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Dysregulated Krϋppel-like factor (KLF) gene expression appears in many disease-associated pathologies. In this
review, we discuss physiological functions of KLFs in the kidney with a focus on potential pharmacological mod-
ulation/therapeutic applications of these KLF proteins. KLF2 is critical tomaintaining endothelial barrier integrity
and preventing gap formations and in prevention of glomerular endothelial cell and podocyte damage in diabetic
mice. KLF4 is renoprotective in the setting of AKI and is a critical regulator of proteinuria in mice and humans.
KLF6 expression in podocytes preservesmitochondrial function and prevents podocyte apoptosis, while KLF5 ex-
pression prevents podocyte apoptosis by blockade of ERK/p38 MAPK pathways. KLF15 is a critical regulator of
podocyte differentiation and is protective against podocyte injury. Loss of KLF4 and KLF15 promotes renal fibro-
sis, while fibrotic kidneys have increased KLF5 and KLF6 expression. For therapeutic modulation of KLFs, contin-
ued screening of small molecules will promote drug discoveries targeting KLF proteins.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Krϋppel-like factors (KLFs) belong to a group of transcription factors
that contain conserved zinc (Zn)-finger domains in their C-terminal re-
gions that bind to target DNA sequences. KLFs share homology with
Sp1-like transcription factors, one of the first transcription factors to
be identified and classified [1]. Subsequently, other Zn-finger containing
transcription factors like KLF proteins were identified. This
ane), L0cai001@louisville.edu
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nomenclature Krϋppel, came from drosophila which means “cripple”
in German, as a critical mutation in drosophila, led to their severe
body malformation. These KLF transcription factors are important con-
stituents of the eukaryotic transcriptional machinery in cells. KLF pro-
teins regulate the gene expression of a wide variety of genes.
2. Structure and function

The first mammalian Krϋppel, erythroid Krϋppel-like factor (EKLF/
KLF1) was identified in red blood cells [2]. Since the initial discovery
of KLF1, 17 more KLF proteins were identified in the human genome
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and each factor was designated in the chronological order of their
discovery. KLF17 and KLF18 are chromosomal neighbors, and it is sug-
gested that KLF18 resulted from a local gene duplication of KLF17 [3].
These KLF genes comprise of three phylogenetic groups. Group 1: con-
tains KLF proteins 3, 8 and 12, which serve as transcriptional repressors
through their interactionwith C-terminal binding protein (CtBP). Group
2: KLF proteins are transcriptional activators including KLF1, KLF2, 4, 5,
6, and 7. However, in KLF2 and KLF4, repression domains have been
identified next to their activation domains [4–6]. Similarly, KLF5, can
also repress expression of its gene targets. However, unlike KLF2 and
KLF4, KLF5-repression domain is not identified to date. While group 3:
KLF proteins 9, 10, 11, 13, 14, and 16 share a conserved α-helical
motif AA/VXXL that mediates their binding to Sin3A and their activities
as transcriptional repressors [7–12]. KLF15 and KLF17 do not cluster in
among these three phylogenetic groups as their protein interaction do-
mains have yet to be determined. The KLF proteins known to regulate
kidney injury/disease include KLF2, KLF4, KLF5, KLF6 and KLF15. Thus,
this review addresses our current understanding of these aforemen-
tioned KLF proteins in regulating kidney injury/kidney disease.

Themost frequently encountered Zn-fingermotif is the C2H2 type, in
which a Zn atom is tetrahedrally coordinated by 2 conserved cysteine
and histidine residues, such that they fold into a ββα structure. The
interfinger space amino acid (aa) sequence contains a highly conserved
7-aa sequence, TGEKP(Y/F)X [13]. The regions outside the Zn-finger do-
main are unique. The Zn-finger motifs facilitate DNA binding and nu-
clear localization [14,15]. The transcriptional regulation by KLFs are
facilitated by their activation and repression domains as shown in
Fig. 1. Therefore, they can serve as transcriptional activators, repressors
or both by interacting with GC rich concensus, including 5’-CACCC-3’
DNA sequences [16,17]. The amino-terminal regions of KLFs are
divergent and modulate the specificity of protein-protein and protein-
DNA interactions. Thus, specificity of KLF-mediated transcription de-
pends on their N-terminal sequences. A number of KLFs possess a
transactivation domain (TAD) within their N-terminal regions [4,6,18].
Certain KLF proteins contain functional binding domains including the
C-terminal binding proteins (CtBP) and Sin3A binding sites that allow
KLF proteins to function as repressor proteins [7,19]. However, KLF pro-
teins discussed in this review (KLF2, 4, 5, 6 and 15) do not contain CtBP
nor Sin3A binding sites (Fig. 1).
3. Physiological functions in kidney

