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A B S T R A C T   

Background and purpose: Autosegmentation techniques are emerging as time-saving means for radiation therapy 
(RT) contouring, but the understanding of their performance on different datasets is limited. The aim of this 
study was to determine agreement between rectal volumes by an existing autosegmentation algorithm and 
manually-delineated rectal volumes in prostate cancer RT. We also investigated contour quality by different- 
sized training datasets and consistently-curated volumes for retrained versions of this same algorithm. 
Materials and methods: Single-institutional data from 624 prostate cancer patients treated to 50–70 Gy were used. 
Manually-delineated clinical rectal volumes (clinical) and consistently-curated volumes recontoured to one 
anatomical guideline (reference) were compared to autocontoured volumes by a commercial autosegmentation 
tool based on deep-learning (v1; n = 891, multiple-institutional data) and retrained versions using subsets of the 
curated volumes (v32/64/128/256; n = 32/64/128/256). Evaluations included dose-volume histogram metrics, 
Dice similarity coefficients, and Hausdorff distances; differences between groups were quantified using para
metric or non-parametric hypothesis testing. 
Results: Volumes by v1-256 (76–78 cm3) were larger than reference (75 cm3) and clinical (76 cm3). Mean doses by 
v1-256 (24.2–25.2 Gy) were closer to reference (24.2 Gy) than to clinical (23.8 Gy). Maximum doses were similar 
for all volumes (65.7–66.0 Gy). Dice for v1-256 and reference (0.87–0.89) were higher than for v1-256 and clinical 
(0.86–0.87) with corresponding Hausdorff comparisons including reference smaller than comparisons including 
clinical (5–6 mm vs. 7–8 mm). 
Conclusion: Using small single-institutional RT datasets with consistently-defined rectal volumes when training 
autosegmentation algorithms created contours of similar quality as the same algorithm trained on large multi- 
institutional datasets.   

1. Introduction 

In radiation therapy (RT), contour/volume variability continues to 
be a problem, in particular for non-tumour tissue or organs at risk 
(OARs) [1–5]. Dose fall-off margins in modern RT can be set extremely 
tight meaning that correct volume definitions are more critical now 
compared with previous RT delivery techniques. In the clinic, OARs are 
either manually delineated by RT professionals in treatment planning 
systems or proposed by autosegmentation tools, primarily based on 

atlases or artificial intelligence. The latter has emerged over the last 
decade as a time-saving means for the contouring task but also to reduce 
intra- and interobserver variations [6–11]. This, in turn, opens up new 
possibilities to harmonize OAR volumes and interpretations of associ
ated dose metrics and normal-tissue complication probability risk esti
mates. Knowledge about how autosegmentation tools perform on 
different datasets is, however, limited. In addition, it is unknown if 
“calibration” to standard (benchmark) datasets can increase their per
formance in the clinic. 
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Autosegmentation algorithms based on deep learning are typically 
developed in three steps, which encompass training, validation, and 
testing [9]. The basis for algorithm development is often curated clinical 
or research data with diverse patient anatomies since algorithm per
formance depend on image characteristics included in the training 
datasets. In practice, datasets used for algorithm development are split 
so that the majority of images is used for training, some 10–20% for 
validation, and 10–30% for testing [12–14]. There are no consensus 
requirements for how many patient anatomies are needed in either of 
these datasets to arrive at accurately defined volumes for a particular 
structure in the clinical setting [9], with agreement between autocon
toured and manually-delineated expert volumes typically being quan
tified using volume overlap metrics such as the Dice similarity 
coefficient [15]. For training dataset sizes, reported numbers in the 
current scientific literature range from 50 patients and upwards 
[12–14]. Data curation is a time-consuming task making it challenging 
to obtain large datasets for this purpose. There are also often numerous 
options for data curation since consensus guidelines on how to define 
specific OAR volumes for many body regions diverge in the RT com
munity with many clinics using their own established protocols for 
structure delineations [9]. 

