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Abstract

Hormonal cancers affect over 400,000 men and women and contribute collectively to over 
100,000 deaths in the United States alone. Thanks to advances in the understanding of 
these cancers at the molecular level and to the discovery of several disease-modifying 
therapeutics, the last decade has seen a plateauing or even a decreasing trend in the 
number of deaths from these cancers. These advanced therapeutics not only effectively 
slow the growth of hormonal cancers, but also provide an insight on how these cancers 
become refractory and evolve as an altogether distinct subset. This review summarizes the 
current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian 
cancers. The review discusses the clinical drugs being used now, promising molecules that 
are going through various stages of development and makes some predictions on how the 
therapeutic landscape will shift in the next decade.

Introduction

As a class, hormone-dependent cancers, including cancers 
of the breast, prostate and ovaries, contribute to the 
majority of cancer incidences in the United States and 
around the world. Over 400,000 men and women were 
affected by hormonal cancers and over 100,000 deaths 
occured in 2018 in the United States alone. Improvements 
in the understanding of these cancers at the molecular 
level have contributed to their better management over 
the last decade. Since 2010, the number of therapeutics 
to treat these cancers has substantially increased. These 
new treatment options, though extended the progression-
free and overall survival, have also contributed to more 
resistant and aggressive disease variants. For example, 
although undisputedly the second-generation treatments 
for prostate cancer such as enzalutamide and abiraterone 

have extended the survival of the patients, the cancers 
that relapse from these treatments have a more aggressive 
phenotype. This review on the therapeutic advances 
of hormone-dependent cancers focuses on three 
therapeutically challenging and scientifically fascinating 
cancers, viz. prostate, breast and ovarian cancers.

These three cancers share several similarities and hence 
have been combined in this review. Prostate and hormone 
receptor-positive breast cancers share the common feature 
of their dependence on the respective male and female 
hormones for their continued growth. Both estrogen 
receptor (ER) and androgen receptor (AR) are promoters 
of growth of these two cancers. However, lack of these 
two receptors results in a less differentiated phenotype, 
an increase in the proliferative rate, and become 
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unresponsive to any treatments, resulting in shorter 
overall survival. On the other hand, breast and ovarian 
cancers share the common feature of high rate of BRCA 
mutations and DNA damage and respond to common 
treatment modalities such as ER antagonists, PARPi and 
mTOR inhibitors, indicating the activation of common 
pathways and that they share a common histological 
phenotype. Additionally, Cluster of Orthologous Groups 
studies (COGS) identified 18 regions spanning 2 MB loci 
which were associated with more than one of the three 
cancers. Two of the regions contained risk loci for all three 
cancers (5p15.11 and 8q24.21).

Prostate cancer

Background

Prostate cancer (PCa) is the second leading cause of 
cancer-related deaths in Western men, after lung cancer 
(1). In 2018, approximately 165,000 men were diagnosed 
with PCa and 30,000 men died of PCa in the United States 
(1). PCa incidences are also rising in the world with over a 
million men being diagnosed with PCa each year and over 
300,000 dying from the disease worldwide (2).

Prostate cancer

The male hormone, androgen that is responsible for 
the development and maintenance of the prostate 
gland, is also responsible for the development of PCa. 
There are multiple stages of PCa progression; each stage 
is determined based on the severity of the disease, 
castration or non-castration and metastasis (3). In 
addition to the stages, PCa is also classified based on the 
expression of the most important therapeutic target, 
the AR and based on Gleason score (4). Approximately, 
80% of PCa cases are confined to the organ at the time 
of diagnosis, while 20% have metastasized locally or to 
distant organs. The 5-year survival of local disease is 

100%, while that of the metastasized disease is about 
30% (5).

Numerous therapies are being used to treat PCa, such 
as androgen-deprivation therapy (ADT) and radiation 
therapy, but once PCa becomes resistant to any treatment, 
it will transform into castration-resistant prostate 
cancer (CRPC); this is the point at which no treatment 
is completely effective (6). The sequence of treatments 
provided to PCa patients is summarized in Fig. 1. Many 
AR-related and non-AR-related pathways help the 
progression of CRPC, and mechanisms accounting for the 
emergence of CRPC are summarized in Fig. 2. Although 
AR is considered as a promoter of PCa growth, subtypes of 
PCa, such as neuroendocrine tumors that do not express 
AR, are extremely aggressive and shorten the survival 
of patients (7). Such neuroendocrine tumors have to be 
treated with chemotherapy.

AR signaling as therapeutic target for PCa

AR is a member of the steroid hormone receptor superfamily 
of ligand-activated transcription factors. As AR is expressed 
in more than 90% of the PCa, it is considered the primary 
therapeutic target. Since the discovery by Huggins and 
Hodges in 1940s that PCa is an androgen-dependent 
disease, AR and androgen-synthesizing enzymes have 
been the mainstay of PCa therapeutics (8). The various 
AR-targeted therapeutics currently used in the clinic 
include luteinizing hormone-releasing hormone (LHRH) 
agonists or antagonists, 5α-reductase inhibitors, AR 
antagonists and androgen-synthesizing enzyme Cyp17A1 
inhibitor (9). PCas that escape from these treatment 
options will be treated with chemotherapeutic agents such 
as cabazitaxel or docetaxel (10).

