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Abstract
Agent-based models (ABM) and differential equations (DE) are two commonly used meth-

ods for immune system simulation. However, it is difficult for ABM to estimate key parame-

ters of the model by incorporating experimental data, whereas the differential equation

model is incapable of describing the complicated immune system in detail. To overcome

these problems, we developed an integrated ABM regression model (IABMR). It can com-

bine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune

system with various phenotypes and types of cells as well as using the input and output of

ABM to build up the Loess regression for key parameter estimation. Next, we employed the

greedy algorithm to estimate the key parameters of the ABM with respect to the same

experimental data set and used ABM to describe a 3D immune system similar to previous

studies that employed the DE model. These results indicate that IABMR not only has the

potential to simulate the immune system at various scales, phenotypes and cell types, but

can also accurately infer the key parameters like DE model. Therefore, this study innova-

tively developed a complex system development mechanism that could simulate the com-

plicated immune system in detail like ABM and validate the reliability and efficiency of

model like DE by fitting the experimental data.
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Introduction
Currently, system biologists employ agent-based models (ABM) [1–5] and differential equa-
tion models (DE) [6–9] to simulate the immune system. Detailed definitions of ABM and DE
are illustrated in the S1 File.

Recently, researchers did develop several ABMs for the immune system simulation. For
example, The Basic Immune Simulator (BIS) [10] is an agent-based model (ABM) that can be
used to study the interactions between cells of the innate and adaptive immune systems. The
BIS demonstrated that the degree of the initial innate response was a crucial determinant for
an appropriate adaptive response [10]. Also, the ImmunoGrid project [11] is to develop a natu-
ral-scale model of the human immune system using an ABM, that can reflect both the diversity
and the relative proportions of the molecules and cells. This model will be of great value for
specific applications in the field of immunology[11].

ABM has several significant advantages. First, its natural representational formalism can be
employed to denote a cell’s biological properties and behavior in detail [1]. Second, its flexible
features can be employed to reflect the real complex dynamic environment [12]. However, it is
difficult for ABM to incorporate experimental data, because ABM describes the system at the
level of its constituent units but not at the top level [13].

DE is broadly employed to approximate experimental data and predict the progression of
the immune system. For example, researchers have applied it to the case of influenza A virus
(IAV) infection. Miao et al., [14] developed a differential equation model to describe the
dynamic interactions among the components (i.e., epithelial cells, virus, CD8 CTLs, and anti-
body) in the lung. The model was used to quantify the immune responses and to estimate the
key parameters in primary infection. Not limited to IAV infection, DE can also be widely used
for other virus infections, such as HIV in the study of Miao et al. [9]. The researchers developed
statistical estimation, model selection, and multi-model averaging methods for in vitro HIV
viral fitness experiments using a set of nonlinear ordinary differential equations and addressed
the parameter identifiability of the model [9].

The DE has been the focus of a great deal of attention due to its great potential as a new opti-
mization technique to solve complex nonlinear problems and widespread use in various areas
[15]. Compared to ABM, DE can be easily employed to solve the optimization problem by esti-
mating a few control parameters [15]. However, it has difficulty describing the details of biolog-
ical systems because DE falls short in constructing a biological model to a sufficient degree,
especially when faced with the simulation of complex phenomena.

To integrate the advantages of these two commonly used models, we developed an inte-
grated ABM regression model (IABMR) and employed the IAV data set [14] to evaluate its effi-
ciency and accuracy. IABMR employed ABM to denote each cell as an agent with three
phenotypes (i.e., quiescence, proliferation and apoptosis). Then, it employed Loess regression
to build a Loess model based on the input and output of ABM. The model’s key parameters
were optimized using the particle swarm optimization algorithm (PSO)[16–21]. The concept
of PSO is illustrated in the S1 File.

Next, we employed the classical greedy algorithm [22–24] to optimize the ABM parameter
and compare the efficiency of ABM with the greedy algorithm and IABMR. The results dem-
onstrated that IABMR not only described the immune response at the cellular level using
various cells’ phenotypes and possessed great potential for investigating interactions and spe-
cial information for the cells but also overcame the limitations of ABM in parameter
estimation.