The aim of this study was to determine agreement between rectal 
volumes by an existing autosegmentation algorithm based on deep 
learning and manually-delineated rectal volumes in prostate cancer RT. 
A specific objective was to investigate contour quality by different-sized 
training datasets and curated rectal volumes recontoured to the Swedish 
STRONG OAR guideline for male pelvis [16] for retrained versions of 
this same algorithm. 

2. Materials and methods 

OAR data investigated in this study were taken from 624 patients 
treated for prostate cancer at the Sahlgrenska University Hospital, 
Gothenburg, Sweden, in 2018–2019. All patients had been treated with 
volumetric-modulated arc therapy (6 MV photon-beam radiation qual
ity) to prescribed doses of 50/66/70 Gy using 2 Gy/3 Gy/2 Gy/fraction, 
respectively. The majority of patients had been treated to 66 Gy, patients 
receiving 50 Gy had undergone additional brachytherapy, and patients 

receiving 70 Gy had undergone surgical removal of the prostate prior to 
salvage RT. Ethical permit for the study was granted from the Swedish 
Ethical review authority (No: 641–17, T1115-18, 2020–04108). 

All patients had been planned for RT using the treatment planning 
system EclipseTM (Varian Medical Systems; version 15.6). For the work 
described below, the patients were split in two datasets, where one part 
was used to evaluate performance of the retrained algorithm versions 
(Dataset 1, n = 299) and the other part was used for algorithm devel
opment (Dataset 2, n = 325). 

Patient treatment characteristics and the characteristics of the 
studied rectal OAR volumes and doses are presented in Table 1. 

2.1. Organs at risk and related data 

For all patients, rectum had been manually contoured as an OAR in 
clinical routine on planning CT images used for treatment. Images had 
been required at a resolution of 512 by 512 pixels with 2 mm slice 
thickness, typically with a voxel size of 1.074x1.074x2 mm3. As an 
overall principle, clinical rectal volumes had been defined by their outer 
contours, 5 cm in the cranial direction from the centre of the prostate 
and down to the anal verge in the caudal direction (uncurated volumes, 
referred to as clinical). Rectum was also consistently recontoured for all 
patients in the research version of EclipseTM according to the STRONG 
OAR guideline [16], in line with international consensus recommen
dations [17,18]. This meant that rectum was defined by its outer contour 
with the cranial border starting at the point when rectum loses its round 
shape in the axial plane and connects anteriorly with the sigmoid and 
the caudal border ending at the lowest level of the ischial tuberosities 
(curated volumes, referred to as reference). To avoid interobserver 
variability, manual recontouring was done by one project member with 
the aid of a contouring manual and under supervision from a senior 
oncologist (AV). 

DICOM-RT data (CT images and structure set files) including clinical 
and recontoured rectal volumes were extracted for all patients in ano
nymized format from EclipseTM to provide detailed volume and dose 
information. 

Table 1 
Patient treatment groups and characteristics of the studied manually-delineated reference and clinical rectal volumes and doses in the different datasets used for testing 
(Dataset 1) and retraining (Dataset 2) of the MVision autosegmentation algorithm (EclipseTM original data).   

Study group: Reference Clinical TD=50 Gy TD=66 Gy TD=70 Gy TD=Other 
Dataset (No.) Metric\Unit: cm3/Gy cm3/Gy n (%) n (%) n (%) n (%) 

ALL (n=624) Volume 72.3±26.8 73.4±26.7 118 295 197 14  
Mean dose 24.4±6.3 24.0±5.8 (19) (47) (32) (2)  
Max. dose 65.9±7.8 65.9±7.9     

Dataset 1 (n=299) Volume 73.9±29.8 75.5±29.9 50 167 75 7  
Mean dose 24.5±6.3 24.0±5.8 (17) (56) (25) (2)  
Max. dose 65.9±8.0 65.8±8.2     