LHRH agonists or antagonists
LHRH is a major target for ADT therapy. The hypothalamus–
pituitary–hypogonadal (HPG) axis is important for 

Figure 1
Sequence of treatment at various stages of 
prostate cancer.
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the synthesis of testosterone by the testes (11). The 
hypothalamus releases gonadotropin-releasing hormone 
(GnRH or LHRH) that stimulates the hypothalamus to 
secrete luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH). Increase in LH production is the signal to 
synthesize testosterone by the testes. Testosterone inhibits 
the LH secretion through a negative feedback mechanism 
(12). This feedforward and feedback axis is important to 
maintain a steady-state level of testosterone. Since this axis 
plays a pivotal role in the synthesis of testosterone, the 
main circulating ligand for AR, it serves as an important 
target for the treatment of PCa.

A LHRH agonist, leuprolide or leuprorelin, binds to 
GnRH and creates a negative feedback inhibition of the 
axis, thereby reducing the LH secretion and subsequently 

testosterone production (13). On the other hand, a LHRH 
antagonist such as degarelix binds to the GnRH receptor 
and inhibits its interaction with GnRH and its stimulation 
of the LH secretion (14). Both leuprolide (approved in 
1985) and degarelix (approved in 2008) are administered 
as injections and considering that PCa requires a long-
term treatment, the route of administration is an 
inconvenience to patients.

5α-reductase inhibitors
Although LHRH targeting agents work for a short 
period of time, the cancer escapes by synthesizing 
DHT intra-tumorally from adrenal precursors such as 
androstenedione and androstenediol by the enzyme 
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Figure 2
Mechanisms for castration-resistant prostate cancer (CRPC) emergence. 1. Androgen receptor (AR) promiscuity. Mutations in the AR ligand-binding domain 
(LBD) will result in the AR being activated by other hormones such as progesterone, corticosteroids, estradiol and others. 2. AR amplification and 
mutations. The AR copy numbers increase leading to an increase in the expression of AR that will become hyperactive and will respond to low levels of 
androgens. In addition, mutations in the AR LBD will cause the AR to be refractory to existing treatments. 3. Intra-tumoral androgen synthesis. Androgens 
such as androstenedione, and DHEA synthesized by the adrenals will be converted locally in the prostate to DHT that will lead to an increase in prostate 
cancer cell growth. 4. Non-genomic activation. AR can be activated by growth factors and kinases ligand independently, which will cause an increase in the 
cancer growth. 5. AR splice variants (AR-SVs). CRPCs that have relapsed from existing treatments express AR-SVs. As AR-SVs lack LBD, they are constitutively 
active and fail to respond to LBD-targeted treatments. 6. Coregulators. AR activity depends on the expression of coactivators. Several studies have 
indicated that advanced CRPCs have increased expression of coactivators causing the AR to be activated in the presence of castration-level androgens.
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5α-reductase (15). Finasteride and dutasteride are the 
two approved 5α-reductase inhibitors used for the 
prevention of PCa. Three isoforms of 5α-reductase have 
been discovered. While finasteride inhibits types 2 and 3, 
resulting in a 70% inhibition of DHT synthesis, dutasteride 
inhibits all three isoforms and thereby provides a complete 
inhibition of DHT synthesis (16). Two clinical trials, one 
with finasteride (Prostate Cancer Prevention Trial (PCPT)) 
and another with dutasteride (Reduction by Dutasteride 
of Prostate Cancer Events (REDUCE)), demonstrated a 
25% reduction in PCa incidence (17). However, some 
controversy and conflicting opinion on the development 
of high-grade PCa resulted in the skepticism in the use of 
5α-reductase inhibitors in treating PCa.

Cyp17A1 inhibitor
Another androgen-synthesizing enzyme CYP17A1 was 
also used as a therapeutic target to treat PCa. Abiraterone 
acetate (AA) is an inhibitor of the cytochrome P450 c17 
gene (CYP17A1) family of enzymes that are important 
for steroidogenesis (18, 19). The active metabolite of AA, 
abiraterone, acts as a potent inhibitor of CYP17 enzyme (20). 
AA was tested in a phase III clinical trial in 1195 men with 
CRPC who had previously received docetaxel (21). As AA 
inhibits Cyp17 enzyme, which is upstream in the synthesis 
of several hormones, one of the problems inherent in this 
inhibition is corticosteroid deficiency (22). This had to be 
overcome by co-administering prednisone with the aim to 
prevent the reflex of adrenocorticotropic hormone (ACTH) 
increase and reduce the severity of mineralocorticoid-
related side effects, seen with abiraterone alone. The results 
showed that median survival increased to 14.8 months in 
the AA group compared to 10.9  months in the placebo 
group, and median time for PSA progression increased 
from 6.6  months to 10.2  months (21). Unfortunately, 
patients treated with abiraterone experience a relapse of 
CRPC within 2 years after treatment (23).

AR antagonists
Since the above indicated drugs limit the availability of 
ligands to the AR, inhibiting the AR with antagonists 
could be a direct mechanism and a distinct strategy to 
reduce the growth of PCa or CRPC.

Bicalutamide and hydroxy-flutamide
Bicalutamide (Casodex) and flutamide (the active 
metabolite of flutamide is hydroxy-flutamide) are 

non-steroidal first-generation antiandrogens that 
competitively inhibit the AR by outcompeting androgens 
for the active site (24). While flutamide was approved in 
1983, bicalutamide was approved in 1995. Bicalutamide 
and flutamide are not widely used now due to the 
discovery of more potent next-generation AR antagonists. 
Mutations in the AR LBD cause resistance to bicalutamide 
and flutamide (25). While W741 mutation results 
in resistance to bicalutamide, T877 mutation causes 
resistance to flutamide (26). Both these mutations convert 
the antagonists to partial agonists.

