-cell selection. However, the basis for between-cell

selection has long been questioned, on the grounds that it seems unlikely that 70–80% of oocytes

have low fitness as a result of mitochondrial mutations (Perez et al., 2000). We therefore test

whether selection against oocytes with higher loads of mitochondrial mutations during follicular atre-

sia is capable of giving rise to the distribution of mutations observed.

A more recent interpretation of germ-cell loss links it to the formation of the Balbiani body, a

prominent feature of the human (Motta et al., 2000; Hertig, 1968) and mouse (Lei and Spradling,

2016; Kloc et al., 2004) female germline, as well as a range of other vertebrates and invertebrates,

with varying terminology (e.g. fusome, mitochondrial cloud) (Lei and Spradling, 2016; Kloc et al.,

2004; Tworzydlo et al., 2016; Reunov et al., 2019; Larkman, 1984; Heasman et al., 1984). In the

mouse, proliferating germ cells typically form clusters of five to eight cells that establish cytoplasmic

bridges (Lei and Spradling, 2016; Pepling et al., 2007). It is thought that around half the mitochon-

dria from each nurse cell are streamed into the Balbiani body of the primary oocyte, through an

active cytoskeletal process that seems to depend in part on the membrane potential of discrete

mitochondria (Zhou et al., 2010; Bilinski et al., 2017). This offers scope for purifying selection

through the preferential exclusion of dysfunctional mitochondria. The remaining nurse cells, now

denuded of half their mitochondria, undergo apoptosis (Lei and Spradling, 2016). Selective transfer

and pooling of mitochondria from interconnected cells may occur in other vertebrate and
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invertebrate systems. We consider the consequence of different strengths of selection at the level of

mitochondrial function in the production of the Balbiani body.

To systematically distinguish between the predictions of these three different hypotheses, under

a range of reasonable parameter values, we use a computational model to evaluate the patterns of

mutation load generated over a single generation in each case. We then use an evolutionary model

to generate equilibrium levels and compare the predictions to the prevalence of mutations and dis-

ease from human studies. Our results show that selection at the organelle level through the pooling

of high-quality mitochondria into the Balbiani body is a more potent force than germline bottlenecks

and follicular atresia and must play a key role in the maintenance of mitochondrial function in the

face of pervasive mutational pressure. This analysis also pleasingly clarifies the longstanding paradox

of germ-cell over-proliferation followed by massive loss which is a widely conserved feature of the

female germline in animal taxa.

Results

Computational model
The computational model follows the distribution of mitochondrial mutations across a single genera-

tion, using model parameters derived from human data (Albamonte et al., 2008; Figure 1). The

zygote is assumed to have around half a million copies of mitochondrial DNA (exact number 219),

which are randomly partitioned to the daughter cells at each cell division. The pattern of segregation

is in agreement with recent evidence for actin-mediated mixing of mitochondria within cells during

mitosis leading to random segregation (Moore et al., 2021). We assume independent segregation

of mitochondria with one mtDNA per mitochondrion, and do not consider complications that might

arise from the packaging of multiple mtDNA copies per mitochondrion (Floros et al., 2018). This

assumption is supported by evidence that mitochondrial networks fragment into multiple smaller

structures at cell division (Taguchi et al., 2007; Park and Cho, 2012) that probably contain one or a

few mtDNAs.

Mitochondrial replication is not active during early embryo development (Dumollard et al.,

2007), so the mean mitochondrial number per cell approximately halves with each division

(Figure 1B). In humans, after 12 cell divisions a random group of 32 cells form the primordial germ

cells (PGC) (Extavour and Akam, 2003), which in the model corresponds to a mean of 128 mito-

chondria per PGC. Mitochondrial replication resumes at this point (Albamonte et al., 2008;

Dumollard et al., 2007). Each mtDNA doubles prior to cell division. With probability m, one of the

daughter mitochondria acquires a new deleterious mutation through a copying error. We consider m

in the range 10�9 to 10�8 to 10�7 per base pair per cell division (designated low, standard, and

high, respectively), consistent with the range of estimates for the female germline, and assume no

back mutations (see Materials and methods). Point mutations during replication are the dominant

form of mutation in mtDNA, so we do not consider damage from other sources such as oxidative

damage (Stewart and Larsson, 2014). Mitotic proliferation of PGCs gives rise to ~8 million oogonia,

which are reduced to ~1 million primary oocytes during late gestation (Figure 1B; Albamonte et al.,

2008; Dumollard et al., 2007). Proliferation is followed by a quiescent phase during which the mito-

chondria in primary oocytes are not actively replicated. Mutations accumulate far more slowly during

this phase, which persists over decades in humans (Dumollard et al., 2007; Allen and de Paula,

2013). For simplicity, we assume no mutational input during this period (not marked in Figure 1B).

At puberty, the primary oocytes mature through clonal amplification of mitochondria back to the

extreme ploidy in mature oocytes (~500,000 copies; Figure 1B; Radzvilavicius et al., 2016). The

same copying error mutation rate m is applied during this process.

We consider three different forms of selection on mitochondria: selection at the level of individu-

als, cells, or mitochondria. We apply selection at the level of individuals on the zygotic mutation

load. Selection at the level of cells or mitochondria is applied during culling at late gestation when

primary oocytes are produced. Each of these processes can be captured by modifications of the

computational model, allowing easy comparison between them. In order to distinguish between dif-

ferent levels of selection, the model extends earlier work that considered segregational variation of

a fixed burden of existing mutations (Johnston et al., 2015; Bergstrom and Pritchard, 1998;

Roze et al., 2005; Hadjivasiliou et al., 2013) but neglected the input of new mutations during PGC
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proliferation and oocyte maturation, as well as the loss of germ cells during late gestation. The anal-

ysis here shows the importance of considering these additional processes governing the population

of mitochondria in germline development.

Germline bottleneck increases variance but introduces more de novo
mitochondrial mutations
The effect of a bottleneck was assessed in the model by allowing b extra rounds of cell division with-

out mitochondrial replication during early embryonic development (e.g. two extra rounds shown in

Figure 2A). Each additional cell division leads to an average reduction of 0:5ð Þb mitochondria in

PGCs compared to the base model. For simplicity we then hold mitochondrial numbers at this lower

Figure 1. Stages in female germline development. (A) Timeline of human oocyte development showing the main stages modeled, with wildtype (blue)

and mutant mitochondria (orange). (B) Numerical simulation of the base model. Top panel: number of germ cells from specification of the 32 primordial

germ cells (PGCs) after 12 cell divisions; proliferation to form 8 million oogonia; random cell death reducing to 1 million primary oocytes; quiescent

period (not shown) and finally oocyte maturation at puberty. Middle panel: copy number of mitochondria (i.e. mtDNA); from zygote with ~500,000

copies, which are partitioned at cell division during early embryo development until replication begins (first vertical line) during PGC proliferation; copy

number is amplified during oocyte maturation back to ~500,000 copies; dotted line shows the mean mitochondria copy number, with the distribution

across oocytes shown in yellow. Note, skew reflects the log-scale. Bottom panel: mean (dotted line) and distribution of mutation load through

development. The yellow shaded area shows the 90% quantile. Other parameter values � ¼ 10
�8, m0 ¼ 0:1.
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Figure 2. Model of germline bottleneck and individual selection. (A) A bottleneck with two extra rounds of cell division without replication (cell division