Dataset 2 (n=325) Volume 70.9±23.6 71.5±23.3 68 128 122 7  
Mean dose 24.2±6.3 24.0±5.9 (21) (39) (38) (2)  
Max. dose 65.9±7.7 65.9±7.7     

training (n=32) Volume 72.1±28.9 72.5±25.8 7 14 11 0  
Mean dose 24.3±6.5 23.6±5.2 (22) (44) (34) (0)  
Max. dose 65.8±7.7 72.3±7.7     

training (n=64) Volume 70.4±26.1 70.4±24.8 12 24 26 2  
Mean dose 25.1±6.3 24.8±5.6 (19) (38) (41) (3)  
Max. dose 66.3±7.5 66.3±7.5     

training (n=128) Volume 68.5±23.5 69.8±23.1 22 55 48 3  
Mean dose 24.9±6.1 24.3±5.4 (17) (43) (38) (2)  
Max. dose 66.4±7.2 66.4±7.2     

training (n=256) Volume 69.4±22.9 70.6±22.5 55 98 99 4  
Mean dose 24.5±6.5 24.0±5.9 (22) (38) (39) (1)  
Max. dose 65.9±7.8 65.9±7.8     

Abbreviations: Gy = Gray, Max. = maximum, No.= number, TD = total (prescribed) dose to treatment region. 
Note that reference volumes were somewhat smaller than clinical volumes with somewhat higher mean doses but similar maximum doses when comparing all patients. 
Volumes and dose metrics in Dataset 1 were comparable with corresponding metrics in Dataset 2 as were characteristics of the four sub-cohorts from Dataset 2 to the 
overall characteristics of Dataset 2. 
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2.2. Autosegmentation 

The commercial version of the MVision algorithm for autocontouring 
was initially used to automatically identify rectal volumes in Dataset 1 
(original algorithm version 1.2.1, referred to as MVision_v1; MVision 
Segmentation Service, Mvision AI Oy Helsinki, Finland). The MVision 
prediction model for male pelvis was also retrained to create four new 
versions with training subsets from Dataset 2 including curated rectal 
volumes for 32, 64, 128, and 256 patients (retrained algorithm versions, 
referred to as MVision_v32, MVision_v64, MVision_v128, and MVi
sion_v256, respectively). Validation of training was done using a 
different subset from Dataset 2, randomly selected but not used for the 
training part. Small-scale testing of performance was done using a third 
subset from Dataset 2, also randomly selected but not used neither for 
the training part nor for the validation part. Large-scale testing of per
formance was finally done using Dataset 1. 

Details on the original algorithm version including model architec
ture are presented in Fig. 1 and in the Supplementary material together 
with outputs from the four new algorithms during retraining. 

2.3. Statistics 

The degree of variation between rectal volumes was investigated 
using the Dice similarity coefficient for volume overlap and the Haus
dorff distance for maximum distance between volumes. For comparisons 
involving these metrics and the autocontoured volumes, outputs from 
MVision_v256 were used as reference. Differences were also quantified 
using volume and dose metrics (mean and maximum dose) as provided 
by dose-volume histograms (DVHs) in CERR [19]. Comparisons between 
groups were made using the paired Student’s t-test (when assuming 
dependency between samples, i.e. within-patient comparisons) and the 
Wilcoxon rank sum test or the Student’s t-test (when assuming inde
pendency between samples, i.e. between-patient comparisons), 
depending on the distribution of the underlying data. Two-sided p- 
values ≤ 0.05 were assumed to indicate statistically significant differ
ences. No adjustments for multiple comparisons were made. Results are 
reported as mean ± standard deviation (SD) and median (range), 
whichever most applicable. Statistical analyses, including image- and 
dose data processing, were performed in MATLAB’s statistics and image 
toolboxes (Math-Works, Natick, MA, USA) and using the Python pro
gramming language (primarily the PyTorch package [20]). 

3. Results 

3.1. Performance of the original MVision algorithm version 

MVision_v1 produced volumes of 78.0 ± 28.7 cm3, numerically closer 
to clinical (p = 0.09) than to reference (p = 0.010) (Table 2, Fig. 2). Mean 
doses for MVision_v1 (25.2 ± 6.3 Gy) were statistically significantly 

higher than mean doses of both manually-delineated volumes, although, 
numerically closer to reference (p = 0.017) than to clinical (p < 0.001) 
whilst no difference in maximum doses between MVision_v1 (66.0 ± 8.1 
Gy) and either volume representation could be determined (p > 0.05 for 
both comparisons). 