Second-generation AR antagonists (enzalutamide 
and apalutamide)
Discovery of enzalutamide in the 2000s created a renewed 
interest in the field of AR antagonists. Enzalutamide and 
the structurally related apalutamide are both considered to 
be more potent AR antagonists compared to bicalutamide 
or flutamide (27, 28, 29). While the first-generation 
antagonists inhibit the AR activity by competitively 
binding to the AR LBD, promoting nuclear localization 
and recruiting corepressors instead of coactivators, the 
second-generation AR antagonists such as enzalutamide 
competitively bind to the AR LBD and inhibit nuclear 
translocation (28). This provides a mechanistic advantage 
to these molecules as they prevent any inadvertent 
activation of the nuclear AR by any alternate signaling 
pathways.

Enzalutamide is approved for the treatment of CRPC 
pre and post chemotherapy (30). Administered orally, 
and similar to AA, enzalutamide treatment has shown 
an increased overall survival in patients with metastatic 
CRPC, as well as increased PSA progression time and 
radiographic progression-free survival (rPFS) before 
receiving chemotherapy (30). The pivotal phase III clinical 
trial with enzalutamide (AFFIRM) provided an overall 
survival of 18.4 months in the enzalutamide-treated group 
(30), while the placebo group had an overall survival 
of 13.6  months. All secondary endpoints such as time 
taken for PSA progression, PFS and other such measures 
showed significantly better results in the enzalutamide-
treated group compared to the placebo group. While 
enzalutamide won its marketing approval in 2012, the 
structurally similar apalutamide was approved in 2017. 
Both enzalutamide and apalutamide are resistant to the 
AR that expresses F876L mutation (31). This mutation has 
been shown to convert the two drugs into partial agonists, 
resulting in a relapse of the cancer.
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Mechanistically distinct AR-targeting molecules in 
preclinical stage

Few molecules that are mechanistically distinct from 
the currently marketed AR antagonists are under 
development. One of the mechanisms for the relapse of 
PCa from the treatment of enzalutamide and AA is the 
expression of AR splice variants (AR-SVs) (32). AR-SVs 
(most commonly detected AR-SV in the clinic is AR-V7) 
have been detected in 25–30% of the PCa patients treated 
with AA or enzalutamide. Since AR-SVs lack LBD, the 
protein is constitutively active and drives CRPC growth 
aggressively (33).

Since there is no binding pocket to inhibit the AR-SVs, 
it was considered as therapeutically non-targetable. 
However, the discovery of EPI-001 in 2010 provided some 
hope that a binding region that is distinct from the AR 
LBD and is expressed in the N-terminus domain of the 
AR is available to target the AR-SVs (34). Although an 
analog of EPI-001, EPI-506, failed in a phase I clinical 
trial, another class of molecules, the sintokamides, possess 
properties similar to EPI compounds, and some members 
of this family are likely to enter clinical trials (35).

Another group of molecules that bind to the AR-AF-1 
and degrade the AR was recently disclosed. These 
molecules are extremely potent AR antagonists that bind 
to the AR-NTD and degrade the AR and AR-SV at sub-
micromolar to nanomolar doses (36). These molecules 
(UT-69 and UT-155) ubiquitinate and proteasomally 
degrade the AR and AR-SV at therapeutically manageable 
doses.

Degraders such as PROTAC (Proteolysis Targeting 
Chimera), SNIPERS (Non-genetic inhibitor of apoptosis 
protein (IAP)-dependent protein erasers) and others that 
recruit ubiquitin ligases to the AR complex are advancing 
through preclinical stages for the treatment of CRPC (37, 
38). As these chimeric molecules have not been tested 
in the patients, the success of these hybrid technologies 
will be determined only after a successful completion of a 
proof-of-concept clinical trial.

Non-AR-targeted therapeutics

Although more than 90–95% of PCas express AR, non-
AR-targeted treatments are also available to patients 
who have relapsed from AR-targeted treatments or those 
who suffer from non-AR-expressing PCas, such as the 
neuroendocrine subtype.

Cabazitaxel
Cabazitaxel (Jevtana) acts by stabilizing microtubules 
and thereby inducing apoptosis (39). Open-label and 
randomized trials in mCRPC patients with either  
25 mg/m2 of cabazitaxel alone or in combination 
with 12 mg/m2 of mitoxantrone and 10 mg/day of 
prednisone every 3  weeks led to the approval of 
cabazitaxel (40). Taxanes, including cabazitaxel, have 
high affinity for microtubules, preventing cell division 
and mitosis. In addition, taxanes also prevent AR 
nuclear localization (41). Cabazitaxel also has a lower 
affinity for the p-glycoprotein drug efflux pump, which 
causes resistance to drugs (42).

Sipuleucel-T
Sipuleucel-T (Provenge) is the first autologous 
immunotherapy treatment to be approved by the Food 
and Drug Administration (FDA) (43). It is a personalized 
treatment and is called a therapeutic vaccine. To clinically 
manufacture sipuleucel-T, peripheral blood mononuclear 
cells (PBMC) from a patient (43), including antigen-
presenting cells (APC), will be activated with a prostatic 
acid phosphatase (PAP)-containing recombinant fusion 
protein (43). The activated blood cells are then infused 
back into the patient, which causes an immune response 
selectively in the prostate, since PAP is found only in the 
prostate. Unfortunately, due to higher cost (approximately 
$100,000 for a course of three infusions), sipuleucel-T is 
not widely prescribed.