ABM for Immune System Simulation and Parameter Estimation
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Methods

2.1. Using ABM to describe the immune system
To describe the dynamic interactions among the components (i.e., epithelial cells, infected epi-
thelial cells and virus) in the lung, Fig 1 is used to quantify immune responses in primary
infections.

An epithelial cell in a quiescent state Epq can be transited to three other states. Two of these

states belong to the Ep cell, where P
Epq
B and P

Epq
Q are the probabilities for Epq to change its state.

Epq and Epp are two states of the Ep cell. The Epq cell can also be differentiated into another

type of the cell (Ep�) with a probability P
Epq
T . Once the Epq state transits to the Epp state with a

probability of P
Epq
B , it will have P

Epp
P and P

Epp
T probabilities to become Epp and Ep�q, respectively.

With respect to the above state transition diagram (Fig 1 (Epithelial cells)), the state transi-
tion equations for epithelial cells are developed as follows.

EpqðtÞ ¼ Epqðt�1ÞP
Epq
Q þ 2NdivEpt � Epqðt�1ÞP

Epq
T Vt�1 � Epqðt�1ÞP

Epq
B ð1:1Þ

EppðtÞ ¼ ðEppðt�1Þ � NdivEpt ÞP
Epp
p þ Epqðt�1ÞP

Epq
B � Eppðt�1ÞP

Epp
T Vt�1 ð1:2Þ

Fig 1. State transition diagrams of epithelial cells, infected epithelial cells and virus.

doi:10.1371/journal.pone.0141295.g001

ABM for Immune System Simulation and Parameter Estimation

PLOS ONE | DOI:10.1371/journal.pone.0141295 November 4, 2015 3 / 14



Here, V represents the infective viral titer and NdivEpt is used to represent the number of cells
which will divided into two cells. The case of an infected epithelial cell is shown in Fig 1
(Infected epithelial cells).

The Ep�q state can transit to itself and Ep�d with the probability P
Ep�q
Q and P

Ep�q
D , respectively.

The transition equations are described as the following equations.

Ep�qðtÞ ¼ Ep�qðt�1ÞP
Ep�q
Q þ Epqðt�1ÞP

Epq
T þ Eppðt�1ÞP

Epp
T � Ep�qðt�1ÞP

Ep�q
D ð2:1Þ

Ep�dðtÞ ¼ Ep�qðt�1ÞP
Ep�q
D þ Ep�dðt�1Þ ð2:2Þ

Different from the epithelial cell and infected epithelial cell, the virus is too small to be
described as a discrete variable. In Fig 1(Virus), the virus is described as a continuous variable
with PV

D percentage of dying (Vd state) and PV
Q percentage of living. Here, we set PV

D þ PV
Q ¼ 1.

Additionally, the virus can be produced by Ep�q with respect to the rate of πv.

The case of the virus can described using the following equations.

Vt ¼ Vt�1P
V
Q þ Ep�qðt�1Þpv � Vt�1P

V
D ð3:1Þ

VdðtÞ ¼ Vt�1P
V
D þ Vdðt�1Þ ð3:2Þ

To simulate the process of cellular immunity among the epithelial cells, virus and infected
epithelial cells, an agent based model (ABM) is developed based on the diagrams and equations
provided above. The parameters listed in Table 1 agree with the following rules.

P
Epq
T þ P

Epq
B þ P

Epq
Q ¼ 1 ð4:1Þ

P
Epp
T þ P

Epp
P ¼ 1 ð4:2Þ

P
Epq
T ¼ P

Epp
T ð4:3Þ

P
Ep�q
Q þ P

Ep�q
D ¼ 1 ð4:4Þ

PV
Q þ PV

D ¼ 1 ð4:5Þ

2.2. Parameter Estimation
To estimate the parameters in this study, parameter vector space (H) is generated by the Sparse
Grid method [25], which consists of a set of parameter vectors; each vector has 4 dimensions.
The Sparse Grid method always chooses the most important points in the high dimension
space to approximate the complicated surface [26–28].