The Dice values for volume overlap between MVision_v1 and clinical 
were numerically similar to Dice-values for volume overlap between 
MVision_v1 and reference (mean = 0.86–0.87 with SD: 0.05–0-06; 
Table 3), yet favoring reference. The Hausdorff values for maximum 
distance between volumes were larger for comparisons between MVi
sion_v1 and clinical than for comparisons between MVision_v1 and refer
ence (7.0 ± 6.1 mm vs. 4.8 ± 3.7 mm), also favoring reference. 

3.2. Performance of the retrained MVision algorithm versions 

Volumes by the four new versions of the MVision algorithm were 
typically somewhat larger than both manually-delineated volumes. 
MVision_v32 produced the smaller volumes (75.7 ± 30.8 cm3) and 
MVision_v256 the larger (77.5 ± 30.7 cm3) with the smallest volume 
closer to clinical (p > 0.05) than to reference (p = 0.021; Table 2, Fig. 2). 
Mean doses for the new versions were in between the mean doses of 
clinical and reference, 24.2 ± 6.3 Gy (MVision_v256) to 24.4 ± 6.5 Gy 
(MVision_v32), with the highest mean dose closer to the mean dose of 
reference (p > 0.05) than to the mean dose of clinical (p = 0.009). There 
were no differences between maximum doses for any autosegmented 
volume and either manually-delineated volume (65.7–65.9 Gy with SD: 
8.1–8.2 Gy; p > 0.05 for all comparisons). On a DVH level, differences in 
volumes and doses were marginal (Fig. 3). Where differences could be 
noted, the same relative volume of the reference DVH and the MVi
sion_v32 DVH typically related to a higher dose than of the clinical DVH 
and the DVHs of the other retrained algorithm versions. 

The Dice values for volume overlap ranged from 0.85 ± 0.07 (MVi
sion_v32) to 0.87 ± 0.07 (MVision_256) with respect to clinical and from 
0.86 ± 0.07 (MVision_v32) to 0.89 ± 0.07 (MVision_256) with respect to 
reference (Table 3). With respect to comparisons between algorithm 
versions, and with the Dice values of MVision_v256 as reference, differ
ences in Dice were noted for comparisons involving clinical and MVi
sion_v32/64 (p ≤ 0.002). For corresponding comparisons involving 
reference, differences in Dice were noted for all three comparisons (p ≤
0.004). Performance of any algorithm version with respect to volume 
overlap was in favor of comparisons including reference. 

The Hausdorff values for maximum distance between volumes 
ranged from 7.2 ± 6.0 mm (MVision_v128) to 7.9 ± 6.2 mm (MVi
sion_v32) with respect to clinical and from 4.7 ± 5.3 mm (MVision_v256) 
to 6.1 ± 5.6 mm (MVision_v32) with respect to reference (Table 3). With 
respect to similar comparisons between algorithm versions as for the 
Dice values, but with the Hausdorff values of MVision_v256 as reference, 
differences in Hausdorff values were not noted for comparisons 
involving clinical (p > 0.05 for all). In contrast, differences in 

Fig. 1. The model architecture of the MVision deep- 
learning algorithm. The input of the network are 
thin sections of the 3D scan. There are multiple en
coders, each taking three slices as input. The n-th 
encoder takes slices [-(n + 1), 0, (n + 1)] as its input. 
The feature maps of the n-th global encoder are 
summed with the feature maps of the (n-1)-th 
encoder. There is a single decoder (light blue), which 
receives 4 features maps from the 0-th (local) encoder. 
There are H segmentation heads (green), with each 
predicting masks of multiple non-overlapping regions 
of interest. Abbreviations: CT = computed tomogra
phy; MRI = magnetic resonance imaging. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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performance were noted for all comparisons involving reference (p ≤
0.017). Performance of any algorithm version with respect to maximum 
distance between volumes was in favor of comparisons involving 
reference. 