13 and 14; after the first vertical line), reducing mitochondria copy number per PGC (by a quarter on average). Two extra rounds of mitochondrial

replication are required to regenerate the copy number in mature oocytes. Compared to the base model (Figure 1), mean mutation load (dotted line,

bottom panel) is slightly higher and variation in load is substantially greater (yellow shaded area, 90% quantile). Parameter values � ¼ 10
�8, m0 ¼ 0:1. (B)

Figure 2 continued on next page
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value through the period of PGC proliferation. This assumption gives greater impact to the bottle-

neck and is consistent with some views (Cao et al., 2009). Tighter bottlenecks at this early develop-

mental stage generate greater segregational variance in mutation load between cells (Figure 2B).

This increase in variance persists and is enhanced through PGC proliferation to the production of pri-

mary oocytes and ultimately in mature oocytes (Figure 2B). The bottleneck not only creates a wider

spread of mutation number per cell, but also the possibility that cells can be mutation free even

when initiated from a zygote that contains significant numbers of mutations (Figure 2B). Bottlenecks

in themselves do not change the mean mutation load, as they occur before the start of mitochondrial

replication (i.e. at PGC specification; Figure 2B; Dumollard et al., 2007). But oocyte maturation

requires the expansion of mitochondrial number back to half a million. Cells starting with lower num-

bers must therefore undergo more rounds of mitochondrial replication, and hence will accumulate

more de novo mutations. So, the mean mitochondrial mutation load in mature oocytes increases

with tighter bottleneck size, albeit this effect is small with standard mutation rates (� ¼ 10
�8;

Figure 2B). Nonetheless, the tension between variance and mean determines the overall selective

consequence of the bottleneck.

The advantage that the bottleneck brings depends on how selection acts against the mutation

load carried by an individual. Based on the observed dependence of mitochondrial diseases on

mutation load (Rossignol et al., 2003; Kopinski et al., 2019; Wallace and Chalkia, 2013), in which

more serious phenotypes typically manifest only at high mutation loads of >60 % (Rossignol et al.,

2003; Kopinski et al., 2019; Wallace and Chalkia, 2013), it is thought that individual fitness is

defined by a concave fitness function, indicative of negative epistasis (Figure 2C). This assumes that

each additional mitochondrial mutation causes a greater reduction in fitness beyond that expected

from independent effects. In other words, low mutation loads have a relatively trivial fitness effect,

whereas higher mutation loads produce a steeper decline in fitness.

The change in mutation load (Dm) over a single generation after individual selection was mea-

sured against 5 mean bottleneck sizes (B
�
¼ 128; 64; 32; 16; 8), for three initial mutation loads (m0) and

three mutation rates (m). The bottleneck shows an ambiguous relationship with fitness, dependent

on the inherited mutation load (m0). For the estimated mutation rate (� ¼ 10
�8), there is always an

increase in mutation load in individuals who inherit low or medium mutation loads (m0 ¼ 0:001; 0:01;

Figure 2D). This increase in load (Dm>0) becomes more deleterious with a tighter bottleneck

(Figure 2D). The bottleneck only confers a benefit (Dm<0) among individuals who inherit a high

mutation load (m0 ¼ 0:1; Figure 2D), where the advantage of greater variance outweighs the

increase in de novo mutation load. If the mutation rate is lower (� ¼ 10
�9), bottlenecks have little

effect except when severe, where they again cause an increase in mutation number in individuals

with low or medium mutation loads (m0 ¼ 0:001; 0:01; Figure 2—figure supplement 1A). In individu-

als with high mutation load (m0 ¼ 0:1), only tighter bottlenecks (B
�
¼ 16; 8) are beneficial (Figure 2—

figure supplement 1A). If the mutation rate is higher (� ¼ 10
�7) the pattern is more extreme, with

the accumulation of de novo mutations except in individuals with high inherited mutation loads

(m0 ¼ 0:1) at the tightest bottleneck size �B ¼ 8ð Þ (Figure 2—figure supplement 1B). In sum: even

though bottlenecks generate greater variance, they impose the need for additional rounds of mito-

chondrial replication during oocyte maturation, resulting in greater de novo mutational input. This

makes tight bottlenecks advantageous only for rare individuals who inherit high mutation loads, but

not for the great majority of the population where the prevalence of mitochondrial mutations is

below the limits of detectability, between 0.001 and 0.01 (Elliott et al., 2008; Floros et al., 2018).

Figure 2 continued

Violin plots of the distribution of mutations (mean ± SD shown in red) at two developmental stages, PGC specification and mature oocytes, given 5

mean bottleneck sizes (B
�
) when m0 ¼ 0:1. (C) Strength of selection on individual fitness, with a concave fitness function based on clinical data from

mitochondrial diseases. (D) Change in mutation load (Dm) across a single generation for three initial mutation loads (m0), given 5 mean bottleneck sizes

(B
�
), showing the median (red line) and distribution (box plot IQR with min/max whiskers and outliers).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Bottleneck change in mutation load with different mutation rates.
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Follicular atresia cannot be explained by realistic selection against cells
with high mitochondrial mutation loads
In the analysis of bottlenecks above, the culling of ~8 million oogonia to 1 million primary oocytes at

the end of PGC proliferation was assumed to be a random process (Figure 2A). This loss has a mini-

mal effect on the mean and variance of mitochondrial mutations in germ cells, given the large

Figure 3. Model of follicular atresia and cell selection. (A) After PGC proliferation, follicular atresia occurs through selective apoptosis of oogonia. (B)

Cell fitness is assumed to be linear (� ¼ 1) or follow negative epistasis (� ¼ 2; 5Þ in which mutations are more deleterious in combination. (C) Change in

mutation load, Dm, across a single generation after cell selection, at an intermediate mutation rate (� ¼ 10
�8), for individuals with low (m0 ¼ 0:001),

medium (m0 ¼ 0:01) and high (m0 ¼ 0:1) initial mutation loads, for variable levels of epistasis (median (red line) and distribution (box plot IQR with min/

max whiskers and outliers)).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Follicular atresia and cell selection change in mutation load with different mutation rates.
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numbers involved (and no effect at all when averaged over a population). However, the loss of ~80%

of oocytes via follicular atresia during late gestation has long been puzzling and could arguably

reflect selection against cells with higher mutation loads.

