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Abstract

Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of
mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease,
we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal
dementia (FTD) mutation, rTg(tauP301L)4510, with those expressing comparable levels of wild type human tau,
rTg(tauwt)21221. rTg(tauP301L)4510 mice express the human tauP301L variant in their forebrains and display cellular,
histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences
in tau phosphorylation that distinguish them from rTg(tauwt)21221 mice. We compared FTD-hallmark tau phosphorylation
in neurospheres from rTg(tauP301L)4510 mice and from rTg(tauwt)21221 mice. The tau genotype-specific phosphorylation
patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau
phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses;
tau in rTg(tauP301L)4510 cultures was hypophosphorylated in comparison with rTg(tauwt)21221 as was seen in young adult
mice. In addition, there were fewer human tau-expressing cells in rTg(tauP301L)4510 than in rTg(tauwt)21221 cultures.
Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tauP301L)4510 than rTg(tauwt)21221
and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that
neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages
supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.
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Introduction

The ability to generate human embryonic stem cell lines by

somatic cell nuclear transfer [1] or to produce induced pluripotent

stem cells by reprogramming [2] provides the opportunity to

capture the genetics of diseased patients. The availability of

patient-specific SC lines offers the possibility of transplantation for

cell replacement or the delivery of therapeutic agents, and patient-

tailored drug therapy. Use of disease-specific SC lines to dissect

cellular disease processes is a burgeoning field yielding promising

results [3–16].

While our goals are to develop and validate approaches that can

be applied to patient-specific cell lines, mouse models offer

important advantages for experimental analysis. Each human

patient is unique, but members of inbred mouse strains are

genetically homogeneous, allowing discrimination of variation that

may be inherent to SC isolation from genetic effects. Mouse

models also allow tracking of the subtle biochemical, histological,

and behavioral changes that occur long before clinical signs

appear. By exploiting SC lines from well-characterized mouse

models, we hope to relate cell culture phenotypes to pre-clinical

pathogenic events.

Frontotemporal dementia (FTD) is a neurodegenerative disor-

der in which aggregates comprised of microtubule associated

protein tau (MAPT) form in neurons. FTD, like other tauopathies,

including Alzheimer’s disease, is characterized by tau phosphor-

ylation and aggregation events associated with neuronal death and

dementia. Transgenic mouse lines expressing human MAPT with

a proline to leucine mutation at amino acid 301 (P301L)

recapitulate aspects of familial FTD [17–20]. Ashe and colleagues

[19,20] developed a regulatable bigenic transgenic line

rTg(tauP301L)4510 (hereafter, rTg(tauP301L) is used to indicate

rTg(tauP301L)4510) in which MAPT transgene expression is largely

restricted to forebrain cells to avoid early spinal cord pathology

that develops in mice with prion protein promoter driven mutant

tau [18]. MAPT transgene expression can be suppressed with

doxycycline.

Here we report the isolation and characterization of neuro-

sphere lines from rTg(tauP301L) mice and from recently created

transgenic mice that express comparable levels of human tauwt,
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rTg(tauwt)21221, hereafter referred to as rTg(tauwt) [21]. Produc-

tion of neurospheres is a well-established technique and these

multi-cellular aggregates consist of CNS-SCs, lineage-committed,

and differentiated cells [22–25]. The effects of genetics on cell

proliferation, differentiation, and mature cell types can be assessed

in neurosphere cultures [22,23]. We evaluated the effects of the

P301L mutation on tau phosphorylation in mice and in SC lines

derived from them. Neurospheres recapitulated the genotype-

specific differences in tau phosphorylation seen in mice, and we

found genotype-dependent differences in the fraction of transgene

expressing cells, the level of phosphorylation, and in filopodia-

spine densities.

Materials and Methods

Mice
rTg(tauP301L) and rTg(tauwt) mice, along with similar lines

described in Results, were generated using a bigenic system of

responder and activator transgenes. Tg(tauP301L) and Tg(tauwt)

mice (designated TRE-tauP301L- and TRE-tauwt) carry their

corresponding tetO-tau responsive element transgenes and were

produced and maintained on the FVB/NCr background [19,21].

Tg(CK-tTA) mice that express a Camk2a-driven tet transactivator

transgene have been described previously and are congenic on a

129S6 genetic background [19,26]. The TRE-tauwt construct was

identical to that used to construct Tg(tauP301L)4510 mice except

for the presence of a wild type proline codon at position 301. The

rTg(tauwt)21221 line expressed human tau at levels comparable to

rTg(tauP301L)4510 [21]. All rTg mice and their controls, which

expressed either the CK-tTA or TRE-tau transgene alone, were

genetically homogeneous (FVB 6 129)F1 hybrid mice.