4. Discussion 

We found that volume overlap between manually-delineated and 
autosegmented rectal volumes by retrained versions of a commercial 
deep-learning autosegmentation algorithm (trained on ≤ 30% of 
originally-used number of patients) was comparable to the corre
sponding output as created by the original algorithm version. Increased 
volume agreement by the retrained algorithm versions was more notable 
for comparisons involving the consistently-recontoured volumes than 
for comparisons involving the uncurated clinical volumes. Both original 
and retrained algorithm versions were numerically closer to the clinical 
volumes whilst mean doses were numerically closer to the recontoured 
volumes. Maximum doses for both manually-delineated and 

autosegmented volumes were comparable regardless of algorithm 
version. The impact of the identified differences between algorithm 
versions was small on a DVH level. 

Performance of any autosegmentation algorithm depends on the 
underlying training dataset quality. The training approaches based on 
large multi-institutional real-life clinical datasets inevitably suffer from 
inconsistencies in structure definitions. In contrast, relatively small well- 
controlled datasets that are consistent with a reference definition may 
represent a better basis for the training of deep-learning auto
segmentation algorithms. Here we found that training datasets with 
consistently-curated rectal volumes from 64 patients arrived at compa
rable results to the original algorithm version, which was based on data 
from 891 patients (Dice = 0.87/0.86 with respect to curated/uncurated 
volumes). Of note, training data for the original algorithm were curated 
by multiple annotators and to a different caudal anatomical landmark 
than the one specified for our recontoured volumes (inclusion of the anal 
canal versus lowest level of the ischial tuberosities). This possibly ex
plains why we found that the maximum distance between volumes were 

Table 2 
Characteristics and comparisons between manually-delineated uncurated (clinical) and curated (reference), as well as auto-contoured rectal volumes and doses in 299 
patients used for large-scale testing of the retrained versions of the MVision autosegmentation algorithm (MVision data).  

n=299  MVision 

Metric/ Algorithm v1 v32 v64 v128 v256 
OAR volume version: (p-value) (p-value) (p-value) (p-value) (p-value) 

Volume mean±SD (cm3) 78.0±28.7 75.7±30.8 77.2±30.5 77.1±31.3 77.5±30.7 
Reference 74.7±30.0 (0.010) (0.021) (<0.001) (<0.001) (<0.001) 
Clinical 76.4±30.1 (0.092) (0.817) (0.038) (0.053) (0.015) 

Mean dose mean±SD (Gy) 25.2±6.3 24.4±6.5 24.2±6.4 24.2±6.3 24.2±6.3 
Reference 24.4±6.3 (0.017) (0.637) (0.079) (0.076) (0.028) 
Clinical 23.8±5.7 (<0.001) (0.009) (0.104) (0.089) (0.146) 

Max. dose mean±SD (Gy) 66.0±8.1 65.8±8.2 65.7±8.1 65.8±8.2 65.9±8.1 
Reference 65.7±7.9 (0.829) (0.328) (0.745) (0.635) (0.631) 
Clinical 65.7±8.1 (0.318) (0.719) (0.141) (0.605) (0.179) 

Abbreviations: Gy = Gray, Max. = maximum, OAR = organ at risk, SD = standard deviation. 

Fig. 2. Example outputs from original and retrained versions of the MVision deep-learning algorithm on planning-CT images for one prostate cancer case. Note how 
the original version of the autosegmentation algorithm (MVision_v1; colour coding in image) results in a volume similar to the reference curated volume (filled 
purple) in the cranial direction but below the reference in the caudal direction and with a somewhat larger circumference. The recalibrated versions (MVision_v32- 
256; colour coding in image) remain at the same anatomical border as the original version but approach the lower anatomical border and the circumference of the 
reference. The anatomical border of the clinical uncurated volume (filled green) is above the reference in the cranial direction. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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smaller for comparisons involving the curated volumes (variation ex
pected caudally only) than for comparisons involving the uncurated 
volumes (variation expected both cranially and caudally), and why the 
original algorithm version typically fared similarly to the retrained 
versions in most situations (Hausdorff = 4.7–6.3/7.0–7.9 mm for 
curated/uncurated volumes). The quality of the autosegmented volumes 
only improved to a certain point as the size of the training dataset 
increased above this number. In comparison to other deep-learning 
autosegmentation algorithms based on CT-imaging and expert vol
umes, the higher rectal volume overlap values are reported to be Dice =
0.8–0.9 [11–13]. Two of these three studies used training datasets in the 
same range as we investigated here (50 patients [13] and 110 patients 
[12]), but with unknown basis for data curation and not including large 
dataset evaluations. The third study recently reported results for another 
commercial deep-learning autosegmentation algorithm, Limbus Con
tour build 1.0.22, evaluated on an independent dataset with 50 prostate 