To analyze follicular atresia, cell-level selection was applied to oogonia at the end of PGC prolifer-

ation (Figure 3A). PGCs vary in mutation frequency due to both the random segregation of mutants

during the multiple cell divisions of proliferation and the chance input of new mutations during

mtDNA replication. In principle, we assume that between-cell selection is governed by a negative

epistatic fitness function (Figure 3B) similar to that thought to apply at the individual level, and vary

selection from linear (� ¼ 1), weak (� ¼ 2) to strong epistasis (� ¼ 5). Positive epistasis (�<1), whereby

a single point mutation produces a steep loss of fitness, but additional mutations have less impact

(i.e. mutations are less deleterious in combination), seems biologically improbable, so we do not

consider it here.

The effect of cell selection during follicular atresia was calculated as the change in mutation fre-

quency for individuals carrying different mutation loads (m0) over a single generation, given standard

values for de novo mutations (� ¼ 10
�8) and bottleneck size (B

�
¼ 128). Under strong negative epista-

sis (� ¼ 5), only the few cells with very high mutation loads (generated by segregation) are elimi-

nated. Cell-level selection does not reduce mutation load, even for individuals with a high initial

frequency of mutations (m0 ¼ 0:1; Figure 3C). Cell-level selection is more effective with weak epista-

sis (� ¼ 2) or linear selection (� ¼ 1) as this makes cells with lower mutation loads more visible to

selection, and has a greater benefit in individuals carrying higher initial mutation loads (Figure 3C).

However, in individuals who inherit low or medium mutation load (m0 ¼ 0:001; 0:01) cell selection

offers a minimal constraint against mutation input. The only case in which cell selection produces a

benefit is with high mutation load (m0 ¼ 0:1) under linear selection (� ¼ 1) (Figure 3C). This pattern

holds for a lower mutation rate (� ¼ 10
�9; Figure 3—figure supplement 1A), while there is no bene-

fit at all at a higher mutation rate (� ¼ 10
�7; Figure 3—figure supplement 1B).

The Balbiani body pools high-quality mitochondria and restricts de novo
mutation input
An alternative interpretation of atresia in late gestation lies in the formation of the Balbiani body.

We model the developmental process giving rise to the Balbiani body by assuming that cysts of 8

oogonia form at the end of PGC proliferation (Figure 4A). Cells within a cyst are derived from a

common ancestor (i.e. via three consecutive cell divisions). At the eight-cell stage, intercellular

bridges form between the oogonia. These allow cytoplasmic transfer of a proportion of mitochon-

dria (f ) from each cell to join the Balbiani body of the single cell destined to become the primary

oocyte (Figure 4A). The mitochondria that undergo cytoplasmic transfer are sampled at random

(without replacement), with different weights for wildtype (pwt) and mutant (pmut) mitochondria, until

f have moved to the Balbiani body. The oogonia that donate their cytoplasm to the primary oocyte

are now defined as nurse cells, and undergo programmed cell death – atresia (Figure 4A).

The model shows that two benefits accrue from cytoplasmic transfer. The first benefit of mito-

chondrial transfer into the Balbiani body is that pooling increases the number of mitochondria in pri-

mary oocytes. As the proportion of mitochondria transferred increases towards the estimated rate of

f ¼ 0:5 (Lei and Spradling, 2016), the number of mitochondria in primary oocytes increases

four fold. Pooling therefore cuts the number of rounds of replication needed to reach the extreme

ploidy required by mature oocytes, which decreases the input of new mutations from replication

errors during oocyte maturation. This benefit accrues whatever the initial mutation load, and more

dramatically with a higher mutation rate (Figure 4—figure supplement 1).

The second benefit arises from selective transfer of mitochondria. Preferential exclusion of mutant

mitochondria (pwt>pmut), as suggested by experimental evidence (Lei and Spradling, 2016;

Bilinski et al., 2017; Chen et al., 2020), lowers the mutation load in primordial oocytes (Figure 4B).

The difference between pwt and pmut determines the extent to which the mutation load is reduced,

with stronger exclusion of mutant mitochondria (lower pmut) reducing the number of mutations when

the inherited load is medium or high (m0 ¼ 0:01; 0:1), albeit with a negligible effect at low initial muta-

tion load (m0 ¼ 0:001; Figure 4C). The same effect is seen with lower and higher mutation rates (Fig-

ure 4—figure supplement 2). Nurse cells retain a higher fraction of mutant mitochondria but

undergo apoptosis, removing mutants from the pool of germ cells, and explaining the need for an
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Figure 4. Model of cytoplasmic transfer and mitochondria selection. (A) Cytoplasmic bridges form among oogonia in the germline cyst, leading to

selective transfer of wild-type mitochondria (blue) to the primary oocyte, leaving mutant mitochondria (red) in nurse cells that then undergo apoptosis.

(B) Cytoplasmic transfer which selectively pools f ¼ 50% of mtDNA from eight germline cyst cells into a single primary oocyte causes a large increase in

the number of mitochondria (middle panel) and a large reduction in the mean (dotted line, bottom panel) and distribution of mutation load (yellow

Figure 4 continued on next page
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extreme loss of germ cells during late gestation. This effect acts in concert with pooling leading to a

reduction in both the mean and variance of mitochondria mutation load in the cells destined to

develop into mature oocytes. (Figure 4B).

Evolutionary model
The computational model discussed above gives an indication of the effectiveness of selection at the

level of individuals, cells or mitochondria in eliminating mitochondrial mutations across a single gen-

eration. To address the long-term balance of mutation accumulation versus selection over many gen-

erations, we developed an evolutionary model. This assesses the effectiveness of the three

representations of germline development in explaining the observed prevalence of mitochondrial

mutation load and disease in human populations (see Materials and methods). This evolutionary

model evaluates long-term evolutionary change in an infinite population with non-overlapping gen-

erations and is implemented using a number of approximations, which greatly reduce the model

complexity (see Materials and methods).

By iterating the patterns of germline inheritance and selection, the equilibrium mutation distribu-

tion was calculated across a range of mutation rates and bottleneck sizes. The accuracy of the three

models was then assessed as the likelihood of reproducing the observed levels of mitochondrial

mutations in the human population (Figure 5). Specifically, we used estimated values of 1/5000 for

mitochondrial disease (>60% mutant), 1/200 for carriers of mitochondrial mutants (2–60% mutant)

and hence 99.5% of individuals are ‘mutation free’ (i.e. carry <2% mutants, the threshold for detec-

tion in these estimates of mutation frequency [Elliott et al., 2008; Schaefer et al., 2008]). Recent

deep-sequencing estimates using a mutation detection threshold of >1% (Floros et al., 2018), show

that a minor allele frequency of 1–2% is relatively common in selected human PGCs, but this does

not alter earlier population-level estimates of the proportion of carriers not suffering from overt

mitochondrial disease, defined as a 2–60% mutation load used here.