Clinical trial candidates

As of now, few novel agents for the treatment of PCa are 
undergoing clinical trials. Orteronel, a novel hormone, is 
in phase III clinical trials in men with early stages of PCa 
(44). It functions as an inhibitor of the cytochrome P450 
17, 20 lyase (CYP17A1) protein. Since CYP17A1 is vital for 
androgen synthesis, inhibiting the enzyme could result in 
shrinking of the prostate gland. The latest update on the 
drug suggests that it failed to increase the survival of the 
patients and its development has been halted. Everolimus 
is a mammalian target of rapamycin (mTOR) inhibitor 
that has completed phase II clinical trials (45). In a phase 
II clinical trial, everolimus combined with bicalutamide 
has been administered orally to patients with progressive 
mCRPC. So far, this treatment regimen has shown some 
positive effects.
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Conclusion

Many potential therapeutic targets are on the horizon 
that may help PCa patients. In a cross-species study 
conducted during 2018, ten potential therapeutic targets 
have been found (46). In another study conducted in 
2017, STAT3 and STAT5A have also been shown to be 
potential therapeutic targets (47). Ninety-three percent 
of CRPC cases have shown strong immunoreactivity 
for STAT3, and 80% of CRPC cases have shown strong 
immunoreactivity for STAT5A. In addition, adiponectin, 
a protein that belongs to the adipokine family regulating 
angiogenesis, metabolism and inflammation, has been 
identified as a potential therapeutic target (48). In patients 
with CRPC, adiponectin levels are lower than normal. 
Contrastingly, an increased level of adiponectin has led to 
resistance against PCa growth. Overall, the PCa and CRPC 
therapeutic landscape is evolving and in the next decade 
urologists and oncologists will have an armamentarium 
of drugs available for prescription to patients who relapse 
from the existing therapeutics.

Breast cancer

Background and classification

Breast cancer is the most common cancer diagnosed in 
women around the world. In 2012, about 1.7 million 
women were diagnosed with breast cancer globally (49). In 
the United States, more than 200,000 women are diagnosed 
with breast cancer each year and around 40,000 die of 
the disease (1). Breast cancer is a heterogeneous disease, 
which is classified based on the expression of therapeutic 
targets and proliferation rate of the epithelial cells in 
the tumor. The standard classification of breast cancer 
involves the assessment of the expression of steroid and 
growth factor receptors, ERα, progesterone receptor (PR) 
and human epidermal growth factor receptor (HER2) in 
the primary tumor, in combination with the proliferation 
marker Ki-67 (50). Over the last half century, survival of 
women with breast cancers has increased substantially 
around the world due to the discovery and development 
of disease-modifying novel therapeutics.

Therapeutics for hormone receptor-positive 
breast cancer

Tumors that are positive for ER and PR are typically treated 
with drugs that target the estrogen signaling. Two classes 
of drugs are available, with one directly antagonizing 

or degrading the ER in breast cancer cells and the other 
inhibiting the enzyme aromatase, which is important 
for the synthesis of estradiol, the primary circulating 
estrogen, from testosterone.

ER-targeting agents
ER-modulating compounds are typically selective estrogen 
receptor modulators (SERMs) or selective estrogen 
receptor degraders (SERDs). The FDA-approved SERMs 
for treating breast cancer are the first-generation SERMs 
tamoxifen and toremifene, which have a 30-year history 
as first-line breast cancer treatments (51, 52). The only 
FDA-approved SERD for the treatment of breast cancer is 
fulvestrant. Currently, these therapies are approved only 
for use in the adjuvant setting. In addition to their use 
as treatments, tamoxifen and another SERM, raloxifene, 
are also approved for use as preventive agents, although 
raloxifene is limited to postmenopausal women.

SERMs belong to a class of drugs that activates or 
inhibits ERs tissue selectively. Tamoxifen functions as an 
antagonist in breast tissue, rendering anti-proliferative 
effects. However, tamoxifen is an agonist in the uterus 
and endometrium thereby increasing the chances of 
endometrial cancer. Similarly, raloxifene is an antagonist 
in the breast and uterus, while being an agonist in the 
bone. This property of raloxifene is considered to have an 
advantage over tamoxifen. The mechanisms for the tissue 
selectivity of SERMs have been extensively investigated 
over the last two decades (53).

Tamoxifen
Tamoxifen, belonging to the triphenylethylene class of 
SERMs, was first discovered in 1962 and entered clinical 
trials to treat breast cancer in the 1970s. Tamoxifen is one 
of the most prescribed anti-cancer drugs in the world and 
has substantial long-term safety data associated with it 
(51). One of the first reported clinical trials of tamoxifen 
was conducted in 74 patients with two doses of the 
drug (54). Tamoxifen produced an overall response rate 
between 40 and 55% with several partial and complete 
responses reported in the trials (55, 56). The side effects 
were minimal and the drug was considered to be safe. 
It is on the current World Health Organization’s list of 
essential medicines.

In 2011, an article compared follow-up data from five 
clinical trials in women treated with or without tamoxifen 
(57). Women who received tamoxifen for 5  years 
had a much lower risk of recurrence during a 15-year 
follow-up than women who were treated with placebo.  
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Moreover, the women treated with tamoxifen had a 33% 
less risk of dying from breast cancer. These data suggest 
that tamoxifen is an effective drug in the long term.

The active metabolite of tamoxifen is 4-hydroxy 
tamoxifen (4-OH-TAM) (58, 59). Less than 5% of tamoxifen 
is converted to 4-OH-TAM in vivo and the 4-OH-TAM is 
highly active when compared to the parent compound.