cancer patients. In this study, rectal volumes were defined according to 
the clinical judgement of radiation oncologists, similarly as for our 
clinical volumes [11]. Their investigated algorithm was trained on 
publicly available data with an average of 328 scans per organ model. It 
is interesting to note that they found that consistently-defined expert 
volumes by one radiation oncologist as basis for training resulted in as 
comparable agreement between autosegmented volumes and expert 
rectal volumes as inter-observer variability between these same experts 
(n = 3). Altogether, our results further strengthen the fact that agree
ment between autosegmented volumes and “ground truth” volumes will 
be influenced by the data curation quality and that the size of training 
datasets during algorithm development can be surprisingly small and 
still produce volumes in line with specific anatomical criteria. Reusing 
the abovementioned rectal overlap value of Dice = 0.8 as a threshold for 
clinically acceptable performance of autocontours, a final remark is that 
the original algorithm version we investigated produced volumes below 
this threshold in 8% of patients if curated volumes were taken as ground 
truth and in 10% of patients if uncurated volumes were taken as ground 
truth. Corresponding numbers for the retrained versions were 6–14% of 
patients (to curated volumes) and 9–16% of patients (to uncurated 
volumes), with the lower percentages for larger training datasets (data 
not shown). 

In RT, differences in OAR volumes do not always translate into large 
dose differences [9,21] although compliance to trial protocols have been 
reported to be compromised due to incorrect delineations [2]. We found 
in our data that autosegmented rectal volumes, irrespective of algorithm 
version, were overall closer to the manually-delineated uncurated clin
ical rectal volumes (Δ≈0.5–1 cm3) than to the manually-delineated 
curated rectal volumes (Δ≈1-3 cm3), with the larger differences typi
cally generated by the smaller-sized training datasets. Differences in 
dose were typically smaller for comparisons involving the curated vol
umes than the clinical volumes and were, on a group level, numerically 
small (mean dose < 1.5 Gy and maximum dose < 0.5 Gy). Of note, the 
largest differences for individual cases presented with mean dose dif
ferences up to 10 Gy and maximum dose differences up to 5 Gy (data not 
shown), which underlines the importance of inspection and editing 
before autocontoured structures are used for treatment planning and 
delivery. We also found that rectal DVHs were similarly shaped on a 
group level with the volumes generated from the smallest training 
dataset marginally shifted towards higher dose. In general, over
estimated dose for OARs brings the dose distributions to the safer side, 
however, underdosage of tumours may be a consequence if the OAR is 
directly adjacent to the planning target volume and unintendedly 
included in the high-dose region on the basis of an incorrectly-defined 
volume [18]. Furthermore, variations in rectum volumes and the 
impact on rectal toxicity modelling has been investigated in a retro
spective study where the same rectum definition as used for our curated 

Table 3 
Volume overlap (Dice), maximum distance (Hausdorff) between volumes and 
algorithm performance between auto-contoured rectal volumes by different 
versions of the MVision algorithm and manually-delineated uncurated (clinical) 
and curated (reference) rectal volumes (MVision data).  