Mapttm1(GFP)Klt Tg(MAPT)8cPdav/J mice, referred to as 8c

Mapt0/0, have a targeted disruption of mouse Mapt exon one and

express a complete human MAPT transgene. They have been

described previously [27,28]. Breeder pairs of mixed genetic

background were obtained from the Jackson Laboratory. For these

experiments, we bred out the 8c human tau transgene to produce

mice lacking endogenous mouse tau. These mixed background

Mapt0/0 mice were mated with Tg(tauwt), Tg(tauP301L), or Tg(CK-

tTA) mice. Mice hemizygous for activator or responder transgenes

and heterozygous for endogenous Mapt were backcrossed to the

Mapt0/0 line to produce Tg(tauwt) Mapt0/0, Tg(tauP301L) Mapt0/0,

and Tg(CK-tTA) Mapt0/0 mouse lines on mixed genetic back-

grounds that were used to produce Mapt0/0 rTg mice with both the

responder and transactivator transgenes.

Ethics Statement
The studies at McLaughlin Research Institute (MRI), which is

fully accredited by AAALAC International, were carried out in

accordance with the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health, U.S. Public Health

Service. MRI’s Animal Assurance number from the Office of

Laboratory Welfare of the National Institutes of Health is A3901–

01. All procedures involving animals were reviewed and approved

by MRI’s Institutional Animal Care and Use committee under

protocol GAC-05. Fetuses were harvested from timed pregnant

females euthanized by cervical dislocation performed by trained

personnel.

Generation, Maintenance, and Differentiation of
Neurosphere Lines

TRE-tauwt or TRE-tauP301L females were mated with Tg(CK-

tTA) males. Neurospheres were isolated from whole brains from

individual E14 fetuses using established protocols described

previously [22,29]. The cells were grown in serum-free ‘‘Com-

plete’’ NeuroCult NSC Proliferation Medium comprised of

NeuroCult NSC Basal Medium (Stem Cell Technologies (SCT))

supplemented with Proliferation Supplement (SCT), 20 ng/mL

rhEGF (SCT), and penicillin/streptomycin (GIBCO). The neuro-

sphere sex was determined by PCR genotyping for the X and Y

chromosome genes Smcx and Smcy [30]. For passage, neurospheres

were enzymatically dissociated to single cells using the Papain

Tissue Dissociation Kit as per the manufacturer’s instructions

(Worthington Biochemical Corporation). Dissociated cells were

seeded at a concentration of 105 cells/mL in 15 mLs ‘‘Complete’’

NeuroCult NSC medium (Stem Cell Technologies) and main-

tained in a humidified incubator at 37uC in 6% O2 and 6.8% CO2

(balance N2). Neurosphere lines were passaged every 5–7 days.

Time of passage was determined by neurosphere density and

media color change. Colorimetric cell proliferation assays (MTT)

to assess neurosphere growth rates were conducted according to

the manufacturer’s recommendations (Cell Growth Determination

Kit, Sigma).

For immunofluorescent analysis (IFA) or immunohistochemis-

try, undifferentiated single cells, 86104 cells/well, were plated on

fibronectin (Invitrogen) coated 24-well glass bottom plates

(Greiner) and placed in a humidified incubator at 37uC at 6%

CO2 6% O2 overnight.

To induce differentiation, dissociated cells were plated on

laminin/poly-L-ornithine (15 mg/mL poly-L-ornithine and 5 mg/

mL laminin) 24-well coated glass plates at a density of

126104 cells/well in complete NeuroCult medium (SCT). After

overnight culture the growth factor-containing medium was

removed and 0.3 mmol retinoic acid was added every other day

for seven days. Between days 8–25, cells were fed with B27-

containing medium (Gibco) on alternate days. IFA was performed

on day 21 or day 25.