Raloxifene
Raloxifene belongs to the benzothiophene class of SERMs. 
It is approved for use in postmenopausal osteoporosis and 
in breast cancer in women with osteoporosis. The Study of 
Tamoxifen and Raloxifene (STAR) clinical trials compared 
the efficacy of tamoxifen and raloxifene in breast 
cancer (60). About 20,000 women who are at high risk 
of developing breast cancer in 5 years were randomized 
and treated with 20 mg/day of tamoxifen or 60 mg/day 
of raloxifene. The outcomes that were measured include 
incidence of invasive and non-invasive breast cancers, 
uterine cancer, fractures and thromboembolism. The 
outcome suggested that raloxifene was as effective as 
tamoxifen in reducing the incidence of invasive breast 
cancers, while it also provided a lower incidence of uterine 
cancers, fractures and thromboembolic events (60). 
The study concluded that both SERMs have preventive 
effects in breast cancer. Despite the outcome of the trial, 
raloxifene is not widely used to treat breast cancer.

Fulvestrant
Fulvestrant or ICI 182,780 is a SERD that selectively 
destroys ER. Fulvestrant binds to the ER LBD, antagonizes 
the ER and degrades the ER via ubiquitin proteasome 
pathway (61). Fulvestrant was approved for use in 
metastatic breast cancer in 2002. Administered via 
injection, fulvestrant is safe and very effective as a first-
line or second-line hormonal therapy. In a clinical trial 
reported in 1994, fulvestrant administered as a neo-
adjuvant for 7 days resulted in a significant reduction in 
ER, PR and ki67 expression in the tumors (62). In another 
clinical trial, fulvestrant administered as monthly depot 
demonstrated a 69% response rate in tamoxifen- resistant 
breast cancer (63), although this higher response rate was 
disputed by other groups (64).

Aromatase inhibitors
The second mode of estrogen disruption used in breast 
cancers is to target the enzyme that synthesizes estradiol, 

aromatase. There are three drugs with this mechanism of 
action currently approved by the FDA for use in breast 
cancer: anastrozole, exemestane and letrozole (65). All 
of these function by inhibiting the aromatase enzyme, 
with anastrozole and letrozole functioning as non-
steroidal reversible aromatase inhibitors and exemestane 
functioning as an irreversible steroidal aromatase 
inactivator (65). As these agents cannot block the 
production of estrogens from ovaries, they are approved 
for postmenopausal breast cancers only (66). Exemestane 
has also been suggested for use in premenopausal breast 
cancers with the TEXT and SOFT trials showing that this 
drug may be superior to tamoxifen treatment with or 
without ovarian suppression (67, 68). When comparing 
their efficiency to ER inhibitors in postmenopausal 
women, all three drugs proved to be more effective than 
tamoxifen in preventing recurrence (69). Thus, aromatase 
inhibitors have become the standard treatment in first-
line care of postmenopausal breast cancer patients. 
Comparison of anastrozole and letrozole in the recently 
completed FACE Trial suggested no measurable clinical 
benefit of one over the other (70).

The sequence of treatment with these various agents 
that target estrogen signaling depends on the oncologists’ 
particular protocols. No specific order of use has been 
prescribed for these agents.

HER2-targeted therapeutics

For HER2-overexpressing carcinomas, HER2-directed 
therapy (either through HER2-directed antibodies or 
downstream tyrosine kinase inhibitors) is typically the 
avenue of choice. Currently, there are four FDA-approved 
targeted therapies that inhibit this pathway. The first in 
this class to win clinical approval was trastuzumab, a 
monoclonal antibody directed against the HER2 receptor 
(71). Available clinically for around 20 years, this therapy 
was one of the first real breakthroughs for specific treatment 
of HER2-overexpressing breast cancer, although it is not 
without potential side effects and/or relatively rapid 
development of resistance (71, 72). Used alone, or alongside 
chemotherapy or endocrine therapy, trastuzumab is used 
in early and metastatic cancer and approved for use in 
both adjuvant and neoadjuvant settings. Pertuzumab, 
another monoclonal antibody similar to trastuzumab, 
targets the extracellular domain of HER2 and inhibits 
dimerization with other members of the HER2 family (73). 
Initially approved by the FDA as a treatment for metastatic 
breast cancer in 2012 in combination with trastuzumab 
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and docetaxel chemotherapy (73), it has recently (2017) 
been approved in the adjuvant setting in tandem with 
chemotherapy and trastuzumab on the basis of the results 
of the APHINITY trial (74).

Lapatinib is a tyrosine kinase inhibitor, and hence, 
has a different mechanism of action than the two drugs 
listed above (75). It works by binding the tyrosine 
kinase domain of the HER2 (and HER1) receptors, thus 
preventing downstream signaling. First approved by the 
FDA in 2007 for the treatment of metastatic HER2-positive 
breast cancers, its suggested use is after chemotherapy 
and trastuzumab therapy have failed (76). The final FDA-
approved therapy (approved 2013) for HER2-expressing 
breast cancer is ado-trastuzumab emtansine (T-DM1) 
(77). It is based on the conjugation of trastuzumab to 
the tubulin-specific cytotoxic agent emtansine, with the 
logic being that trastuzumab will both inhibit the growth 
of cancer cells and localize the cytotoxic treatment. It is 
currently only approved in the metastatic setting after 
previous treatments have failed. Its approval was made on 
the basis of the EMILIA trial (78). While clinical trials have 
attempted to assess its potential as a first-line therapy 
against metastatic breast cancer, they failed to demonstrate 
a benefit over trastuzumab and chemotherapy treatment 
(MARIANNE trial) (79).