Likelihood heatmaps confirm that selection at the level of individuals or cells alone do not readily

approximate the clinical data whatever the bottleneck size (Figure 5A–B). Only at a mutation rate

�<0:5� 10
�8 do these forms of selection explain the observed mutation load and disease frequency

in humans at high likelihood, especially when using tighter bottlenecks (Figure 5A). These limitations

do not apply to the preferential transfer of wildtype mitochondria into the Balbiani body

(Figure 5C–D). Even intermediate levels of selection against the transfer of mutant mitochondria

into the Balbiani body (pmut ¼ 0:33, pwt ¼ 0:67) generates a high log-likelihood of reproducing the

clinical data at the standard mutation rates (� ¼ 10
�8) and bottleneck sizes (> 100 mitochondria per

cell) (Figure 3C). Stronger selection on transfer probabilities (pmut ¼ 0:25, pwt ¼ 0:75) can account for

the clinical pattern under a wide range of bottleneck sizes and mutation rates (Figure 5D).

Discussion
How selection operates on mitochondria has long been controversial. At the heart of this problem is

the paradox that mtDNA accumulates mutations faster than nuclear genes, yet there is evidence

that mtDNA is under strong purifying selection. Mitochondrial mutations accumulate through Mul-

ler’s ratchet, as mtDNA is exclusively maternally inherited, and does not undergo recombination

through meiosis (Rand, 2001). In addition, mitochondrial genes are highly polyploid, which obscures

the relationship between genotype and phenotype, hindering the effectiveness of selection on

Figure 4 continued

shaded area shows the 90% quantile, bottom panel), which persists during oocyte maturation. Pooling of mtDNA requires two fewer rounds of mtDNA

replication to regenerate copy number in mature oocytes. Parameter values � ¼ 10
�8, m0 ¼ 0:1. (C) Change in mutation load (Dm) across a single

generation (median (red line) and distribution (box plot IQR with min/max whiskers and outliers)), for individuals with low (m0 ¼ 0:001), medium

(m0 ¼ 0:01), and high (m0 ¼ 0:1) initial mutation loads, with variable strengths of selective transfer (pmut ). Parameter value � ¼ 10
�8, pwt ¼ 0:5.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cytoplasmic transfer and mitochondria selection change in mutation load with different mutation rates and proportion of
transferred mitochondria (f ).

Figure supplement 2. Cytoplasmic transfer and mitochondria selection change in mutation load with different mutation rates and probability of mutant
transfer (pmut).
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individuals. Despite these constraints, deleterious mitochondrial mutations seem to be eliminated

effectively (da Fonseca et al., 2008; James et al., 2016; Yang and Nielsen, 2008; Stewart et al.,

2008; Fan et al., 2008; Hill et al., 2014), facilitated by female germline processes that have long

been mysterious. These include: the excess proliferation of primordial germ cells (PGCs)

(Pepling, 2006), the germline mitochondrial bottleneck (when mitochondrial numbers are reduced

to a disputed minimum in PGCs) (Johnston et al., 2015; Floros et al., 2018; Stewart and Chinnery,

2015), the formation of the Balbiani body in primary oocytes (Lei and Spradling, 2016;

Bilinski et al., 2017), the atretic loss of 70–80% of germ cells during late gestation (Townson and

Combelles, 2012; Tilly, 2001), the extended oocyte quiescence until puberty or later (during which

Figure 5. Log-likelihood of the models reproducing clinical data of mitochondria mutation load and disease frequency. Heatmaps showing log-

likelihood of reproducing the observed mutation load and disease frequency in humans, for equilibrium conditions under the evolutionary model with

(A) bottleneck and selection on individuals, (B) follicular atresia and selection on cells (� ¼ 5), (C) cytoplasmic transfer with intermediate (pmut ¼ 0:33,

pwt ¼ 0:67,f ¼ 0:5) or (D) strong (pmut ¼ 0:25, pwt ¼ 0:75, f ¼ 0:5) selective transfer of wild-type mitochondria. Yellow depicts high likelihood; blue, low

likelihood. All models are shown for variable bottleneck size (the minimum mitochondria population size at which replication commences) and variable

mutation rates.
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time mitochondrial activity and replication is suppressed) (Allen and de Paula, 2013; de Paula

et al., 2013) and the generation of around half a million copies of mtDNA in mature oocytes

(Radzvilavicius et al., 2016). The key question is how do these processes facilitate the maintenance

of mitochondrial quality over generations?

In this study, we introduced a computational model that considers these germline processes from

the perspective of mitochondrial proliferation, segregation, and selection, using realistic estimates

of parameter values, drawn from the human literature (Albamonte et al., 2008, Dumollard et al.,

2007). Most work to date (Johnston et al., 2015, Stewart and Chinnery, 2015; Wai et al., 2008;

Cree et al., 2008; Cao et al., 2009) has focused on the mitochondrial bottleneck as a means of gen-

erating variation in mitochondrial content between oocytes and by extension zygotes (Figure 2B),

furnishing the opportunity for selection to act on individuals in the following generation. These stud-

ies have been unable to reconcile serious differences in experimental estimates of mitochondrial

numbers during PGC proliferation, inciting inconclusive debates over the tightness of the bottleneck

(Johnston et al., 2015; Stewart and Chinnery, 2015; Wai et al., 2008; Cree et al., 2008;

Cao et al., 2009). More significantly, this earlier work neglects an important germline feature, the

introduction of de novo mitochondrial mutations produced by copying errors (Arbeithuber et al.,

2020) rather than damage by reactive oxygen species (Stewart and Larsson, 2014,

Trifunovic et al., 2005). These accumulate during PGC proliferation and, equally importantly, during

the mass-production of mtDNAs in the mature oocyte. Tighter bottlenecks are disadvantageous as

they impose the need for more rounds of mitochondrial replication which means a greater input of

de novo mutations. Our modelling shows that for most individuals the mean mutation load shows lit-

tle meaningful change (Figure 2D), regardless of whether the mutation rate is set low or high (Fig-

ure 2—figure supplement 1), and in fact increases with tighter bottleneck size (Figure 2D). Most

individuals have low mutation loads (~99.5% in human populations [Elliott et al., 2008;

Schaefer et al., 2008]), and for them, the normal process of repeated segregation during cell divi-

sion generates sufficient variance in itself. Any marginal increase in variance caused by bottlenecks is

more than offset by increased mutational input. Tighter bottlenecks only benefit individuals who

already carry high mutation loads (i.e. m0 � 0:1, Figure 2D). For them, there is benefit in further

reductions in bottleneck size as this increases the fraction of mature oocytes with significantly

reduced mutation load (Figure 2D). In the modeling, we assumed that the bottleneck size was main-

tained across the period of PGC proliferation. Some studies have found that from a low number in

early development, copy number increases 5-10 fold to production of the oogonia (Wai et al., 2008;

Cree et al., 2008). This would lessen the effect of the bottleneck in general as it would have less

effect on segregation.