Immunoblots
Adult mouse hemibrains for Western blot analysis were

prepared as described previously [19]. Mouse brains or neuro-

spheres were homogenized in ice-cold buffer consisting of 10mM

Tris-HCl, 1mM EGTA, 0.8M NaCl, 10% sucrose, pH 7.4,

Complete Protease Inhibitor Cocktail (Roche), and Phosphatase

Inhibitor Cocktail II (Calbiochem). 20 mg protein equivalent from

adult brain homogenates, 36106 cells from neurosphere lysates, or

10 mL from a 10% embryonic brain homogenate were electro-

phoresed on 12% Bis-Tris gels (Invitrogen) and electro-blotted

onto PVDF membranes (Millipore). In some cases, neurosphere

samples were treated with phosphatase prior to running; protein

lysates were suspended in 0.5 mg/10 mL of NEBuffer 3 (New

England Biolabs) and incubated with 10U/mL of calf intestinal

phosphatase (CIP) (New England Biolabs) for 60 minutes at 37uC.

We used the following anti-tau antibodies: Tau13 at 1:5000

(Covance); Tau1 at 1:200 (Chemicon); CP13, AT8, PHF-1, and

DA9 (provided courtesy of Dr. Peter Davies) at 1:200. The

specificity of these antibodies is summarized in Table 1. Loading

and transfer control anti-GAPDH was used at 1:2000 (Chemicon).

Goat anti-mouse HRP-conjugated IgG (Biorad) secondary anti-

body was diluted 1:10,000. SuperSignal West Pico reagent (Pierce)

was used for membranes probed with Tau13, Tau1, PHF-1, and

DA9; the ECL Plus substrate (Amersham) was used for

membranes probed with phospho-tau antibodies CP13 and AT8

and to detect immunoreactivity. For both chemiluminesence

systems, membranes were incubated with substrate for 3 minutes.

Chemiluminescence was detected using a Biorad VersaDoc at 3–5

minute exposures. Tau levels were normalized to GAPDH levels

to correct for loading and transfer differences.

Frontotemporal Dementia Neurospheres
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Immunofluorescence
For whole neurosphere IFA, neurospheres were fixed in 4%

phosphate buffered paraformaldehyde followed by 30% sucrose

and equilibrated at 4uC overnight. Fixed neurospheres were

placed in embedding medium (Sakura Tissue-Tek O.C.T.) and

snap frozen in liquid nitrogen. Neurospheres were sectioned at

215uC; 8 mm sections were adhered to SuperFrost Plus micro-

scope slides (Fisher) and stored at 220uC for later IFA.

Cryosectioned neurospheres were stained with the following

primary antibodies: rabbit anti-Nestin at 1:200 (Covance); mouse

anti-human Tau13 at 1:5000 (Covance); mouse anti-Tau46 at

1:600 (Cell Signaling). The secondary antibodies Alexa488-goat

anti-mouse and Alexa546-goat anti-rabbit were used at 1:1500

dilution (Molecular Probes).

For analysis of individual undifferentiated cells plated on

fibronectin substrate and differentiated cells plated on LPO

substrate, cells were fixed at 37uC in PIPES fixative (0.1 M

PIPES, 1.0 mM EGTA, 3mM MgSO4 and 3% PFA). Cells were

permeabilized in 0.3% Triton X-100, placed in blocking buffer

(5% normal goat serum, 5% glycerol, and 0.04% sodium azide in

PBS), then incubated in primary antibody. Primary antibodies

Tau13, Tau46, Tau1, CP13, AT8, PHF-1, and DA9 were used at

dilutions described above. Rabbit anti-b tubulin III at 1:2000

(Covance); chicken anti-MAP2 at 1:10,000 (Covance); and rabbit

anti-GFAP at 1:1000 (Chemicon) also were used. The following

secondary antibodies from Molecular Probes were diluted 1:1500:

goat anti-mouse Alexa Fluor 546; goat anti-mouse Alexa Fluor

488; goat anti-rabbit Alexa Fluor 546; goat anti-rabbit Alexa Fluor

488; goat anti-rabbit Alexa Fluor 647. The goat anti-chicken

Alexa Fluor 488 antibody was from Jackson ImmunoResearch,

Inc and used at 1:200. Cells were coverslipped with ProLong Gold

antifade reagent containing DAPI (Invitrogen). Images were

acquired with a Nikon Eclipse TE2000 microscope and analyzed

with MetaMorph software. The proportion of total cells expressing

human tau (Tau13 positive) was determined for each cell line.

Fluorescence intensity and area stained, the threshold parameters,

were based on Tg(CK-tTA) control cell fluorescence and

fluorescence of cells incubated only with secondary antibody. All

image acquisition and cell counts were conducted by an

experimenter blind to genotype.

Immunohistochemistry
Cryosectioned neurospheres were thawed overnight and the

Vector M.O.M. peroxidase immunodetection kit was used to

detect transgene expression (Vector Laboratories, Inc) per

manufacturers instructions. Neurospheres were probed with

Tau13 at a dilution of 1:5000.