Triple-negative breast cancer therapeutics

No standard targeted therapy exists for TNBC, and 
chemotherapeutic approaches are typically the 
primary methods used in treatment. While the optimal 
chemotherapeutic regimen remains a matter of debate, the 
current consensus seems to favor an anthracycline/taxane-
containing regimen with the possibility of the DNA-
damaging platinum agents becoming potentially more 
important, although this opinion is far from consensus 
(80). As touched on above, TNBC is inherently a diverse 
sub-classification (81), and many preclinical studies and 
early clinical trials are now focusing on therapies in sub-
populations of TNBC. It is yet unclear how the subtype-
specific approaches will perform in the clinic. However, 
several studies are proving that patient selection and 
methods of identifying subgroups are important for the 
success of these experimental therapeutics.

New breast cancer therapeutics currently in the 
clinical setting

In the last decade, few new therapeutics, including 
CDK4/6, mTOR and PARP inhibitors, have been developed. 

In addition to these, immunotherapy for breast cancers 
has recently been gaining traction.

CDK4/6 inhibitors

CDK4/6 is cyclin-dependent kinases that are central to 
the proliferation of all cells. Their functions are important 
for the transition of the cells between the G1 and S 
phases of the cell cycle; thus, it was hypothesized that 
their inhibition would arrest the growth of cancer cells 
(82). CDK4/6 inhibitors were expected to be selective to 
cancer cells due to their overexpression in cancer cells 
compared to normal cells and due to the fact that rapidly 
proliferating cells will be more susceptible to inhibition.

Palbociclib, ribociclib and abemaciclib are the three 
CDK4/6 inhibitors approved for use. Initially, CDK4/6 
therapy was focused on the postmenopausal, HR-positive 
advanced or metastatic breast cancer setting and was 
tested in three main clinical trials; the PALOMA 1, 2 
and 3 trials (palbociclib) (83, 84, 85), the MONALEESA-2 
and 7 trials (ribociclib) (86, 87) and the MONARCH -1, 
2 and 3 trials (abemaciclib) (88, 89). Palbociclib and 
ribociclib were tested in combination with standard 
estrogen-directed therapy (letrozole) and compared 
to standard therapy alone. Abemaciclib’s efficacy was 
assessed in combination with fulvestrant. In all cases, 
the combination therapy outperformed the standard 
therapy alone, with a significant increase in PFS. On 
the basis of these results, the FDA approved the use of 
palbociclib and ribociclib in combination with letrozole 
in HER2-negative advanced breast cancers in 2015 and 
2017, and abemaciclib in combination with fulvestrant in 
ER-positive, HER2-negative metastatic cancers or alone in 
cancers that are refractory to hormone treatment in 2017.

mTOR inhibitors
mTOR is a key protein that integrates a number of signals 
(90). Temsirolimus and everolimus are the two leading 
agents targeting the mTOR pathway. Of these two, 
everolimus has been adopted in the clinical setting in breast 
cancers. The successful outcome from the BOLERO-2 trial 
suggested the use of this mTOR inhibitor in breast cancers 
(91). These trials were conducted in postmenopausal 
women who were ER positive and HER2 negative and 
had progressed on endocrine therapy. Everolimus was 
tested against endocrine therapy alone (exemestane) or 
in combination with endocrine therapy. An increase in 
PFS was observed in the combination group. Everolimus 
in combination with exemestane was approved by the US 
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FDA in HR-positive HER2-negative breast cancer patients 
who had progressed on endocrine therapy. Similar to 
the CDK4/6 inhibitors, preclinical evidence suggested 
that these agents may be effective in other breast cancer 
subtypes, such as early-stage TNBC (92).

Poly (ADP-ribose) polymerase (PARP) inhibitors
PARP binds and aids in base excision repair of single-
stranded DNA breaks. Inhibition of PARP leads to double-
strand DNA breaks and ultimately cell death in cells 
unable to effectively repair double-strand DNA breaks. 
BRCA1 and BRCA2 proteins are integral components 
of the homologous repair system, the primary double-
stranded DNA break repair mechanism (93). Mutations 
in BRCA1 and/or BRCA2, or any other protein within 
the homologous repair (HR) system, results in a reliance 
on non-homologous end-joining repair (NHEJ). NHEJ 
is error prone, and reliance on NHEJ is ineffective in 
repairing DNA damage on a large scale, ultimately 
resulting in cytotoxicity (94). Approximately 10% of all 
patients with breast cancer and about 30% of patients 
with hereditary breast cancer harbor a germline BRCA1 
or BRCA2 mutation (95). Given this, PARP inhibitors were 
and are a logical choice for the development of targeted 
therapy in breast cancer. While many inhibitors have 
been developed against PARP, only one of these has been 
approved for use in breast cancer. Olaparib was assessed 
in patients with metastatic breast cancer with germline 
mutations in BRCA1 or 2. It was assessed as a single agent 
and compared to a standard chemotherapy (agent not 
specified, physician’s choice) (96). In this setting, olaparib 
showed a significant PFS benefit and was approved by the 
FDA for use in BRCA-mutated HER2-negative metastatic 
breast cancers in early 2018.

Immunotherapy
Immunotherapy is considered as a breakthrough therapy 
for cancers in general. The logic behind this research is 
that the growth and progression of cancer is due in part 
to the immune system’s inability to correctly identify 
the abnormal cells associated with cancer progression. 
Altering this balance to allow immune recognition of 
cancerous cells may lead to the body responding and 
managing the tumor. At present, there is only one agent 
in this category that has been approved by the FDA for use 
in solid tumors, including breast cancers, and that is the 
PD-1/PDL-1 inhibitor pembrolizumab. Its approval for use 
is linked to specific genetic markers (high microsatellite 

instability, mismatch repair deficiency) in cancers that 
have progressed following prior treatment with no 
satisfactory treatment options. Multiple clinical trials 
are currently addressing its specific role in breast cancer 
progression, across a number of different subtypes and 
settings with the results of these trials expected by 2020.