In what follows, the input parameter of ABM is denoted by a four-dimensional vector θ, where

the components θk, k = 1,2,3,4 represents (P
Epq
B ; P

Epq
T ; P

Ep�q
D ; PV

D ) respectively. Reported by the previ-
ous research [14], the input data θ are estimated as (6.2×10−9,2.42×10−7,5.98×10−2,4.23×10−1),
which we call as the initial parameter θ0. In this study, we set the input parameter of ABM in the
region (0,2θ0) = {(θ1, θ2, θ3, θ4)2 R4,0�θK�2θ0k,k = 1,2,3,4}. However, according to the rules of
the Sparse Grid, each component of parameter vector h2H is between 0 and 1. Therefore, we
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need to map the parameter vector spaceH generated by Sparse Grid into the region (0,2θ0). The
mapping function is:

θ1 ¼ ðb� aÞhþ a ð5Þ

Where h is a parameter vector in the spaceH, a = 0, b = 2θ0.
θ1 is employed as the input parameters for the ABM to generate L sets of output data (G1),

which represents the number of cells in 5 days. To generate randomness for ABM, we per-
formed Lr replicates for each set of θ1. Next, θ1 and G1 are employed to develop a Loess regres-
sion [29–32] modeM0.

In our modelM0, the Loess regression is described in Eq 6.

w2 ¼ Siwðθ1i � x; gÞðaþ bðθ1i � xÞ � G1iÞ2 ð6Þ

Here, w is a weighting function and θ1i is an input parameter of ABM, where i denotes the i-th
sampling point in the parameter vector space. θ1i represents the points in the neighborhood of
x to be weighted by w depending on the distance to x. g is a key parameter in the procedure
called the "bandwidth" or "smoothing parameter” that determines how much of the data is
used to fit each local polynomial. G1i is the output data value of ABM corresponding to the
input data θ1i. α and β are two coefficients of the least squares method [33] that is employed to
approximate their value by minimizing the value of χ2 in Eq 6.

Next, the particle swarm optimization algorithm (PSO) [16] is employed to locate the opti-
mal parameter by fitting the real experimental data. PSO [17–21] is illustrated in the S1 File in
detail, and its key equations are described by Eqs 7.1 and 7.2.

viðtþ1Þ ¼ wviðtÞ þ c1 � randðÞ � ðpiðtÞ � xiðtÞÞ þ c2 � RandðÞ � ðpgðtÞ � xiðtÞÞ ð7:1Þ

xiðtþ1Þ ¼ xi þ viðtþ1Þ ð7:2Þ

First, let S be the number of particles in the swarm. Then initialize the particle's position
with a uniformly distributed random vector xi*U(lb,ub), where lb and ub are the lower and
upper boundaries of the search-space, here (lb,ub) = (0,2θ0). Obviously, xi can be considered as
the input parameter. The particle's initial velocity is: vi*U(−|ub−lb|,|ub−lb|).Here, w is a
weight function used to maintain the inertia force of each particle. Let pi be the best known
position of particle i and let pg be the best known position of the entire swarm. Then, Eq 8 is

Table 1. Parameters and variables definitions for agent basedmodel.

Parameter Definition Value

PEpq
T

Infection rate of Epq (hour
−1) 2.42×10−7

PEpp
T

Infection rate of Epp (hour
−1) 2.42×10−7

PEpq
B

Proliferation rate of Epq (hour
−1) 6.2×10−9

PEpq
Q

Quiescence rate of Epq (hour
−1) 9.999997518×10−1

PEpp
P

Probability value for Epp to stain resting(hour−1) 9.999997518×10−1

P
Ep�q
Q

Probability value for Ep�
q to stain resting(hour−1) 9.402×10−1

P
Ep�q
D

Death rate of Ep�
q (hour

−1) 5.98×10−2

πv Virus productivity of Ep�
q (hour

−1) 1.0×101

PV
D Death rate of V (hour−1) 4.23×10−1

PV
Q Survival rate of V (hour−1) 5.77×10−1

doi:10.1371/journal.pone.0141295.t001
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employed as the object function for the parameter estimation.

fobj ¼
Xm

j¼1

Xn

i¼1
ðyi � V1Þ2 ð8Þ

Here,m is the time point, and n is the replicates at each time point, V1 is the real experimental
data in five days. yi is the predictive value from the Loess model based on input value xi.