Filopodia-Spine Counts
To determine filopodia-spines densities, total Map2 positive

neurite lengths were measured 21 or 25 days post-differentia-

tion; an individual not involved in this experiment assigned a

code to each slide so the experimenter was blind to genotype.

All Map2-positive projections were measured using MetaMorph

software and counted along the Map2 positive neurites;

projections .12 mm were called neurites and ,12 mm were

called filopodia-spines. The number of filopodia-spines/100 mm

was calculated. Between 75–100 total Map2 and TUJ-1 double

positive cells were counted from each cell line. The average

filopodia-spine density/cell was calculated for each cell line.

Statistical Analyses
Both ANOVA and paired t tests were performed using

StatView 5 for Macintosh (SAS Institute, Inc.) for the

determining significance levels for differences in tau expression

levels between rTg(tauwt) and rTg(tauP301L) neurosphere lines.

For paired analysis, individual rTg(tauwt) and rTg(tauP301L) were

paired within each experiment according to order of harvest

(line number); in two experiments the numbers of mutant and

wild type lines were not equal, reducing the number of samples

from 22 to 20. For the ANOVA, experiment and tau genotype

were independent variables with fraction human tau positive,

the dependent variable. For ANOVA of the effects of

differentiation on the fractions tau positive cells in rTg(tauP301L)

and rTg(tauwt) neurosphere lines, differentiation state and tau

genotype were the independent variables. Independent variables

for analysis of spine density were time post-differentiation and

genotype. Post-hoc Bonferroni/Dunn analysis was performed on

ANOVA results. Correlation coefficients for the relationship

between spine density and fluorescence intensity were calculated

using StatPlus.

Results

CK-tTA Driven TRE-tau Transgenes were Expressed in
Neurospheres and Fetal Mice

We previously generated a Tg(tauwt) transgenic line that

harbors human wild type 4R0N tau transgenes driven by the

same TRE as Tg(tauP301L). When crossed to Tg(CK-tTA) mice,

the resulting rTg(tauwt) mice express human wild type tau at

levels comparable to those in rTg(tauP301L) mice [21]. We refer

to mice and cultures that carried both responder and activator

transgenes as rTg, and refer to those that carried only the

activator or responder transgene as Tg(CK-tTA) or TRE-

tauP301L and TRE-tauwt controls. Activator and responder

Table 1. Antibodies: epitopes recognized and relative sizes of mutant and wild type human tau in neurospheres and mice.

Relative Size

Antibody E14 Mice Neurospheres 2.5-mo old mice

Tau13 (human residues 2–18) tauwt.tauP301L tauwt.tauP301L tauwt.tauP301L

CP13 (pSer202) tauwt.tauP301L tauwt.tauP301L tauwt.tauP301L

AT8 (pSer202/pThr205) tauwt.tauP301L tauwt.tauP301L tauwt.tauP301L

PHF-1 (pSer396/pSer404) tauwt.tauP301L tauwt.tauP301L tauwt.tauP301L

Tau1 (non-phospho Ser198/Ser202) tauwt = tauP301L tauwt = tauP301L tauwt.tauP301L

Epitopes recognized by each antibody are shown in parentheses. The more slowly migrating, and hence higher apparent MW, band is to the left and separated from the
smaller, more quickly migrating tau species by the symbol ‘‘.’’. The ‘‘ = ’’ symbol indicates no difference in apparent size of the tau species.
doi:10.1371/journal.pone.0039328.t001
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mouse lines were maintained hemizygous for their respective

transgenes; therefore one-fourth of all pups were expected to

contain both the activator and responder transgenes and express

the protein of interest.

Expression of Camk2a, the promoter driving tTA expression, is

largely restricted to forebrain neurons [31]. CK mRNA [32] and

CK-tTA-driven tauP301L expression [20] had been reported to be

absent in mice until postnatal day 3. In contrast, our Western blot

analysis showed CK-driven expression of human tauwt and human

tauP301L as early as embryonic day 12 (E12) (Figure 1A–C). This

verified transgene expression prior to E14, the developmental age

that neurospheres are harvested.

rTg(tauwt) and rTg(tauP301L) Neurospheres Expressed
Human Tau at Comparable Levels