Ovarian cancer

Background

Ovarian cancer is one of the endocrine cancers that 
affects approximately 22,000 women and results in 
14,000 deaths annually in the United States (1). Although 
it is the second most common malignancy of the female 
reproductive tract, it is responsible for the majority of 
deaths from gynecologic malignancies (97). The poor 
prognosis of ovarian cancer is predominantly due to 
diagnosis at advanced stages and the high frequency 
of recurrence following adjuvant chemotherapy (98). 
Ovarian cancer is heterologous with distinct histologic 
subtypes that differ in clinical outcomes and require 
individualized therapies (99).

Classification of ovarian cancer

Ovarian cancer is categorized by anatomical location 
into epithelial, stromal and germ cell malignancies (100). 
Epithelial ovarian cancer, which arises from the surface 
epithelium of the ovary, accounts for 90% of all ovarian 
cancer. It can be further subcategorized into serous, 
endometrioid, clear cell, mucinous, transitional cell and 
mixed adenocarcinomas (101). High-grade serous ovarian 
cancer (HGSOC) is the most common ovarian malignancy, 
comprising 70–80% of ovarian serous cancers and closely 
resembles the epithelium of the fallopian tube (102). The 
molecular profile of HGSOC is unique, exhibiting a high 
rate of HR exemplified by mutations in BRCA1, BRCA2 
and TP53 (103).

Therapeutic options for ovarian cancer

There is some debate as to whether the initial management 
of advanced ovarian cancer should be with neoadjuvant 
chemotherapy (NACT) followed by interval debulking 
surgery or with primary debulking surgery (PDS) followed 
by adjuvant chemotherapy. Patients should undergo PDS 
whenever possible, and NACT should be reserved for those 
who cannot tolerate PDS and/or optimal cytoreduction is 
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not possible, as optimal PDS is associated with significantly 
better survival compared to NACT (104).

Chemotherapy
Patients who are not candidates for PDS should receive 
NACT using combination of intravenous carboplatin and 
paclitaxel prior to interval debulking surgery, followed 
by adjuvant intravenous carboplatin and paclitaxel (105, 
106). A recent randomized controlled trial showed a 
significant benefit of heated intraperitoneal chemotherapy 
(HIPEC) given at the time of interval debulking surgery. 
This improved the overall survival in patients who 
received NACT by 11.8  months (107). Although results 
of this trial are promising, there were serious limitations 
that require further evaluation before HIPEC is ready for 
widespread use (108).

Initial therapy for epithelial ovarian cancer consisted 
of i.p. radioactive P (32), oral melphalan and combination 
IV cisplatin/cyclophosphamide (109, 110). Although 
the efficacy of platinum therapy was identified in early 
Gynecologic Oncology Group (GOG) trials, combination 
platinum/taxane for adjuvant treatment of ovarian cancer 
was not established until 1996 following the results of GOG 
111 (111). Cisplatin/paclitaxel remained the standard of 
care for 7  years until the GOG published the results of 
a non-inferiority trial in 2003, establishing carboplatin/
paclitaxel as the current chemotherapeutic backbone used 
today for the treatment of epithelial ovarian cancer (112). 
Cisplatin and carboplatin are DNA-alkylating agents that 
preferentially bind guanine residues of double-stranded 
DNA and crosslinks DNA adducts, interfering with mitosis 
(113). Platinum/taxane in combination synergistically 
works to inhibit tumor growth and trigger apoptosis in 
rapidly dividing cells, resulting not only in the death of 
tumor cells but producing myelosuppression, alopecia and 
gastrointestinal side effects (112). Details of combination 
chemotherapy can be found in Supplementary Table  1 
(see section on supplementary data given at the end of 
this article).

Targeted therapeutics
The introduction of anti-angiogenesis inhibition for 
ovarian cancer therapy in 2011 represented the first novel 
drug class shown to be effective in ovarian cancer since 
the introduction of paclitaxel in 1996 (114). Two phase 
III trials, GOG 218 and ICON7, evaluated bevacizumab 
with platinum/taxane chemotherapy for the treatment 
of ovarian cancer in the adjuvant setting following 

PDS. Both trials found maintenance bevacizumab 
improved progression-free survival (PFS) without 
prolonging overall survival (OS), a common trend with 
antiangiogenic therapy for ovarian cancer. Although the 
investigators did not find an OS benefit in all patients, 
subset analysis of patients who had suboptimal primary 
cytoreduction exhibited an OS benefit with the addition 
of bevacizumab, perhaps representing an alternative to 
the ‘dose-dense’ taxane regimen that showed a significant 
survival benefit among sub-optimally debulked patients 
(114, 115, 116). Pazopanib (an inhibitor of c-KIT, FGFR, 
PDGFR and VEGFR tyrosine kinases) and nintedanib (a 
small molecular inhibitor of PDFGR, FGFR and VEGFR) 
have both been evaluated in the phase III setting and 
showed outcomes similar to bevacizumab (117, 118). 
While there is a debate among specialty centers regarding 
the most effective platinum/taxane regimen for advanced 
ovarian cancer, maintenance anti-angiogenesis for 
patients who received optimal PDS is yet to be approved 
by the FDA (119).

About 85% of advanced epithelial ovarian cancers 
respond initially to adjuvant platinum/taxane therapy. 
Unfortunately, about 75% of those patients who 
initially respond experience recurrence (120). Multiple 
combinations have been evaluated for the treatment of 
platinum-sensitive recurrent epithelial ovarian cancer 
(Supplementary Table 2).