The glomerulus is a filtering unit of the kidney and comprises of four
cell types. The parietal epithelial cells that form the Bowman's capsule,
Fig. 1. Schematic comparison of various domains of KLFs discussed in this review.
the podoctyes that cover the outermost layer of the glomerularfiltration
barrier, the fenestrated endothelial cells that are in contact with the
blood and the mesangial cells that are located within the capillary
loops. A tight coordination and cross talk between these cell types is
necessary to maintain a functional glomerular filtration barrier. During
filtration, plasma first passes through the fenestra in the capillary
endothelium, then through the basement membrane, and finally
through filtration slits found between interdigitating podocyte foot pro-
cesses. A slit diaphragm consists of proteins synthesized by the
podocyte that extend across the filtration slits. Therefore, podocytes
are an important component of the filtration barrier. Stress or injury
to the podocytes results in foot process effacement and loss of the slit di-
aphragm resulting in proteinuria, an abnormal accumulation of protein
in the urine [20]. Normally, a very small amount of protein is present in
the urine, as the proximal tubule cells reabsorb filtered protein by endo-
cytosis. However, when the filtration barrier is dysregulated, urinary
protein concentration is elevated. Glomerulonephritis, diabetesmellitus
and hypertension are some of the major disorders that can disrupt bar-
rier function.

KLF proteins are critical regulators of physiological systems includ-
ing cardiovascular, hematological, respiratory, digestive, and immune
system. They are involved in disorders like cardiovascular disease,
cancer, obesity and inflammatory diseases. KLF-like factors also regulate
key physiological processes in the kidney, which range from maintain-
ing glomerular filtration barrier to tubulointerstitial inflammation to
progression of kidney fibrosis. Gene expression arrays from deep
sequencing of microdissected nephron segments of rat renal cortex
demonstrated the expression pattern of various KLF proteins in the
kidney [21].

3.1. KLFs in endothelial biology

Endothelial cells (ECs) play an important role in regulating cellular
processes that are critical to cell survival which include barrier function,
inflammation, coagulation, vascular tone and angiogenesis. Thus, ECs
function is critical in tissue development, growth and repair [22]. Endo-
thelial dysfunction results when one of the aforementioned processes
are dysregulated. This results in loss of vascular homeostasis leading
to vascular pathologies such as diabetic nephropathy [23–25].

KLFs 2, 4, 5, 6 and 15 are expressed in ECs [26–29]. KLF2 protein reg-
ulates endothelial barrier integrity and prevents gap formation between
ECs by inducing expression of occludin, a key tight junction protein [30].
Accumulation of uremic solutes in End Stage Renal Disease (ESRD)
patients increases their risk of developing cardiovascular disease
(CVD) [31]. Uremic solutes decreased endothelial transcription factor,
KLF2 expression. Decreased KLF2 expression, promoted endothelial
dysfunction and resultant CVD [32]. In addition to causing cardiovascu-
lar injury, loss of KLF2 has been associated with glomerular endothelial
injury in diabetic nephropathy and inmicewith unilateral nephrectomy
[33,34]. Glomerular hyperfiltration is associated with sheer stress and
therefore role of KLF2 in compensatory response in unilateral nephrec-
tomy (UNX) was examined. EC-specific KLF2 heterozygous knockout
mice (KO) and their wild type littermates (WT) were subjected to
UNX or sham operation.WhileWT-UNXmice developed compensatory
hypertrophy as expected, KO-UNXmice developed high blood pressure,
reduced glomerular filtration rate (GFR), a significant increase in pro-
teinuria, and glomerulosclerosis when compared to wild typemice. Sig-
nificant decrease in expression of KLF2 target gene, endothelial nitric
oxide synthase (Nos3) along with other endothelial genes were
detected in the glomeruli of KO-UNX compared to WT mice. Moreover,
decreased renal KLF2 expression in nephrectomy patients was associ-
ated with progression to Chronic Kidney Disease (CKD) [34]. Thus,
KLF2 plays a protective role in glomerular endothelial injury and
progression to CKD in model of compensatory kidney hypertrophy.

