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High-risk human papillomavirus (HR-HPV) infections cause approximately 5% of all human

cancers worldwide. These include almost all cervical carcinomas, a leading global cause of can-

cer deaths, as well as a significant percentage of other anogenital tract cancers and a growing

fraction of oropharyngeal carcinomas. To accommodate their life cycles, HR-HPVs need to

extensively rewire infected cells. The HR-HPV E6 and E7 proteins are the main drivers of this

process, and their expression elicits a barrage of cellular defense responses that restrict this

unfriendly takeover of the host cell.

Not surprisingly, HR-HPVs have in turn evolved mechanisms to escape or curb antiviral

and anti-oncogenic cellular responses. These mechanisms include degradation of the retino-

blastoma (RB1) and the p53 (TP53) tumor suppressors by HR-HPV E7 and E6, respectively. If

unopposed, RB1 and TP53 would cause cell cycle arrest, senescence, or cell death in response

to HR-HPV infection (Fig 1). Other antiviral pathways, including DNA sensing and interferon

signaling, are also blunted by HR-HPV E6 and E7 proteins [1].

Surprisingly, HR-HPVs have not evolved strategies to counteract restriction by apolipopro-

tein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, or simply A3). A3s are

interferon-regulated DNA cytosine-to-uracil deaminases encoded as a cluster of seven genes

(A3A–A3H; there is no A3E) on human chromosome 22, which are all expressed, albeit at

vastly different levels, in epithelial cells [2], which are the natural hosts of HPV infection.

While their cytidine deaminase activity causes deoxycytidine (C) to deoxythymidine (T) muta-

tions during viral genome synthesis, A3s also restrict viral replication through cytidine deami-

nase-independent mechanisms [3].

In response, many viruses have evolved mechanisms to evade A3 restriction. The human

immunodeficiency virus 1 (HIV1) Viral infectivity factor (Vif) protein targets A3 family mem-

bers for degradation, and the HIV2 Viral protein X (Vpx) protein targets A3A for degradation

[4, 5]. The Hepatitis B Virus X protein impairs this pathway by packaging A3G into exosomes

[6]. Human polyomaviruses—including the Merkel Cell Polyomavirus (McPyV)—trigger A3

activity, yet McPyV-positive Merkel cell carcinomas do not show an A3 mutational signature

[7, 8]. This strongly suggests that McPyV overrides A3 restriction [8].

While ectopically expressed HR-HPV E7 and E6 have each been reported to increase

expression of A3 family members, and A3A can restrict infection with in vitro–generated

HPV16 pseudovirions, A3 activity is not blocked by HR-HPVs [3, 9–11]. Despite the fact that

HPV genomes contain fewer than predicted A3 recognition sites [12], the mutational drift

caused by A3 mutagenesis is extensive; many of the thousands of HPV16 variants that were

detected in a recent study exhibit nucleotide changes that are consistent with A3 action [13].
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Furthermore, A3 expression causes nucleotide changes in the host cellular genome. Integra-

tion of HPV sequences during malignant progression is accompanied by increased A3A levels

[14], and cervical carcinomas and other HPV-associated cancers exhibit A3 mutational signa-

tures [15, 16]. Indeed, A3-mediated host genome destabilization may be one of the mecha-

nisms that drive carcinogenic progression of HR-HPV–associated lesions as evidenced by

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) mutations

that are consistent with A3 mutagenesis that have been detected in HPV-associated cancers

[17]. HPV-associated cancers are generally nonproductive lesions [1], therefore increased

carcinogenicity is unlikely to provide an evolutionary benefit to the life cycles of HR-HPVs

and does not explain why HR-HPVs have not evolved to block A3 mutagenesis.

Why, then, have HR-HPVs not evolved to subvert this highly active cellular defense

response? It has been argued that A3 activation serves to generate viral diversity, and there is

no doubt that HPVs are incredibly diverse; the current count stands at more than 300 HPV

genotypes, as well as thousands of variants, many of which may have been generated as a result

of A3 mutagenesis [13].