Neurosphere cultures were generated from individual fetuses

from Tg(CK-tTA) 6 TRE-tauwt and Tg(CK-tTA) 6 TRE-

tauP301L matings, and were genotyped. All cultures grew as non-

adherent free-floating aggregates characteristic of neurospheres

(Figure 1D). Neurospheres were probed with antibody for nestin,

an intermediate filament protein expressed by CNS-SCs, and were

tested for human tau protein expression by IFA and Western blot

with the Tau13 antibody. Nearly all cells in neurospheres were

nestin-positive (Figure 1E–G) as previously reported for neuro-

spheres from other mouse strains (28). Neurospheres from

rTg(tauP301L) and rTg(tauwt) cultures contained cells that also

expressed human tau (Figure 1F–G), but Tg(CK-tTA) controls did

not (Figure 1E). Western blot analyses on neurosphere lysates

confirmed human tau expression in rTg(tauP301L) and rTg(tauwt)

neurospheres, and showed that, as in mice, transgenic human tau

was expressed at comparable levels in neurospheres derived from

each genotype (Figure 1H).

Figure 1. rTg(tauwt) and rTg(tauP301L) fetuses and neurospheres expressed transgene encoded human tau. (A–C) Brains were taken
from Tg(CK-tTA) 6 TRE-tau pups at E12 (A) E13 (B) and E14 (C) for WB analysis with the human specific anti-tau antibody, Tau13. We saw
immunoreactivity only in brain homogenates from pups that genotyped positive for both transgenes. None of the samples from pups with either the
transactivator or responder transgene alone or with neither transgene were immunoreactive with Tau13. (D–G) Neurosphere cultures generated from
E14 Tg(CK-tTA) 6Tg(tau) mouse litters grew as non-adherent neurospheres and expressed human tau. (D) Representative phase contrast image of
neurospheres in culture. (E–G) Fixed and cryosectioned neurospheres analyzed by fluorescence microscopy demonstrated that nearly all cells in
Tg(CK-tTA) (E), rTg(tauP301L) (F), and rTg(tauwt) (G) expressed the CNS-SC protein, nestin (green). rTg(tauP301L) (F) and rTg(tauwt) (G) neurospheres
contained cells that were strongly immunoreactive with Tau13 (red); control Tg(CK-tTA) (E) neurospheres did not. DAPI nuclear stain is blue in E–G.
(H) Western blot analysis from two independent rTg(tauwt) neurosphere cell lines (cultures 1 and 2) and two independent rTg(tauP301L) neurosphere
cell lines (cultures 3 and 4) showed comparable levels of human tau between genotypes. Tau13 immunoreactivity was normalized to GAPDH. The
normalized values indicated that human tau levels were comparable between genotypes. Lysates from cultures 1 and 2 were probed together on one
blot, and lysates from cultures 3 and 4 were probed together on another. Control samples expressing only endogenous mouse tau (Mapt+/+), or
neither mouse nor human tau (Mapt0/0) were included on each membrane; only one set is shown here for the sake of simplicity.
doi:10.1371/journal.pone.0039328.g001
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Variation in Tau Expression among individual
Neurospheres and Independent Neurosphere Lines

Individual neurospheres within a single cell line (derived from a

single fetal brain) varied in transgene expression. Cryosectioned

neurospheres stained with Tau13 indicated that transgene-

expressing cells were not preferentially located at the periphery

nor deep within most spheres (Figure 1F, G; 2G), but neurospheres

varied in transgene expression within a single culture. Some

neurospheres in a culture contained nearly 100% tau transgene

expressing cells, whereas other neurospheres from the same

culture contained few, if any, human tau-expressing cells

(Figure 2G).

We analyzed individual cells for human tau protein levels by

measuring Tau13 fluorescence intensity. At passages 3 and 6 we

dissociated, fixed, and immunostained neurospheres (Figure 2).

Total cell numbers were based on intermediate filament nestin and

nuclear DAPI stains. The fraction of cells that expressed human

tau was determined. A cell was considered positive for transgene

expression if its Tau13 fluorescence was greater than the

background fluorescence seen when incubated only with second-

ary antibody. Figure 2A and 2B show cells strongly positive with

Tau13 in rTg cultures. Figures 2C and 2D indicate cells with very

low level expression of human tau in TRE cultures carrying the

responder transgene, but lacking the transactivator transgene; such

minimally reactive cells were not seen in cultures positive only for

the transactivator transgene (Figure 2E and 2H).