KLF2 is down-regulated in glomerular ECs of patients with diabetic
kidney disease and EC-specific reduction of KLF2 expression in
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experimental model of diabetic kidney disease promotes glomerular EC
injury and promotes disease progression [35]. The aforementioned KLF2
WT and KO mice were treated with vehicle or streptozotocin. Diabetic
KLF2 KO mice developed increased glomerular hypertrophy and pro-
teinuria when compared to diabetic WT mice. Loss of KLF2 caused
more injury to glomerular ECs in diabetic mice. A number of glomerular
KLF2 target genes such as eNOS, ZO-1, glycocalyx, Flt1, tie2 and
angiopoietin 1weremarkedly decreased in diabetic KLF2 KOmice com-
pared to diabetic WT mice. Down regulation of KLF2 protein during
hyperglycemia was mediated by FOXO1-dependent transcriptional
KLF2 gene silencing [36]. Thus, KLF2 via regulation of its endothelial
gene targets, controls injury to the glomerular ECs during diabetes
[33]. Moreover, KLF2 is a prototypical vasoprotective factor, as it is in-
duced by stimuli that activate ECs, it is known to inhibit pro-
inflammatory and pro-thrombotic gene expression, and lastly, it is
known to be protective against vascular inflammatory diseases.

Endothelial KLF4 is renoprotective in the setting of acute kidney in-
jury and in cultured ECs treated with TNF-α [37]. Conditional knockout
of KLF4 from ECs (KLF4 cKO mice), promoted ischemic acute kidney
injury (AKI) by modulating the expression of cell adhesion molecules
and infiltration of neutrophils and lymphocytes [37]. KLF2 and KLF4
are enriched in the endothelium and have overlapping functions in
ECs [26]. In addition to KLF2, laminar shear stress also induces KLF4 ex-
pression [38,39]. Moreover, both share similar downstream targets as
well [26].

3.2. KLFs in podocyte biology

Glucose treatment decreased, while insulin treatment increased
KLF2 expression in cultured ECs. Similarly, KLF2 expression decreased
in the glomeruli of streptozotocin-induced diabetic mice and insulin
treatment resulted in significant induction of KLF2 expression in dia-
betic mice compared to non-diabetic mice. EC specific KLF2 KO mice
treated with STZ were more susceptible to glomerular EC damage.
Interestingly, increased podocyte injury was also detected in these
mice suggesting a cross-talk from glomerular ECs to podocytes in early
diabetic nephropathy (DN) [33]. Similar to KLF2 KO-diabetic mice,
KLF2 KO-UNIXmice demonstrated increased glomerular endothelial in-
jury as well as podocyte injury suggesting an important role for KLF2 in
regulation of EC and podocyte injury in early diabetes as well as in pro-
gressive kidney disease [34].

KLF4 is expressed in podocytes and is a critical regulator of protein-
uria. In proteinuric animals and humans, decreased KLF4 expression
contributes to proteinuria. Gene transfer by tail vein injections or
podocyte-specific transgenic restoration of KLF4 in diseased glomeruli,
induced recovery of podocyte epithelial marker nephrin with a concur-
rent decrease in albuminuria. Moreover, adriamycin-induced protein-
uria was found to be significantly exacerbated in podocyte-specific
KLF4 KO mice. The mechanism by which KLF4 regulated expression of
nephrin gene and other epithelial and mesenchymal genes was shown
to involve epigenetic modification of promoters of these genes [40].

KLF6 is also expressed in the podocytes and is critical for
preservation of mitochondrial function and prevention of podocyte
apoptosis [41]. KLF6 expression is decreased in renal biopsies of patients
with HIV-associated nephropathy (HIVAN) and focal segmental
glomerulosclerosis (FSGS). Additionally, loss of KLF6 in podocyte-
specific KLF6 KO mice increased susceptibility of a resistant mouse
strain to adriamycin-induced FSGS [41]. KLF6 regulated the
mitochondrial function by modulating expression of its target protein
mitochondrial cytochrome c oxidase assembly gene (SCO2). [41].
Over-expression of KLF5 in podocytes prevented PAN-induced cell
cycle arrest and podocyte apoptosis by blocking the activation of ERK/
p38 MAPK pathways [42].