The recent discovery by Fred Dick’s research group that RB1 plays a key role in the epige-

netic silencing of repetitive elements may provide an alternative explanation as to why it may

be beneficial for HR-HPVs not to counteract A3 restriction [18]. RB1 silences repetitive ele-

ments by associating with a unique E2F1 transcription factor complex that contains the

Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) methyl transferase. The

degradation of RB1 by HR-HPV E7 proteins is therefore predicted to cause transcription of

repetitive elements [18]. Because translation of some of these—most notably the Long INter-

spersed Element-1 (LINE1 or L1)—results in neoantigen expression, transcription of repetitive

elements would put HR-HPV–infected cells at risk of extinction through adaptive immune

responses. Moreover, the LINE1 open reading frame 2 (ORF2) encodes an endonuclease that

facilitates the mobilization of LINE1 elements through a “copy and paste” mechanism referred

to as retrotransposition. Excessive double-strand DNA breaks caused by the ORF2

Fig 1. Molecular consequences of APOBEC3 induction in HR-HPV–infected cells. See text for detail. APOBEC3,

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3; HR-HPV, high-risk human papillomavirus.

https://doi.org/10.1371/journal.ppat.1006717.g001
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endonuclease can result in senescence or apoptosis, which would also lead to the elimination

of HR-HPV–infected cells (Fig 1). While the majority of the LINE1 copies in the human

genome are 50 truncated and do not express functional endonucleases, it has been estimated

that the remaining functional LINE1 elements may cause 0.3% of all human mutations

[19, 20]. This staggering number likely underestimates the mutational impact of LINE1 ele-

ment mobilization. LINE1 can also mobilize nonautonomous transposable elements, which

only requires its second open reading (ORF2) that frequently remains intact even with 50-trun-

cated LINE1 copies. A3s are well known to restrict expression of repetitive elements, including

LINEs, via deaminase-independent activity [21]. Therefore, HR-HPV–infected cells would

gain significant advantages from this A3-dependent restriction of LINE elements. Because

even unrestrained A3 activity will not completely prevent retrotransposition, the residual acti-

vation of double-strand DNA break sensing and repair machinery may be beneficial for effi-

cient HR-HPV genome replication given its well-documented dependence on these factors,

including the Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia And Rad3-Re-

lated Protein (ATR) kinases [22].

In addition, HR-HPV–mediated RB1 degradation causes high-level expression of satellite

RNAs that can lead to formation of R-loops, a DNA RNA three-stranded structure, which

causes replication forks to stall [18]. A3 target the single-stranded DNA in R-loops and can

thereby also activate the DNA damage response [23], which benefits HPV replication. Lastly,

HR-HPVs may benefit from a deaminase-independent activity of A3, making the A3 muta-

tional signature in HPV-associated tumors simply a by-product of the viruses’ requirement for

another function of A3.

Because nearly every unvaccinated, sexually active individual has been infected with

an HR-HPV, such an incredibly successful virus should have evolved a defensive strategy

against the potent restriction of viral replication and viral persistence by A3 unless it

provides them with a selective advantage. HR-HPVs uniquely cause RB1 degradation and

thus are predicted to de-repress retrotransposon expression. TP53 is known to restrict retro-

transposition [24–26], and HR-HPV E6–mediated TP53 degradation may further increase

LINE1 activity. While activation of double-strand DNA sensing and repair pathways induced

by retrotransposition triggered by RB1 degradation and R-loop resolution by A3s may stimu-

late HR-HPV genome replication and progeny synthesis, A3 restriction of repetitive elements

may protect HR-HPV–infected cells from undergoing excessive, lethal DNA damage and

genomic instability. Moreover, A3 restriction will prevent elimination of HR-HPV–infected

cells by adaptive immune responses to neoantigen expression due to expression of repetitive

elements.
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