By using the PSO algorithm and Loess model, we can minimize the object function fobj to
locate the local optimal parameter θ� in the region (0,2θ0).

Next, we reemployed the mapping function (Eq 5) to map parameter vector spaceH on
region (0,2θ�) to generate L sets of input parameters θ2 and n replicates for each set of θ2.
These data will be employed as input parameters in the ABM; then, we can obtain G2 output
data withm time points. Next, θ� will be employed as the input data of ABM to generate the
simulated experimental data set V2 with n replicates, which will replace V1 by adding random
noise.

The normal distribution method (Eqs 9.1 and 9.2) [34] is used to add noise for each repli-
cate of the V2 data set and develop the simulated experimental data set V�

2 .

VD � Nð0; aiÞ i ¼ 1; 2; 3: ð9:1Þ

V�
2 ¼ V2 þ VD ð9:2Þ

N(0,αi) denotes a normal distribution with mean 0 and standard deviation αi.
Next, a new Loess regression modelM1 is built based on θ2 and G2 in a process similar to

M0. We used PSO [35] to explore the optimal local parameter Estθi by fitting the simulated
experimental data V�

2 . Finally, we can compute average relative error (ARE) [9] for each Estθi
using Eq 10.

ARE ¼
XM

i¼1

jEstyi � y�j
M � jy�j � 100% ð10Þ

Here,M is the total number of ABM simulation runs for each sample. This parameter estima-
tion process is illustrated in Fig 2.

Results
The IABMRmodel is developed using C++ and R program language and works in the Linux
environment.

3.1. Primary data for model fitting
We used real experimental data V1[14] from infection of mice with the H3N2 influenza virus
A/X31 strain to fit the model. This study employs data from the initial preadaptive phase con-
stituting 0 to 5 days post-infection. The real experimental data contains 6 samples and each
sample has 13 time points. The detailed experimental data information is listed in Table 2. The
initial key parameters of ABM are also from the literature [14].

3.2. Obtain the sampling data using Sparse Grid function
We employed the “createIntegrationGrid” function of the R “SparseGrid” package to create
three sampling data sets in the region (0, 1) (sample size: 41, 137 and 385) (listed in S1–S3
Tables). Then, these sampling data are mapped to the input parameters sets of ABM (θ1) by Eq
5. The values of θ1 are listed in S4–S6 Tables.

ABM for Immune System Simulation and Parameter Estimation

PLOS ONE | DOI:10.1371/journal.pone.0141295 November 4, 2015 6 / 14



Fig 2. Parameter estimation process.

doi:10.1371/journal.pone.0141295.g002

ABM for Immune System Simulation and Parameter Estimation

PLOS ONE | DOI:10.1371/journal.pone.0141295 November 4, 2015 7 / 14



3.3. Estimate the parameter of ABM by fitting the real experimental data
To obtain randomness, we run data sample 41, 137 and 385 with 9,9 and 6 times. And then, we
denote them as model 41×9, 137×9 and 385×6, respectively. The output data set G1 (S7–S9
Tables) of ABM is obtained by inputting θ1. Eqs 7.1 and 7.2 is employed to explore the local
optimum parameter θ� for each sampling data set listed in Table 3.

3.4. Generate the simulated experimental data by ABM
We can obtain an output of ABM V2 by inputting θ�. The simulated experimental data V�

2 is

developed from V2 by Eq 9 by adding three levels of noise (αi), such as
ffiffiffiffiffiffiffiffiffi
0:75

p
,

ffiffiffiffiffiffiffiffiffi
1:50

p
andffiffiffiffiffiffiffiffiffi

3:00
p

regarding to our previous study [36]. Part of the simulated experimental data is listed in
S10–S12 Tables.