These results show that the popular idea that a germline mitochondrial bottleneck facilitates

selection against mitochondrial mutations is misconstrued. The value of a bottleneck depends on

the unforeseen trade-off between increasing genetic variance and mutation input. In fact, the reduc-

tion in mitochondrial copy numbers from zygote to primordial germ cells should be thought of as

the reestablishment of a typical copy number at the start of cellular differentiation, which commen-

ces after multiple cell divisions without mtDNA replication. What counts as a bottleneck are the

‘extra’ rounds of cell division reducing mitochondrial number below the ‘normal’ number, and the

incremental increase in variance this induces. Most critically, the bottleneck needs to be understood

in relation to oogamy, the massively exaggerated mitochondrial content of the female gamete. This

is a characteristic of metazoan gametogenesis (Radzvilavicius et al., 2016). Previous work has

shown it is beneficial in animals with mutually interdependent organ systems (Radzvilavicius et al.,

2016). The extreme ploidy in the zygote allows early rounds of cell division to occur without mito-

chondrial replication, and hence without de novo mutational input. These initial cell divisions gener-

ate little between-cell differences, as segregational variance is weak when numbers are high and

mitochondria segregate randomly during mitosis (Moore et al., 2021) (e.g. Figure 1B before PGC

specification). So at the point of cellular differentiation (~12 cell divisions), there is homogeneity in

the mutation load among the different organ systems and no one system is likely to fail, which would

massively lower the fitness of the whole organism (Radzvilavicius et al., 2016). This contrasts with

organisms that have modular growth, such as plants and morphologically simple metazoa (sponges,

corals, placozoa), which neither sequester a recognizable germline distinct from the stem-cell lineage

early in development (although recent work challenges this view, Lanfear, 2018), nor have oocytes
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with massively expanded mitochondrial numbers (Extavour and Akam, 2003; Radzvilavicius et al.,

2016; Extavour, 2007; Blackstone and Jasker, 2003).

Follicular atresia is another female germline feature examined in our modelling, in which there is

over-proliferation of PGCs followed by ~80% loss early in development, before oocyte maturation

(Townson and Combelles, 2012; Tilly, 2001). This massive reduction in germ cell number has long

been enigmatic. It is unlikely to be random, yet does not obviously serve a selective function, as it

seems unlikely that such a high proportion of germ cells could have low fitness (Krakauer and Mira,

1999; Chu et al., 2014; Haig, 2016). The model confirms this intuition. Selection among PGCs at

the end of the period of proliferation has little effect in significantly reducing mutation load

(Figure 3C). Assuming a concave fitness function (Figure 3B), which seems reasonable by extension

from the severity of mitochondrial diseases (Rossignol et al., 2003; Wallace and Chalkia, 2013),

between-cell selection is ineffective, as it only eliminates PGCs with very high mutational numbers.

This has little effect in constraining the burgeoning of lower mutation loads. Linear selection does

better, even if it seems unrealistic, as it will act against a broader range of mutational states. But as

with bottlenecks, it is only beneficial in individuals already carrying significant mutation loads (i.

e. m0 � 0:1, Figure 3C). We conclude that cell-level selection produces little measurable reduction in

mutation load and so is unlikely to be responsible for follicular atresia.

A more recent explanation of PGC loss relates to the formation of the Balbiani body in primary

oocytes (Lei and Spradling, 2016; Kloc et al., 2004). In many metazoa, including clams

(Reunov et al., 2019), insects (Tworzydlo et al., 2016; Cox and Spradling, 2003), mice

(Pepling et al., 2007) and probably humans (Kloc et al., 2004), the over-proliferation of PGCs culmi-

nates in their organization into germline cysts of multiple oogonia connected by cytoplasmic bridges

(Lei and Spradling, 2016; Pepling et al., 2007; Cox and Spradling, 2003). These connections are

thought to allow the transfer of mitochondria and other cytoplasmic constituents by active attach-

ment to microtubules, into what becomes the primary oocyte (Lei and Spradling, 2016). The sur-

rounding oogonia that transferred their mitochondria, now termed nurse cells, die by apoptosis

(Lei and Spradling, 2016). The plethora of terms should not mask the key point that nurse cell death

accounts for a considerable fraction of the germ cell loss usually ascribed to follicular atresia. We

modeled selective mitochondrial transfer into the Balbiani body, perhaps in part reflecting mem-

brane potential (Tworzydlo et al., 2016; Bilinski et al., 2017). This achieves two complementary

benefits: it purges mutations and pools high-quality mitochondria in a single cell. If the germline cyst

is composed of eight cells that contribute half of their mitochondria to the Balbiani body then the

primary oocyte gains four times as many mitochondria which have passed through quality control.

This also cuts the need for additional rounds of mtDNA copying, and so reducing the input of de

novo mutations. Selective transfer and pooling lowers the mutation load across a wide range of

mutation rates and inherited loads (Figure 4C, Figure 4—figure supplements 1–2). This process dif-

fers from mitophagy, the main route used in somatic cells for maintaining mitochondrial quality

(Twig et al., 2008; Kim et al., 2007), as it not only removes mutant mitochondria, but crucially also

increases mitochondrial numbers, a key requirement for prospective gametes. The requirement for

pooling of mitochondria to lower the mutation load from copying errors also aligns with experimen-

tal observations of active spindle-associated mitochondrial migration to the generative oocyte in the

formation of polar bodies during meiosis I of oogenesis (Dalton and Carroll, 2013). We predict that

selection for mitochondrial quality occurs during this process (i.e. polar bodies retain mutant mito-

chondria) but have not dealt with that explicitly in the model.

These insights depend in part on the parameter values used in the modeling, many of which are

uncertain. We have examined variation around the most representative values drawn from the litera-

ture (Allio et al., 2017; Floros et al., 2018; Sigurğardóttir et al., 2000; Stewart and Chinnery,

2015), and aimed to be conservative wherever possible. We considered mutation rates across two

orders of magnitude, around 10�8 per bp as the standard (Sigurğardóttir et al., 2000) and a similar

range of bottleneck sizes (B
�
¼ 8� 128). Strong selective pooling of mitochondria into the Balbiani

body predicts the observed prevalence of mitochondrial mutations and diseases in human popula-

tions (Elliott et al., 2008; Schaefer et al., 2008) under a wide range of mutation rates and bottle-

neck sizes (Figure 5). Selection at the level of individuals or cells are much more constrained

explanations, although we do not rule out some role for these processes (Figure 5). In general,

higher mutation rates (10�7 per base pair) strengthen the conclusions discussed here (Figure 2—
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figure supplement 1), whereas the lowest mutation rates are more commensurate with weaker

forms of evolutionary constraint generated by selection on individuals or cells. Plainly, weaker selec-

tion approximates best to clinical data when the mutation input tends toward zero (Figure 5). How-

ever, such low mutation rates are not consistent with the 10-30-fold faster evolution rates of mtDNA

compared with nuclear genes (Lynch et al., 2006; Allio et al., 2017), or with the strong signatures

of purifying (da Fonseca et al., 2008) and adaptive (James et al., 2016) selection on mitochondrial

genes. In the modelling, we ignored the contribution of oxidative damage caused by reactive oxy-

gen species. While this source of mutation is likely low compared with copying errors (Stewart and

Larsson, 2014; Arbeithuber et al., 2020), oxidative mutations may accumulate over female repro-

ductive lifespans (Trifunovic et al., 2005), perhaps contributing to the timing of the menopause

(Shoubridge and Wai, 2007). As primary oocytes contain ~6000 mitochondria (Shoubridge and

Wai, 2007), expansion up to ~500,000 copies in the mature oocyte will amplify any mutations

acquired during oocyte arrest at prophase I, potentially over decades (Arbeithuber et al., 2020).