Podocyte dedifferentiation is the hallmark of glomerular kidney dis-
eases and KLF15 expression is down-regulated in diseased glomeruli.
KLF15 is critical regulator of podocyte differentiation. Loss of KLF15 in
podocyte-specific KLF15 KO mice, resulted in increased proteinuria,
podocyte foot process effacement, and a decrease in podocyte differen-
tiation when compared to WT mice. Thus, enhancing KLF15 expression
can promote podocyte differentiation and protect against podocyte in-
jury [43]. Adriamycin (ADR) and lipopolysaccharide (LPS) treated
KLF15 (−/−)mice had increased proteinuria and podocyte foot process
effacement. KLF15 expression was also decreased in glomeruli isolated
from HIV transgenic mice and in kidney biopsies from patients with
HIV-associated nephropathy and FSGS [43]. Loss of KLF15 increases sus-
ceptibility to podocyte injury. Podocyte specific induction of KLF15 had
renoprotective effects in HIV-1 Tgmice. Podocyte-specific KLF15 induc-
tion in HIV-1 Tg mice attenuated podocyte injury, glomerulosclerosis,
tubulointerstitial fibrosis, and inflammation. It also improved renal
function and overall survival. Moreover, ADR-induced podocyte injury
was also attenuated when KLF15 expression was induced [44]. CCR5
−/− andWTmicewere subjected to 5/6 nephrectomy-induced chronic
podocyte injury. KLF15 expression was decreased in bothWT and CCR5
−/− mice after injury, with a further significant decrease in podocyte
KLF15 expression in injured CCR5−/− mice compared to WT mice.
Moreover, decreased KLF15 expression in patients was correlated with
worse renal outcomes [45]. Thus,modulating expression of KLF proteins
may serve as a therapeutic option to treat renal diseases.

3.3. KLFs in renal fibrosis and interstitial inflammation

With progressing renal fibrosis, normal tissue architecture is
replaced with extracellular matrix (ECM). Progressive fibrosis leads to
End Stage Renal Disease (ESRD). Renal inflammation in general is
induced as a protective mechanism in response to injury and/or infec-
tion. However, prolonged or uncontrolled inflammation promotes pro-
gressive renal fibrosis. The mechanisms underlying progressive renal
fibrosis are unknown and identifying these mechanisms is critical to
identification of effective anti-fibrotic therapies.

In the kidney, TGF-β is mediator of renal fibrosis. TGF-β promotes
cellular proliferation, differentiation and induces synthesis of ECM
[46]. TGF-β promotes renal tubular epithelial cell to mesenchymal
transition (EMT) a process that is critical to development of
tubulointerstitial fibrosis [47,48]. Various KLF proteins also regulate
renal fibrosis. Enhanced KLF4 expression blocked myofibroblast activa-
tion and inhibited fibrosis [49]. High glucose decreased KLF4 expression
and increased TGF-β expression [50]. Similarly, decrease in KLF4 ex-
pression was also demonstrated in two in vivomodels of unilateral ure-
teral obstruction [48,51], and in the renal tubular cells in an animal
model of diabetic nephropathy [55], suggesting an anti-fibrotic role for
KLF4 in the kidney. KLF4 modulates renal fibrosis by inhibiting inflam-
mation. KLF4 inhibits TGF-β-induced release of pro-inflammatory cyto-
kines MIF and MCP-1 [50].

In two in vivomodels of unilateral ureteral obstruction namely UUO
and 5/6 nephrectomy, KLF5 expression was increased in proliferating
renal tubule cells located in the cortex and medulla. Co-localization
studies with KLF5 and aquaporin 1, demonstrated KLF5 expression in
the proximal renal tubules of fibrotic kidneys. While KLF5 expression
was induced, KLF4 expression was suppressed. YAP stabilized KLF5 ex-
pression by preventing its degradation at the proteasome. Thus, inhibi-
tion of collagen crosslinking by lysyl oxidase inhibitor, decreased
UUO-induced renal tubular dilatation and proliferation by inducing
KLF4 expression and down-regulating YAP1/KLF5 pathway [51]. More-
over, KLF5 in renal collecting duct plays a critical role in the initiation
and progression of tubulointerstitial inflammation [52]. KLF6 expres-
sionwas induced in diabetic Ren-2 rat kidneys aswell as in high glucose
(HG) treated renal tubular cells. HG-induced KLF6 expression in renal
tubular cells was dependent upon TGF-β and increased KLF6 expression
promoted EMT [53].