OAR volume Reference Reference Clinical Clinical Reference 
vs. Clinical 

Algorithm Dice p-value Dice p-value Dice (p- 
value) 

Mvision_v1 0.87 
±0.05 

<0.001 0.86 
±0.06 

0.465 (0.001) 

MVision_v32 0.86 
±0.07 

<0.001 0.85 
±0.07 

<0.001 (<0.001) 

MVision_v64 0.87 
±0.07 

<0.001 0.86 
±0.07 

0.002 (<0.001) 

MVision_v128 0.88 
±0.07 

0.004 0.86 
±0.07 

0.087 (<0.001) 

MVision_v256 0.89 
±0.07 

ref. 0.87 
±0.07 

ref. (<0.001)  

Algorithm Hausdorff p-value Hausdorff p- 
value 

Hausdorff 
(p-value) 

MVision_v1 4.9±3.7 0.539 7.0±6.1 0.300 (<0.001) 
MVision_v32 6.1±5.6 <0.001 7.9±6.2 0.066 (<0.001) 
MVision_v64 5.4±5.3 0.017 7.5±6.2 0.483 (<0.001) 
MVision_v128 5.3±5.3 0.010 7.2±6.0 0.578 (<0.001) 
MVision_v256 4.7±5.3 ref. 7.3±6.7 ref. (<0.001) 

Note that comparisons between algorithm versions are made row-wise with 
Mvision_v256 as reference (in leftmost columns), and comparisons in perfor
mance between a same algorithm version and manually-delineated volumes are 
made column-wise (rightmost column). 
Abbreviation: OAR = organ at risk; ref.=reference. 

Fig. 3. Averaged DVHs of original (MVision_v1) and retrained versions (MVision_v32/64/128/256) of the MVision deep-learning algorithm for autocontouring of 
rectum. Numbering for retrained versions indicates training dataset size during algorithm development. 
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volumes was included as one of 13 investigated OAR definitions [21]. 
This study found that the more distinct differences in DVH shapes be
tween the OAR definitions related to volumes of 60–110 cm3, mean 
doses of 35–50 Gy, and maximum doses of 70–73 Gy (n = 163; 3D-CRT 
primary and salvage prostate cancer treatments; prescribed dose =
67–76 Gy). Interestingly, they found that the different OAR definitions 
had no impact on predictive ability of toxicity by the investigated 
models and DVH metrics. Although their differences originate from an 
earlier treatment era, it is still unlikely that the small dose differences we 
found by different algorithm versions in our study, in particularly for 
maximum dose, which is known to be critical for rectal toxicity [22], 
would be of importance for predictions of rectal toxicity in the clinic 
using current prediction models. 

The main strength of this study was that we used a large dataset for 
algorithm retraining and evaluated algorithm performance on two 
manually-delineated large datasets (n = 299), one curated with OARs 
recontoured to the same anatomical boundaries and one uncurated with 
OARs contoured in clinical practice. Investigated anatomies were taken 
as an unselected sample from the majority of prostate cancer patients 
treated with modern RT during a one-year period at one of Sweden’s 
largest RT departments (catchment area ≈2 million inhabitants). The 
main limitation was that the recontouring of rectum in practice resulted 
in changed anatomical borders with respect to clinical volumes in the 
cranial and caudal directions only. Therefore, the reported results pri
marily reflected these geometric variations. This also explains why 
maximum dose was almost the same on a group level for both auto
segmented and manually-delineated volumes with higher doses typi
cally found in the central parts of the rectum, which were included in all 
investigated volumes. Finally, our results were based on data for one 
specific pelvic OAR with a reasonably well-defined geometry. Whether 
they apply to OARs of more complex geometries needs to be further 
studied. 

In conclusion, a relatively small but well-curated dataset with 
consistently-defined anatomical boundaries for the training of deep- 
learning autosegmentation algorithms has the potential to create 
structure volumes and doses of acceptable quality for clinical use. The 
investigated algorithm, in both its original version and retrained ver
sions, provided reasonable-quality rectal volumes in most cases. If tun
ing such applications towards a same volume, as when following a 
specific contouring guideline or a study protocol, consistently defined 
volumes curated to this reference as basis for algorithm training can be 
expected to have a positive impact on performance. 
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