3.5. Average relative error computing
After fitting the model to the simulated experimental data using Eqs 7.1 and 7.2, we obtain the
local optimal parameter Estθi. Then, Eq 10 is employed to compute the average relative error
for each set of simulated experimental data. Here, we set the total number of ABM simulation
runs asM = 100 and the three sample sizes as 5×3 (5 is time points (m), 3 is the replicates
(n)),10×6 and 15×9. The values of ARE for each sample size are listed in Tables 4–6.

3.6. Evaluate the accuracy and efficiency of the IABMRmodel
To evaluate the accuracy and efficiency of the IABMR model in parameter estimation, we
employed the greedy algorithm [22,37] with ABM to estimate the parameters. Fig 3 compares
their residual errors (RSS). Here, RSS1 is the residual errors of the greedy algorithm as well as
RSS2, RSS3 and RSS4 are the residual errors of the three sampling data sets from IABMR
(model 41×9,137×9 and 385×6).

Table 2. Real experimental data between 0 to 5 days.

Time points (day−1)

samples 0 0.125 0.25 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 4.25 2.5 3.5 4.25 5.5 6.5 6.33 6.75 6.5 6.5 6.5 7 6.33

2 3.75 2.5 4.75 3.25 6.75 6.75 7.5 3.5 7.33 7.25 6.25 6.5 5.5

3 4.25 3.5 4.75 5.25 6.5 7.75 7.75 7.5 7.33 7.25 6.5 6.25 5.75

4 3.75 3.5 4.13 5.75 7.25 NA 7.25 6.5 6.25 5.5 NA NA NA

5 4.55 2.75 2.5 5.75 NA NA NA 7.5 6.75 6.5 NA NA NA

6 4.25 NA 4.75 5.5 NA NA NA NA 7.25 5.75 NA NA NA

doi:10.1371/journal.pone.0141295.t002

Table 3. Optimum parameter for each samplingmodel.

optimum parameter (θ*) for each model

Sampling model PEpq
B PEpq

T P
Ep�q
D

PV
D

41×9 0.000000006200000 0.00000005454770 0.01372567 0.7506544

137×9 0.000000006170504 0.00000003664683 0.01600081 0.6807255

385×6 0.000000006146936 0.00000004597134 0.01651409 0.6676635

doi:10.1371/journal.pone.0141295.t003
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Table 4. The summary table of ARE values for model 41×9.

Sample size (m×n)
ARE ¼

XM

i¼1

jEstθi � θ�j
M� jθ�j � 100%

m:time point n:replicates Noise level PEpq
B PEpq

T P
Ep�q
D

PV
D

5×3
ffiffiffiffiffiffiffiffiffi
0:75

p
0.396374135606522 0.443644533769457 0.056352115904734 0.443648916301695

10×6
ffiffiffiffiffiffiffiffiffi
0:75

p
0.397479215621607 0.288728219873243 0.056352115904734 0.288729750509077

15×9
ffiffiffiffiffiffiffiffiffi
0:75

p
0.396050197041251 0.288728219873243 0.056352115904734 0.288729750509077

5×3
ffiffiffiffiffiffiffiffiffi
1:50

p
0.401597828194687 0.133811905977029 0.056352115904734 0.443648916301695

10×6
ffiffiffiffiffiffiffiffiffi
1:50

p
0.355114873293543 0.211270062925136 0.056352115904734 0.443648916301695

15×9
ffiffiffiffiffiffiffiffiffi
1:50

p
0.303420318533482 0.288728219873243 0.056352115904734 0.443648916301695

5×3
ffiffiffiffiffiffiffiffiffi
3:00

p
0.056351812916928 0.095082827502976 0.056352115904734 0.169609252886410

10×6
ffiffiffiffiffiffiffiffiffi
3:00

p
0.056351812916928 0.133811905977029 0.056352115904734 0.120094487389536

15×9
ffiffiffiffiffiffiffiffiffi
3:00

p
0.056351812916928 0.095082827502976 0.056352115904734 0.155694584660783

doi:10.1371/journal.pone.0141295.t004

Table 5. The summary table of ARE values for model 137×9.