The metabolic quiescence of oocytes can best be understood in light of the need to repress mito-

chondrial mutation accumulation during the extended period before reproduction (Allen and de

Paula, 2013; de Paula et al., 2013).

We have addressed here a simple paradox at the heart of mitochondrial inheritance. Like Gib-

bon’s Decline and Fall of the Roman Empire, mitochondrial DNA is often portrayed as being in con-

tinuous and implacable decline through Muller’s ratchet (Rand, 2001) yet like the Empire, which

endured for another millennium, mitochondrial DNA has persisted and has been at the heart of

eukaryotic cell function for over a billion years (Lane, 2005). Strong evidence for purifying and adap-

tive selection implies that the female germline facilitates selection for mitochondrial quality, but the

mechanisms have remained elusive. We have modeled segregation and selection of mitochondrial

DNA at each stage of germline development, and shown that direct selection for mitochondrial func-

tion during transfer into the Balbiani body is the most likely explanation of the observed prevalence

of mitochondrial mutations and diseases in human populations. More remarkably, this mitochondria-

centric model elucidates the complexities of the female germline. It explains why mature oocytes are

crammed with mitochondria (Radzvilavicius et al., 2016), whereas sperm mitochondria are typically

destroyed, giving rise to two sexes (Radzvilavicius et al., 2017); why germ cells over-proliferate dur-

ing early germline development; why oogonia organize themselves into germline cysts, forming the

Balbiani body; why the majority of germ cells then perish by apoptosis as nurse cells; why primary

oocytes enter metabolic quiescence, sometimes for decades; and even why polar bodies channel

most of their mitochondria into a single mature oocyte. The need for mitochondrial quality extends

to somatic cells, as mitochondria activity is crucial to cellular, tissue, and organ functioning in the

adult organism (Pereira et al., 2021; Carelli et al., 2015; Diot et al., 2016). Some of the

approaches we have adopted here need to be applied to development and whether specific pro-

cesses have evolved to maintain mitochondria where their function is more critically related to

somatic fitness (Radzvilavicius et al., 2016; Buss, 1987). Most fundamentally, this perspective chal-

lenges the claim that complex multicellularity requires passage through a single-celled, haploid

stage to constrain the emergence of lower-level, selfish genetic elements (Buss, 1987;

Maynard Smith and Szathmáry, 1995). This is true for nuclear genes in oocytes, whose quality is

maintained by sexual exchange and recombination (Maynard Smith and Szathmáry, 1995), but is

not the case for mitochondria, which are generally transmitted uniparentally, without sexual

exchange or recombination. In animals, the oocyte cytoplasm is not derived from a single cell, but

instead requires the selective pooling of mitochondrial DNA from clusters of progenitor cells, which

together generate high-quality mitochondria at extreme ploidy in mature gametes.

Materials and methods

Computational model
Initial conditions
We use a computational model implemented in MATLAB (RRID:SCR_001622) to follow the distribu-

tion of mitochondrial mutations in the female germline over a single generation from zygote to a

new set of mature oocytes, as set out in the developmental history given in the main text

(Figure 1A). The initial state of the system is a zygote containing M0 ¼ 2
19 ¼ 524; 288 copies of
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mtDNA (Radzvilavicius et al., 2016; Reynier et al., 2001), of which m0 carry a deleterious mutation.

Three specific models are considered: bottleneck, follicular atresia and cytoplasmic transfer. A list of

terms and parameter values is given in Table 1, which also apply in the evolutionary model consid-

ered below.

Early embryonic development
During early embryonic development, there is no mtDNA replication. The number of cells doubles at

each time step. The existing population of mutant and wildtype mtDNA undergoes random segrega-

tion into daughter cells according to a binomial distribution – each mtDNA copy has a 50% probabil-

ity of being assigned to either daughter cell. During this process, the average number of mtDNA

copies per cell halves at each time step. There is no mutational input, as we only consider mutations

that arise due to replication errors.

PGC proliferation, oogonia cell death, and oocyte maturation
The early embryonic period lasts for the first 12 cell divisions. A group of 32 cells is selected at ran-

dom to form the primordial germ cells (PGC). The PGCs then undergo proliferation for a further 18

rounds of cell division, until the maximum number of germ cells is reached,

Nmax ¼ 32� 2
18 ¼ 8; 388; 608. This value is close to the average reported in the literature

(Albamonte et al., 2008).

mtDNA replication resumes after cell division 12, at the point of PGC determination. At this

point, cells have an average of 128 mtDNA copies. At each following time step, the number of

mtDNA copies doubles prior to random segregation into daughter cells. This means that the aver-

age number of mtDNA copies per cell is kept constant. New mutations are introduced as errors in

mitochondrial replication. During the replication process, the new replica of each wild-type mtDNA

copy has a probability of mutation m per bp. The genome wide mutation rate U ¼ g� � is calculated

as genome size (g ¼ 16; 569 bp, Palca, 1990) multiplied by m. This estimate assumes each site con-

tributes equally to selective effects and ignores many subtleties relating to mutation probability and

within-cell maintenance processes, but should give a reasonable order of magnitude gauge of the

target size of mutational input per cell division. Given n wildtype and m mutant mtDNAs, the number

of new mutants Dm resulting from replication errors is obtained by sampling at random from a bino-

mial distribution with n trials with probability U. After replication and mutation and prior to segrega-

tion the total number of wildtype and mutant mtDNAs is 2n� Dm and 2mþ Dm, respectively. Back

mutation to wildtype is not permitted.

At the end of PGC proliferation, the Nmax oogonia undergo random cell death, leaving

Nmax=8 ¼ 1; 048; 576 primary oocytes. This is achieved by sampling the surviving cells at random with

uniform weights (i.e. every cell has an equal probability of survival). The primary oocytes do not

undergo further cell division or mitochondrial replication during the quiescent period (this is not

explicitly modeled). At puberty, oocyte maturation commences. The number of mitochondria per

cell is brought back to the original value M0 ¼ 2
19 through 12 rounds of replication without cell divi-

sion. We assume that the number of mtDNA copies doubles at each time step. This introduces new

Table 1. Parameter and variable symbols and values.