PARPi (PARP inhibitors) is the first FDA-approved 
treatment using the concept of synthetic lethality in the 
treatment of epithelial ovarian cancer. Although only 
10–15% of patients with HGSOC have a germline BRCA1 
or BRCA2 mutation, approximately 50% of patients 
have tumors that exhibit a homologous recombination 
deficiency from either a germline or somatic mutation 
in the HR system (121). Multiple studies have evaluated 
PARPi in the maintenance setting following carboplatin 
and paclitaxel for platinum-sensitive recurrent epithelial 
ovarian cancer and have shown a significant benefit in 
PFS in all patients, especially those with BRCA mutations 
or having HR deficiency (somatic or germline). Although 
both breast and ovarian cancers exhibit HR deficiency, 
response to PARPi therapy is significantly better in patients 
with ovarian cancer compared to those with breast cancer 
who harbor a germline BRCA1 or BRCA2 mutation (122). 
Data on OS for patients with ovarian cancer receiving 
PARPi in the maintenance setting are still not mature 
and there is currently significant debate on whether 
maintenance bevacizumab or PARPi is appropriate 
following carboplatin and paclitaxel for treatment of 
platinum-sensitive recurrent epithelial ovarian cancer.
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Patients who have platinum-resistant or refractory 
disease unfortunately have limited effective options. 
Given poor response rates for chemotherapy and the desire 
to minimize toxicity, single-agent chemotherapy has been 
the mainstay in this subset of patients (123). The addition 
of antiangiogenic therapy to single-agent cytotoxic 
chemotherapy has been shown to improve response rates 
and PFS (124) (Supplementary Table  3). PARPi has also 
been shown to be of benefit to patients with germline or 
somatic mutations in BRCA and represents a well-tolerated 
option in eligible patients (125). Tamoxifen, letrozole, 
fulvestrant and angiogenesis inhibitors have also been 
evaluated for use in the platinum-resistant setting with 
responses similar or worse than cytotoxic chemotherapy 
(126, 127, 128, 129, 130).

Drugs under development for ovarian cancer

Many clinical trials are currently underway evaluating 
treatments of epithelial ovarian cancer in both the 
adjuvant and recurrent setting (Supplementary Table 4). 
The PI3K/AKT/mTOR pathway plays an important role in 
cellular signaling controlling multiple processes including 
angiogenesis, proliferation, protein synthesis and cell 
survival (131). The MAPK pathway is also an active area 
of phase I/II research, as it has been shown to regulate cell 
cycle progression, metabolism, differentiation and cell 
survival in borderline tumors of the ovary and low-grade 
serous ovarian cancer (LGSOC) (132). Folate receptors 
have been shown to be upregulated in ovarian cancer and 
antagonists are currently in phase I and II clinical trials 

(133). Human epidermal growth factor receptor (HER) 
has been implicated in the pathogenesis of epithelial 
ovarian cancer and both trastuzumab and pertuzumab, 
humanized monoclonal antibodies against HER2, 
have been evaluated in phase II and III settings (134). 
Immunotherapy has also been studied in recurrent ovarian 
cancers and is currently being evaluated in phase III trials 
(135). Novel combinations of PARPi, antiangiogenic 
drugs, inhibitors of the MAPK pathway, PI3K inhibitors 
and conventional chemotherapy are currently in early 
phases of development.

There are currently a multitude of phase I, II and 
III trials evaluating individualized, targeted therapies in 
hopes of providing significant survival improvements not 
seen since the introduction of platinum chemotherapy 
over 20 years ago.

Therapeutic target crossover

Although this review provides the usefulness of the various 
therapeutic targets in independent cancers, desperate 
need for novel therapeutic agents for cancers that are 
refractory to standard of care pushes the boundary to 
evaluate the functional crossovers of the targets in other 
cancers (Fig. 3).

Although the role of androgens and AR is 
undisputedly established in PCa over the last century, 
their role in breast and ovarian cancers is yet to be 
defined beyond doubt. Studies have indicated that AR is 
the most abundant receptor in breast cancer, expressed in 

Figure 3
Various therapeutic targets and growth-
promoting proteins common to prostate, breast 
and ovarian cancers.
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even higher number of patients than ER. This expression 
makes it a valuable therapeutic target in breast cancers 
(136, 137). AR antagonists enzalutamide and bicalutamide 
have been tested in women with TNBCs (138). AA was 
evaluated clinically in women with breast cancer (139). 
Similarly, leuprolide was tested clinically in combination 
with tamoxifen in hormone receptor-positive breast 
cancer (140). Although, they are not approved yet,  
they establish the importance of androgens and AR in 
breast cancers.

While the role of PARP in breast and ovarian cancers 
is known, recent clinical trial with the PARPi olaparib 
in patients with PCa who failed to respond to standard 
therapy suggests an important role for this therapeutic 
target in PCa (141). Similarly, preclinical evaluation of 
CDK4/6 inhibitors in patient-relevant models of prostate 
cancer provided positive results (142). The various 
therapeutic targets and proteins that promote the growth 
of these cancers are captured in Fig. 3.

Summary

As stated in this review, treatments for the cancers 
mentioned above have come a long way since the 1970s 
and 1980s. More focused, less toxic and highly effective 
therapies have evolved over the last decade. The treatment 
options are listed in Table  1. Developing innovative 
therapies has been made possible due to extensive research 
and better understanding of the molecular mechanisms 
of action of these cancers. There is great hope that these 
cancers will be managed with better next-generation 

advanced therapeutics. As has been consistently observed 
over the last decade, the number of deaths due to these 
cancers will continue to fall due to effective advanced 
treatment options.
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This is linked to the online version of the paper at https://doi.org/10.1530/
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