Sample size (m×n)
ARE ¼

XM

i¼1

jEstθi � θ�j
M� jθ�j � 100%

m:time point n:replicates Noise level PEpq
B PEpq

T P
Ep�q
D

PV
D

5×3
ffiffiffiffiffiffiffiffiffi
0:75

p
0.643522575254619 0.930561319026966 0.399535317487816 0.930566159038856

10×6
ffiffiffiffiffiffiffiffiffi
0:75

p
0.544230567172763 0.356479937741299 0.087188402282124 0.912747140886330

15×9
ffiffiffiffiffiffiffiffiffi
0:75

p
0.370431446243038 0.579838310802485 0.069451181484305 0.686363123221724

5×3
ffiffiffiffiffiffiffiffiffi
1:50

p
0.920087152935404 0.777707452418573 0.319657912364586 0.930566159038856

10×6
ffiffiffiffiffiffiffiffiffi
1:50

p
0.678690815711458 0.643520628384133 0.165464682512184 0.930566159038856

15×9
ffiffiffiffiffiffiffiffiffi
1:50

p
0.356478932929542 0.513177041198269 0.069451181484305 0.376377320727785

5×3
ffiffiffiffiffiffiffiffiffi
3:00

p
0.643522575254619 0.930561319026966 0.494169438477352 0.930566159038856

10×6
ffiffiffiffiffiffiffiffiffi
3:00

p
0.497055974244236 0.643520628384133 0.107579631811147 0.922833014750482

15×9
ffiffiffiffiffiffiffiffiffi
3:00

p
0.426123861132435 0.235982026649789 0.147703266116924 0.643522053012952

doi:10.1371/journal.pone.0141295.t005

Table 6. The summary table of ARE values for model 385×6.

Sample size (m×n)
ARE ¼

XM

i¼1

jEstθi � θ�j
M� jθ�j � 100%

m:time point n:replicates Noise level PEpq
B PEpq

T P
Ep�q
D

PV
D

5×3
ffiffiffiffiffiffiffiffiffi
0:75

p
0.558195074749436 0.377709938409453 0.734336363674898 0.467353749306350

10×6
ffiffiffiffiffiffiffiffiffi
0:75

p
0.550373063913468 0.281480374511598 0.646693956494121 0.428673366149265

15×9
ffiffiffiffiffiffiffiffiffi
0:75

p
0.317992736543865 0.259980152851755 0.474146550006691 0.215504157408635

5×3
ffiffiffiffiffiffiffiffiffi
1:50

p
0.640824859734996 0.421591800456545 0.820570179767702 0.578291010366749

10×6
ffiffiffiffiffiffiffiffiffi
1:50

p
0.563205571035716 0.329446998934554 0.686081473456909 0.497756369788074

15×9
ffiffiffiffiffiffiffiffiffi
1:50

p
0.545574901056396 0.296157823548324 0.551033947374636 0.382253155968538

5×3
ffiffiffiffiffiffiffiffiffi
3:00

p
0.734766947305129 0.497921805194280 0.821690326260787 0.587863332352300

10×6
ffiffiffiffiffiffiffiffiffi
3:00

p
0.606827857000626 0.425248426519653 0.762389535239302 0.543190334652111

15×9
ffiffiffiffiffiffiffiffiffi
3:00

p
0.568049903236344 0.415941323441953 0.563435357322141 0.407836342708565

doi:10.1371/journal.pone.0141295.t006
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3.7. Using IABMR to approximate primary data
Fig 4 illustrates that IABMR can approximate the primary data with a similar effect as the ODE
model [14].

Discussion
In this work, we developed an agent-based model (ABM) to simulate influenza A virus (IAV)
infection and integrated the ABM with Loess regression to develop an integrated ABM regres-
sion model (IABMR). This model can be employed to locate the key ABM parameter by fitting
the real experimental data.