Ang II treatment of mice and NRK-49F cells demonstrated decreased
KLF15 expression and increased CTGF expression. Over-expression of
KLF15 in the NRK-49F cells prevented Ang II-induced CTGF expression
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by inhibiting the co-activator P/CAF recruitment to the CTGF promoter
[54]. Loss of KLF15, promoted renal fibrosis in various murine models
[55]. In 5/6 nephrectomized rats a model of progressive interstitial fi-
brosis, KLF15 expression was decreased in the renal interstitium at
24-week time point. TGF-β-induced CTGF expression and decreased
KLF15 expression in NRK-49F cells in an ERK and JNKMAPK dependent
pathways. Moreover, over-expression of KLF15 in NRK-49F cells
prevented TGF-β-induced CTGF expression in these cells. Thus, KLF15
is a critical anti-fibrotic factor that controls renal interstitial pathways
by possibly modulating ERK and JNK MAPK pathways [56]. Krüppel-
like factor 10 (KLF10), originally named TGF-β (Transforming growth
factor beta) inducible early gene 1 (TIEG1), and KLF11 regulate the
TGF-βsignal transduction pathway [57].While KLF10modulatesfibrosis
in dystrophic skeletal muscles [58], endometriosis-related fibrosis is
regulated by KLF11 [59]. However, the role of KLF10 and KLF11 in mod-
ulating kidney fibrosis is not investigated.

Therapies to halt progression of renal fibrosis are limited. Impor-
tantly, myofibroblast differentiation and proliferation play an important
role in progression of renal fibrosis. Therefore, identifying pathways
that control myofibroblast differentiation and proliferation is critical to
generating therapies to slow down or halt progression of renal fibrosis.

4. Pharmacological modulation of KLFs/therapeutic applications
of KLFs

Various KLF proteins regulate different aspects of kidney disease as
discussed in this review. Specific KLF proteins could serve as therapeutic
targets and agents that increase or decrease expression and/or function
of specific KLF proteins, could serve as drugs to ameliorate kidney injury
and/or slow down or halt progression to fibrosis and CKD. Endothelial
KLF4 is protective against ischemia/reperfusion induced AKI. Loss of
KLF4 in KLF4 cKO mice exacerbated renal I/R injury. Statins protected
control mice by increasing KLF4 expression but not KLF4 cKO mice,
suggesting that the protective effects of statins are mediated by KLF4.
Increased KLF4 expression, in the presence of statins, suppressed
inflammation-induced expression of cell adhesion molecules during
AKI [37]. Similarly, statins also induce expression of KLF2 in ECs and
circulating immune cells [60–62]. Loss of KLF2 expression promotes glo-
merular EC injury [35]. Moreover, suberanilohydroxamic acid is a phar-
macological KLF2 activator and can inhibit vascular inflammation [63].
In addition to statins and suberanilohydroxamic acid, tannic acid and
resveratrol induce endothelial KLF2 expression and prevent inflamma-
tion [64,65]. Thus, modulation of KLF2 expression and/or function
could lead to generation of new therapies to treat kidney fibrosis as
inflammation is considered to be themain driving force of fibrosis. Res-
veratrol is also renoprotective [66]. However, more work needs to be
done to examine role of KLF proteins in mediating resveratrol's protec-
tive effects.

Angiotensin receptor blocker (ARB) reduces proteinuria and slows
down the progression to ESRD in humans. Recently, the protective ef-
fects of ARB were mediated by induction of KLF4 expression in
podocytes [67]. Hypermethylation of KLF4 promoter during UUO-
induced renal fibrosis, mediated by DNA methyltransferase I, resulted
in KLF4 degradation. Treatment with 5-aza-2′-deoxycytidine attenu-
ated TGF-β-induced KLF4 and E-cadherin downregulation and upregu-
lation of α-smooth muscle actin (α-SMA) in human renal proximal
tubular HK-2 cells. Moreover, 5-aza-2′-deoxycytidine could prevent
renal fibrosis by inhibiting DNA methyltransferase I activity and pre-
serving KLF4 expression [48].