Maximum number of germ cells Nmax ¼ 8; 388; 608

mtDNA number in mature oocytes M0 ¼ 2
19 ¼ 524; 288

Minimum mtDNA ploidy B

Final number of germ cells Nmax=8 ¼ 1; 048; 576

Initial mutation load m0

Mutation rate per bp per cell division �

Strength of epistatic interactions �

Transfer probability of mutant mtDNA pmut

Transfer probability of wildtype mtDNA pwt

Human mitochondrial genome size g ¼ 16; 569 bp (Palca, 1990)
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deleterious mutations, which again are randomly drawn from a binomial distribution (as described

above).

Specific models of selection
We consider three specific models in the main text with modifications to the base model described

above.

The first model adds a bottleneck stage at the time of PGC determination (Figure 2). As before,

32 cells are selected at cell division 12 to form the PGCs. These go through b extra rounds of cell

division without mtDNA replication. This reduces the mean number of mtDNA copies per cell to

B
�
¼ 128 � 0:5ð Þb. The mtDNA replication commences at cell division 14. The PGCs then proliferate as

before to produce oogonia that undergo random cell death to produce primary oocytes. The pri-

mary oocytes have a reduced number of mtDNA copies, and so must undergo 12þ b extra rounds

of mtDNA replication in order to regain the original value M0 mitochondria in mature oocytes. Note

that this is an extreme model of the bottleneck, where mtDNA copy number is kept low throughout

the period of PGC proliferation, and so maximizes the benefit derived from the increase in segrega-

tional variation caused by the bottleneck.

For the model of the bottleneck, we allow selection dependent on individual fitness in relation to

their mutation load m among mature oocytes, according to the fitness function f mð Þ ¼ 1� m
M

� �5

(Figure 2C). The concave shape of this function accounts for the fact that mitochondrial mutations

typically have a detrimental effect on individual fitness only for loads >60%. Changes to the power

exponent make little qualitative difference to the outcome of this model (data not shown).

A second model considers non-random death during the cull of oogonia as these cells transition

to being primary follicles (Figure 3). Selection in this case is applied at the cell level. Cell fitness is

expressed as f mð Þ ¼ 1� m
M

� ��
, where m is the number of mutant mitochondria. The parameter �

determines the strength of epistatic interactions (Figure 3B). As in other models, the number of cells

is reduced from Nmax ¼ 8; 388; 608 to Nmax=8 ¼ 1; 048; 576. This is achieved by sampling without

replacement the surviving cells at random, with weights proportional to cell fitness (i.e., every cell

has a probability of survival proportional to its fitness).

The third model considers that the oogonia are organized in cysts of eight cells each. These are

the descendants of a single cell (i.e. three cell divisions prior). One cell is randomly designated as

the primary oocyte using the MATLAB function randsample. The Balbiani body of the primary oocyte

contains a proportion f of the mtDNA copies of all cells in the cyst. The mitochondria that join the

Balbiani body are sampled at random without replacement from each cell with different weights for

wildtype (pwt) and mutant (pmut). After mitochondrial transfer to the Balbiani body, nurse cells

undergo apoptosis (i.e. all cells except the one designated as the primary oocyte), reducing the total

number of oocytes to Nmax=8 ¼ 1; 048; 576.

Evolutionary model
In order to calculate the equilibrium distribution of a population undergoing the developmental

dynamics mentioned in the previous section, we develop an analytical model for the distribution of

mitochondrial mutations in an infinite population, with non-overlapping generations. As it was not

possible to find an analytical solution, we solved the equations through numerical iterations. The sys-

tem converges to a unique equilibrium state, independent of the initial conditions.

The state of the system is described by the vector p tð Þ ¼ p0 tð Þ; . . . ; pM tð Þ tð Þ
� 	

, where M tð Þ is the

number of mtDNA copies per cell at time t. The elements pm tð Þ are the frequency of mutation load

m tð Þ=M tð Þ at time t: The evolution of the system is determined by a set of transition matrices whose

elements are the transition probabilities between states. To avoid unnecessary complexity in the

evolutionary model, we assume that fluctuations in mitochondrial number per cell due to segrega-

tion are negligible (i.e. in contrast to the computational model which allows binomial segregation at

each division). Therefore, the mtDNA number per cell is constant across the whole population of

cells at every time step. That is, during early embryonic development (when there is no mtDNA repli-

cation), after t cell divisions, the total number of mitochondria per cell is M tð Þ ¼ 2
�tM0. Then, during

PGC proliferation, the total number of mitochondria per cell is constant. Finally, during oocyte matu-

ration, the number of mitochondria per cell exactly doubles with each mtDNA replication cycle. To
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aid in calculations, we also set the initial number of mtDNA copies to be proportional to the bottle-

neck size, that is, M0 ¼ 2
12 � B: As the mtDNA number per cell halves at each cell division during

early embryonic development, setting M0 this way allows the mtDNA number to remain an integer.

This is important for the modeling procedure, because the dimension of the transition matrixes

(which is determined by the mtDNA number) must be an integer.

Early embryonic development
During early embryonic development, when mitochondrial replication is not active, changes in fre-

quency arise purely from the process of segregation. Let W tð Þ be a M tð Þ þ 1�M tð Þ þ 1 square matrix,

whose elements Wmn represent the transition probabilities from a state with m to a state with n

mutants:

W tð Þ
mn ¼

m

n

� �

Mðt�1Þ�m

MðtÞ� n

 !

=
Mðt�1Þ

mðtÞ

 !

(1)

These matrix elements model the probability of transitioning from a state with m mutants and M�m

wildtype to a state with n mutants and M� n wild type via the segregation of 2M mitochondria into

two daughter cells with M mitochondria each.

After t cell divisions, the average number of mutants per cell is m
�
¼ 2

�tm0, and the variance is

Var tð Þ ¼ 1

4
Var t � 1ð Þ þ 2

�tm0½ �. The state of the system is updated as p
! 1ð Þ

¼
Q

t W
tð Þ

� �

� p
! 0ð Þ

.

PGC proliferation, oogonia cell death, and oocyte maturation
During PGC proliferation, new mutations are introduced at a rate U ¼ �� g. The transition coeffi-

cient Qmn from a state with m to a state with n mutants results from the combined effects of replica-

tion, mutation, and segregation:

Qmn ¼
X

k

M� n

k� n

� �

Uk�n
1�Uð ÞM�k k

m

� �

M� k

M�m

� �

=
2M

M

� �

¼
X

k

M� n

k� n

� �

Uk�n
1�Uð ÞM�k

ak;m

(2)

The coefficient ak;m ¼
k

m

� �

M� k

M�m

� �

=
2M

M

� �

models the probability of transitioning from a state with

k mutants and M� k wildtype to a state with m mutants and M�m wild type via the segregation of

2M mitochondria into two daughter cells with M mitochondria each; the remaining part of the equa-

tion models the probability of reaching a state with k mutant mitochondria through replication and

mutation of M mitochondria, of which n are mutant (this corresponds to the probability of introduc-

ing k� n new mutations). The system is updated p
! 2ð Þ

¼Qq� p
! 1ð Þ

, across q rounds of PGC cell division.