By inheriting the advantages of ABM, IABMR is capable of mimicking the biological system
in detail. Here, IABMR not only showed quantitative changes in the system but also simulated
the phenotypic switch for each cell type. Compared to the previous well-developed ODE model
[14], it was possible to describe a multi-scale biological system in a very complicated external

Fig 3. Comparison among RSS1, RSS2, RSS3 and RSS4.

doi:10.1371/journal.pone.0141295.g003
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environment. IABMR Integrated with Loess regression [29] can employ classical numerical
optimization methods such as the genetic algorithm [38,39] to estimate key parameter of the
model, which is much faster than the greedy algorithm [22–24] used by ABM. These two theo-
retical advantages made IABMR an attractive application to simulate biological systems, com-
pared to the ODE and ABM.

The average relative error (ARE) is commonly employed to evaluate the capacity of parame-
ter estimation for statistical models. The smaller the ARE, the better the model’s performance.
Tables 4–6 showed the ARE values of four key probabilities of the IABMR under the control of
the following two aspects: the number of time points collected from the preadaptive phase and
the level of noise added to the simulated experimental data.

Fig 4. Comparison between IABMR and ODE.

doi:10.1371/journal.pone.0141295.g004
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Table 6 showed two trends of ARE under different noise levels and numbers of time points.
First, the ARE values decrease when the number of time points increases from 5 to 15 at the

same noise level. For example, the ARE value of P
Epq
B has the order P

Epq
B ð5� 3Þ > P

Epq
B ð10�

6Þ > P
Epq
B ð15� 9Þ under noise ffiffiffiffiffiffiffiffiffi

0:75
p

, which indicates more time points and replicates can
obtain better parameter estimation accuracy.

Second, the ARE values increase when the noise level increases from
ffiffiffiffiffiffiffiffiffi
0:75

p
to

ffiffiffiffiffiffiffiffiffi
3:00

p
under

the same number of time points, which demonstrates that the parameter estimation accuracy is
higher with a smaller noise level. For instance, in the case of sample 5×3 (Table 6), the ARE

value of P
Epq
B has the order:

P
Epq
B ð ffiffiffiffiffiffiffiffiffi

0:75
p Þ < P

Epq
B ð ffiffiffiffiffiffiffiffiffi

1:50
p Þ < P

Epq
B ð ffiffiffiffiffiffiffiffiffi

3:00
p Þ The additional three probabilities

(P
Epq
T ; P

Ep�q
D and PV

D) in the parameter have similar trends to P
Epq
B (Table 6).

Fig 3 compared the accuracy and parameter estimation speed between the IABMR and
ABMmodels. IABMR is much faster than ABM in terms of locating key parameter. For exam-
ple, it takes at least 54,600 runs for ABM with the greedy algorithm to make the RSS converge,
but only 2310 runs for IABMR with the largest size of parameter space to make the RSS con-
verge. Additionally, the size of the parameter vector space has high impact on the parameter
estimation accuracy. The larger the size, the more accurate the estimated results. As described
by the Fig 3, model 41×9 has the greatest RSS and model 385×6 has the least RSS. Meanwhile,
the trends of the ARE values in Tables 4 and 5 are not as perfect as in Table 6. Lastly, Fig 4
demonstrated that the IABMR simulation results had high similarity like the ODE to approxi-
mate the real experiential data, which validated the efficiency and accuracy of the IABMR.

In conclusion, this study developed an IABMRmethod to simulate detailed biological sys-
tems and locate their key parameter using classical numerical optimization methods. By inte-
grating the advantages of both the ABM and ODE modes, it not only described the
complicated microenvironment of the biological system and the cell’s behavior in multiple
scales in detail, but also easily to incorporate real experimental data. To evaluate the efficiency
and accuracy of IABMR, we employed primary influenza infection data as the case study to
exhibit the advantages of the IABMR. The validation results demonstrated that IABMR could
mimic the immune system on multiple levels similar to ABM and approximate real experimen-
tal data similar to ODE with a reasonable parameter estimation cost.
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