Epigenetic modifications of genes play a critical role in renal fibrosis
and CKD. In the future epigenetic modification drugs that induce KLF4
expression could serve as good candidate for treatment of CKD [68].
KLF4 and KLF6 expression is decreased in renal cell carcinoma [69,70],
there by promoting cellular proliferation and metastasis. KLF4
expression is also decreased in colorectal cancer [71]. Sulforaphane
and Iberin, both derived from broccoli, are known to inhibit colon
cancer cell proliferation by induction of KLF4 expression [72]. Recently,
a traditional Chinese medicine, sijunzi decoction (SJZD), is being pre-
scribed for prevention and treatment of colorectal cancer. KLF4 was
shown to be an mRNA target of SJZD for treatment of colorectal cancer
[71]. As opposed to KLF4, KLF5 expression is enhanced in proliferating
epithelial cells. Down-regulation of KLF5 is associated with decreased
proliferation of colorectal cancer cells. Thus, down-regulation of KLF5
expression can be targeted to treat colorectal cancer. A ultrahigh-
throughput screening has identified small molecule inhibitors that
reduce KLF5 expression and thee small molecules have been shown to
inhibit colon cancer cell proliferation by targeting KLF5 protein [73].
KLF5 proteins have opposing roles in various cancers. KLFs promote its
oncogenic function by promoting cancer cell proliferation and survival
in some type of cancers, while they serve a tumor suppressor function
promoting cancer cell growth inhibition in some cancers [74]. Thus,
small molecules targeting KLF5 as inhibitors as well as activators have
been identified [75]. KLF5 inhibitors could also be targeted to reduce
KLF5 expression in proliferating renal tubular cells or in fibrotic kidneys
in efforts to block pro-fibrotic signaling.

Angiotensin II (Ang II) treatment of mice resulted in renal fibrosis,
with concurrent decrease in renal KLF15 expression. Lorsartan treat-
ment reversed the effects of Ang II treatment [54]. Loss of KLF15
expression and podocyte differentiation markers during kidney disease
can be restored with dexamethasone treatment. The protective effects
of dexamethasone were shown to be mediated by enhanced KLF15 ex-
pression. Accordingly, dexamethasone had no protective effect on
podocyte differentiation in podocyte-specific KLF15 KO mice. Further-
more, glucocorticoid responsiveness in 35 patients with minimal
change disease (MCD) and FSGSwere correlatedwith KLF15 expression
in the podocytes and glomeruli from human biopsies [76]. Retinoic acid
can also induce KLF15 expression in podocytes [43]. Cyclosporin A
(CsA), a calcineurin inhibitor, is administered clinically to patients
with podocytopathy. TGF-β decreased KLF15 and ZO-1 expression and
induced fibronectin expression in cultured podocytes.While, treatment
of podocytes with CsA induced KLF15 and ZO-1 expression and de-
creased fibronectin expression in TGF-β treated podocytes. The protec-
tive effects of CsA on TGF-β treated podocytes were dependent on
KLF15 expression, as the protective effects of CsA were lost in KLF15 si-
lenced podocytes [45]. Interestingly, lowprotein diet is shown to induce
KLF15 expression and limiting renal fibrosis [77]. The various KLFs
discussed in this review could serve as therapeutic drug targets in treat-
ment of various diseases, including kidney diseases.

5. Outstanding questions and challenges

In the current review article, we highlight the role of KLFs 2, 4, 5, 6,
and 15 in kidney diseases. Recent studies on various KLFs have contin-
ued to broaden our knowledge of their diverse biological and physiolog-
ical functions and of their roles in a variety of organs/tissues and in a
number of cellular processes. While the KLF proteins have normal bio-
logical roles, dysregulated KLF expression/function is involved in dis-
ease processes. Therefore, although a number of initial studies have
highlighted roles of KLFs in development and regeneration, KLFs play
a critical role in progression of a number of diseases including kidney
disease. Table 1 summarizes the contributions of various KLFs in renal
physiology and disease.

Although, a role for KLFs in kidney diseases are identified, significant
gaps exist in understanding role of KLF5, KLF6, and KLF15 in glomerular
endothelial cells, role of KLF10 and KLF11 in kidney fibrosis, and deter-
mining gender specific differences in various KLF protein expressions in
the kidney. Moreover, there is a need to understanding themechanisms
that control KLF expression/function in renal physiology and disease. A
number of KLFs have context-dependent functions. At some point, they
promote a certain function (e.g. act as an oncogene)while at other times
they inhibit the same function (e.g. act as a tumor suppressor) in a dif-
ferent cell type. These studies highlight the roles of accessory proteins,



Table 1
Contributions of various KLFs in renal physiology and disease.