We then apply particular processes to capture the effects of the bottleneck, follicular atresia, and

cytoplasmic transfer.

As before, we model the bottleneck as b extra rounds of segregation before the onset of mtDNA

replication, following Equation (1) with qþ b cell divisions. This has no effect on the mean muta-

tional number but increases mutational variance between the resulting PGCs. The transition between

oogonia and primary oocytes occurs at random, and so does not alter the frequency distribution of

mutants. Finally, during oocyte maturation, the mtDNA content of each cell doubles at every time

step until the initial ploidy M0 is restored. The transition matrix Gmn is analogous to the first term of

Equation (2), incorporating replication and mutation, but without segregation (last term of

Equation (2)):

G tð Þ
mn ¼

MðtÞ�m

n�m

 !

Un�m
1�Uð ÞM�k (3)

Equation (3) models the probability of transitioning from a state with m to a state with n mutants,

which is equivalent to the probability that exactly n�m out of M tð Þ�m wildtype acquire a deleterious

mutation. As the bottleneck reduces mtDNA copy number per cell, there is the need for b extra
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rounds of replication of mtDNA during oocyte maturation. Hence, the transition coefficient G is

applied bþ 12 times in the bottleneck model, to restore the number of mtDNA copies per oocytes

to the original ploidy level M0: p
! 3ð Þ

¼
Q

tG
tð Þ

� �

� p
! 2ð Þ

.

At the end of the maturation phase, for the bottleneck model, selection is applied on individual

fitness using a vector w whose elements wm are equal to the corresponding fitness:

wm ¼ f mð Þ ¼ 1� m
M

� �5
. This causes a change in the population mutation load as the system is updated

to:

p
! 3ð Þ

¼ Iw
!

� �

p
! 2ð Þ

=w
!T

p
! 2ð Þ

(4)

where I is the identity matrix.

In the model of follicular atresia, an extra step is included to reflect selection that operates when

the population of oogonia are culled to produce the primary oocytes. This causes a change in the

population mutation load analogous to that described in Equation (4), but using the cell fitness

function wm ¼ f mð Þ ¼ 1� m
M

� ��
instead. This determines the shift in mutation loads that arises from fit-

ness-dependent culling of oogonia. The transition coefficient Equation (3) for oocyte maturation is

then applied 12 times in the follicular atresia model, to restore the original level of ploidy.

Finally, in order to model cytoplasmic transfer, a different process is used in the production of pri-

mary oocytes. A set of eight clonally derived cells is selected. The mutation levels of each cell in the

cyst is obtained by applying Equation (3) three times. Then, 50% of the mitochondria in each cell

are pooled into the Balbiani body of the primary oocyte. The probability for a cell with m mutants to

contribute n mutants to the Balbiani body is given by:

Cmn ¼
m

n

� �

pnmut
M�m

M=2� n

� �

p
M=2�n
wt =N (5)

which gives the number of permutations of n mutant and M=2� n wild-type mtDNA copies,

weighted by the probability of transfer pmut and pwt respectively, and divided by a normalization con-

stant N. As the primary oocyte contains half of mitochondria from eight cells, it needs to undergo

two fewer rounds of replication during oocyte maturation. Hence only 10 rounds of replication fol-

lowing Equation (3) are carried out in this case to restore the original level of ploidy.

For all three models (bottleneck, follicular atresia, and cytoplasmic transfer), the frequency distri-

bution of mutation loads after these steps is used as the starting point for the next generation.

Evolutionary dynamics and model accuracy
The processes described above are iterated until the Kullback-Leibler divergence (a theoretical mea-

sure of how two probability distributions differ from each other [Kullback and Leibler, 1951])

between the new and the old distribution is smaller than a threshold h ¼ 10
�9: We then assume that

the system has reached a stationary state, for example without significant changes in the overall dis-

tribution of mutation loads between generations (mutation-selection balance).

In order to compare the prediction of the model with the clinical data, we use the equilibrium dis-

tribution to calculate the fraction of the population which carries a detectable load of mitochondrial

mutations but does not manifest any detrimental phenotype (a1) and the fraction of individuals

affected by mitochondrial disease (a2) using a threshold of 60% mutation load to discriminate

between carrier and disease status. Individuals are assumed to be mutation free beyond the detec-

tion threshold of 2% (Elliott et al., 2008).

The accuracy of the model is evaluated as the logarithm of the probability of reproducing clinical

data by sampling the theoretical distribution at random. This is calculated as follows: let X1 be the

number of healthy individuals with detectable mutation load, and X2 be the number of individuals

affected by mitochondrial diseases; N1 and N2 the total number of individuals in the two trials; a1

and a2 the probability of observing, respectively, a healthy individual with detectable mutation load

and an individual affected by mitochondrial disease, according to the prediction of the model. The

log-likelihood of observing X1 and X2 by random sampling the theoretical distribution is given by
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log ltot �;M; . . .ð Þð Þ ¼ log
Q

2

i¼1
p Xijai �;M; . . .ð Þð Þ

h i

¼
P

2

i¼1
log

Ni

Xi

� �

a
Ni

i 1�aið ÞNi�Xi

� �

¼
P

2

i¼1
log

Ni

Xi

� �

þNiaiþ Ni�Xið Þ 1�aið Þ

(6)

Estimation of the deleterious mutation rate
The parameter values for the deleterious mutation rate we investigate reflect data collected from a

number of species. Estimates of mtDNA point mutation rates in the crustacean Daphnia pulex range

between 1:37� 10
�7 and 2:28� 10

�7 per site per generation (Xu et al., 2012). Assuming this rate

applies to humans and there are ~20 cell divisions before oocyte maturation, leads to a range

between 0:68� 10
�8 and 1:14� 10

�8 per site, per cell division. Analysis of Caenorhabditis elegans

mtDNA leads to a similar estimate of ~ 1:6� 10
�7 per site, per generation (Denver et al., 2000),

which corresponds to a rate of 0:8� 10
�8 per site, per cell division. For Drosophila melanoganster,

the mtDNA mutation rate yields an estimate of 6:2� 10
�8 per site, per generation, and hence

~ 0:31� 10
�8 per site, per cell division (Haag-Liautard et al., 2008). Finally, analysis of human

mtDNA point mutation rates give a mutation rate of 0:0043 per genome per generation

(Sigurğardóttir et al., 2000), corresponding to ~ 1:3� 10
�8 mutations per site, per cell division.

These values do not take into account the presence of a number of processes likely to remove

mutants and is therefore a conservative estimate. The loss of mutations would mean that the actual

mutation rate is higher than the estimates above. But unlike nuclear rates, the compact structure of

mtDNA where intergenic sequences are absent or limited to a few bases, means that the rate of

point mutations is probably not much higher than the rate of deleterious mutations. Therefore, for

this study, we consider a broad interval of possible deleterious mutation rates, labeled as low (10�9),

standard (10�8) and high (10�7).
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