Kidney KLFs Function Cell culture/animal model Comments Refs

Glomerular Endothelial Cell
(GEC) Dysfunction

KLF2 A key regulator of endothelial
function and activation

Porcine 5/6 nephrectomy model Increased uremic advanced glycation end products (AGEs) decreased KLF2 expression in
ECs and induced GEC dysfunction.

[32]

GEC Dysfunction KLF2 KLF2 regulates GEC dysfunction WT and EC-specific KLF2 KO mice were injected with
STZ or vehicle (KO-STZ/KO-Vehicle and
WT-STZ/WT-Vehicle)

Loss of KLF2 caused glomerular hypertrophy, proteinuria, and GEC dysfunction. [33]

Podocyte Injury KLF2 KLF2 regulates proteinuria KO-STZ/KO-Vehicle and WT-STZ/WT-Vehicle Loss of KLF2 in KO-STZ mice resulted in albuminuria and podocyte injury possibly through
glomerular endothelial cell-podocyte cross-talk.

[33]

GEC Dysfunction KLF2 KLF2 regulates GEC dysfunction WT and EC-specific KLF2 KO mice were subjected to
sham or unilateral nephrectomy (UNX)

WT-UNX but not KO-UNIX mice developed compensatory kidney Hypertrophy. KO-UNIX
mice had increased proteinuria and GEC injury compared to WT-UNIX mice.

[34]

Podocyte Injury KLF2 KLF2 regulates podocyte
damage

KO-UNIX/KO-Sham and WT-Sham/WT-UNIX KO-UNIX mice had increased podocyte injury compared to WT-UNIX possibly through
glomerular endothelial cell-podocyte cross-talk.

[34]

Acute Kidney Injury KLF4 Endothelial KLF4 is
renoprotective

Endothelial KLF4 conditional knockout (KLF4 cKO)
and WT mice subjected to renal ischemia-reperfusion
injury

Loss of KLF4 led to enhanced neutrophil and lymphocyte accumulation and enhanced
expression of cell adhesion molecules in injured kidneys of KLF4 cKO mice.

[37]

Podocyte Injury KLF4 KLF4 is a critical regulator of
proteinuria

1. KLF4fl/flCre+ KO & KLF4fl/flCre− WT mice treated
with/without adriamycin (ADR).

KLF expression is decreased in podocytes from proteinuric animal models and from
patients with proteinuric glomerular disease. Loss of KLF4 causes proteinuria and podocyte
damage. Restoring KLF4 (KLF4-Tg) in diseased glomeruli attenuated proteinuria.

[40]

2.KLF4-Tg and Control mice.
3. Puromycin-induced nephropathy
4. db/db type 2 diabetes mice.

Podocyte Injury KLF5 Promotes podocyte survival Podocytes (MPC-5 cells) treated with puromycin
aminonucleoside (PAN)

PAN promoted podocyte apoptosis by activating intrinsic apoptotic cascade. KLF5 blocked
PAN-induced podocyte apoptosis by inhibiting activation of ERK/p38 MAPK pathways.

[42]

Podocyte Injury KLF6 Critical for podocyte survival
and for preserving
mitochondrial function.

Podocyte-specific KLF6 KO (Podocin-Cre Klf6fl/fl)
WT-KLF6 controls (Podocin-Cre Klf6+/+) subjected
to Adriamycin nephropathy

Loss of KLF6 increased susceptibility to ADR nephropathy and resulted in albuminuria and
glomerular sclerosis. Loss of KLF6 also increased mitochondrial injury and promoted
podocyte apoptosis by activation of intrinsic apoptotic pathway. KLF6 expression was
decreased in HIV-1 Tg (Tg26) mice as well as in biopsies of patients with HIV-associated
nephropathy (HIVAN) and in patients with focal segmental glomerulosclerosis (FSGS).

[41]

Podocyte Injury KLF15 KLF15 is a critical regulator of
podocyte differentiation

WT or Podocyte-specific KLF15 KO mice treated with
or without lipopolysaccharide (LPS) or ADR

Loss of KLF15 resulted in decreased podocyte differentiation and increased susceptibility to
podocyte injury. ADR and LPS treated KLF15 (−/−) mice had increased proteinuria and
podocyte foot process effacement. KLF15 expression was also decreased in glomeruli
isolated from Tg26 mice and in kidney biopsies from patients with HIVAN and FSGS.

[43]

Podocyte Injury KLF15 KLF15 is renoprotective WT and podocyte –specific KLF15 Tg mice were cross
bred with HIV-1 Tg (Tg26) mice

Loss of KLF15 increased susceptibility to podocyte injury. Podocyte specific induction of
KLF15 had renoprotective effects in Tg26 mice. Podocyte-specific KLF15 induction in Tg26
mice attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and
inflammation. It also improved renal function and overall survival; ADR-induced podocyte
injury was also attenuated.

[44]

Podocyte Injury KLF15 KLF15 promotes podocyte
differentiation

WT and CCR5(−/−) mice were subjected to sham or
5/6 Nephrectomy

KLF15 expression was decreased in 5/6 nephrectomized WT animals and further decreased
in CCR5(−/−) mice and this correlated with increased podocyte injury.

[45]

Renal Fibrosis and Interstitial
Inflammation

KLF4 KLF4 blocks epithelial to
mesenchymal transition (EMT)
in renal fibrosis

1. Unilateral Ureteral Obstruction (UUO) model of
renal fibrosis

UUO treatment resulted in decreased KLF4 expression and increase in TGF-β expression in
renal tissue.
Over-expression of KLF4 suppressed TGF-β-induced progression of EMT in HK-2 cells.

[49]

2. TGF-β treated Human renal proximal tubule cells
(HK−2)

Renal Fibrosis and Interstitial
Inflammation

KLF4 KLF4 is involved in renal
fibrosis by regulating renal
inflammation`

1. TGF-β-induced HK-2 cells KLF4 reduced renal inflammation by abrogating the TGF-β1-induced production of
pro-inflammatory MIF and MCP-1 in human renal tubular cells.

[50]
2.STZ-induced diabetic mice

Renal Fibrosis and Interstitial
Inflammation

KLF4/KLF5 KLF4 is an anti-fibrotic and
KLF5 is pro-fibrotic protein

mouse proximal tubular epithelial cells (mPTECs) in
ex vivo culture on soft-matrix or stiff-matrix

Soft-matrix decreases KLF5 and increases KLF4 and induced growth arrest. Stiff-matrix
induced high levels of KLF5 and decreased KLF4 promoting mPTECs proliferation and
fibrosis progression.

[51]

Renal Fibrosis and Interstitial
Inflammation

KLF5 KLF5 is pro-inflammatory
protein

WT or KLF5 haploinsufficient mice (Klf5+/− mice)
subjected to UUO

Klf5 is expressed in renal collecting duct epithelial cells. KLF5 haploinsufficiency reduced
UUO-induced M1-macrophages, blocking release of pro-inflammatory cytokines that
induced apoptosis of epithelial cells. KLF5 haploinsufficiency promoted fibrosis after UUO
treatment.

[52]

Renal Fibrosis and Interstitial
Inflammation

KLF6 KLF6 regulates EMT 1.STZ-treated control or STZ-treated mRen-2 rats KLF6 expression was increased HG-treated HK-2 cells and STZ-treated mRen-2 renal
tubular cells with concurrent increase in EMT. Blockade of KLF6 with KLF6 siRNA in HK-2
cells preserved E-cadherin expression and prevented EMT.

[53]
2. HK-2 cells were treated with TGF-β and low
glucose LG)/high glucose (HG) for varying times.

(continued on next page)
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binding partners that interact with these KLFs to alter their functional
outcomes. Thus, opposing actions of KLFs can occur, when changes in
protein-protein interactions within the KLF complex occurs, possibly
regulating KLF protein post-translational modifications, resulting in in-
duction/repression of their gene targets.

KLFs are expressed in various cell types and targeting KLFs for ther-
apeutic applications in specific tissue will be challenging. Therefore,
given the redundancy of KLF family members and their common
transcriptional targets, identifying specific KLF protein binding partners,
accessory proteins and downstream gene targets in specific cell type
and disease is critical. Such studies will lead to mechanistic insights
into specific KLF functions in different tissues, providing novel thera-
peutic targets and paving the way to precision medicine approaches.

Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE, Cur-
rent Contents, PubMed, and references from relevant articles using
search terms “kidney fibrosis”, “Krupple-like Factor 2”, “Krupple-like
Factor 4” “Krupple-like Factor 5” “Krupple-like Factor 6” “Krupple-like
Factor 15”, “vascular endothelial damage”, “podocytes injury/damage”,
“renal tubule injury/damage”, and “interstitial inflammation”. Abstracts
and reports from meetings were included only when they related di-
rectly to previously published work. Only articles published in English
between 1993 and 2018 were included.
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