Cell lines generated from rTg(tauwt) fetuses contained a higher

proportion of cells expressing human tau than cultures harvested

from rTg(tauP301L) fetuses (Figure 3A). This was consistent among

four independent experiments (p,0.0001 ANOVA). Each exper-

iment was comprised of 2–4 independent rTg cell lines each

produced from an individual fetus in litters harvested at the same

time from Tg(CK-tTA) 6 TRE-tauwt and Tg(CK-tTA) 6 TRE-

tauP301L matings. The percentages of cells expressing tauP301L was

less in each experiment than the percentages of cells expressing

tauwt, though comparison of lines derived from fetuses harvested at

different times showed some overlap between mutant and wild

type lines. The fraction of positive cells within each culture

persisted over passage.

To further assess effects of mutant and wild type human tau on

the fraction of tau positive cells, we generated neurospheres from

three additional transgenic mouse lines that express the same

human tau variants as rTg(tauP301L)4510 and rTg(tauwt)21221, but

at lower levels as assessed by immunoblotting. In a single

experiment, we determined the percent of human tau expressing

cells present in neurosphere cultures produced from the additional

mouse lines. rTg(tauwt)14238 and rTg(tauP301L)14718 mice both

express human tau at ,50% the level of rTg(tauP301L)4510 and

rTg(tauwt)21221. The single neurosphere culture derived from a

rTg(tauwt)14238 fetus expressed human tau in 42.5% of its cells,

while the three neurosphere cultures derived from

rTg(tauP301L)14718 fetuses had 46%, 45%, and 71% expressing

cells. The third transgenic mouse line, rTg(tauP301L)14319,

expressed human tau at approximately 75% the level of

rTg(tauP301L)4510 and expressed human tau in ,60% of its cells.

In general, the proportions of cells expressing human tau in the

additional lines were within the range seen in the larger series of

experiments and reinforce the observation that the proportion of

cells expressing tau in an individual line is not necessarily

predictive of human tau genotype.

To determine the profile of Tau13 fluorescence intensity of

transgene expression, transgene-positive cells were binned (1 to

.10) based on fluorescence intensity (Figure 3B). The ‘‘dim’’ cells

indicated by the open arrows in Figure 2C and 2D fall in bin 1,

while the bright cells in Figure 2A and 2B are in bins 6 to .10.

Fluorescence intensity histograms are shown for three independent

rTg(tauwt) cultures (Figure 3B) and for three independent

rTg(tauP301L) cultures (Figure 3C) taken from one experiment

(Experiment 3 from Figure 3A). While the rTg(tauP301L) cultures

had a lower proportion of total cells expressing human tau

(Figure 3A), they contained a greater proportion of cells that

expressed higher levels of tau (brighter fluorescence intensity)

(Figure 3C) than rTg(tauwt) cells (Figure 3B). The TRE cultures,

which expressed the responder transgene alone, contained a

fraction of cells, approximately 41% of Tg(tauP301L) cells and 19%

of Tg(tauwt) cells that expressed human tau at very low levels

consistent with the leaky expression reported previously [19,33].

Tau Phosphorylation in Neurospheres
A characteristic of both tauopathy patients and the

rTg(tauP301L)4510 FTD mouse model is tau misprocessing,

primarily phosphorylation. To determine if mutant tau-specific

phosphorylation occurred in neurospheres, we used a battery of

phospho-tau specific antibodies. Due to the numerous sites for

phosphorylation and other posttranslational modifications of the

tau protein, immunoblotted tau most often does not resolve as

distinct bands but instead as a heterogeneous protein smear. To

discriminate distinct tau species within the total tau population, we

used antibodies specific to total tau (DA9), human tau (Tau13),

and phospho-tau epitopes (CP13, AT8, PHF-1, Tau1; see Table 1

for epitope specificity). Each antibody was probed on independent

membranes simultaneous with GAPDH; the GAPDH blot

presented in Figure 4 is from the Tau1 blot. Complete blots for

each antibody are shown in Figures S1, S2, S3.

Immunoblotting with DA9 allowed us to determine total tau

(mouse and human) expression and visualize the electrophoretic

migration pattern of tau from both species (Figure 4A.) Densito-

metric analysis with DA9 indicated that rTg neurospheres

expressed over five-times the amount of total (mouse and human)

tau protein than Tg(CK-tTA) control samples that only express

mouse tau. The migration profile revealed by DA9 showed a

distinct band migrating at ,52 kDa only in cultures that expressed

mouse tau. This band was absent in non-transgene expressing

control samples from Mapt0/0 neurospheres indicating that it was

3R mouse tau, the only tau isoform expressed in mice during

development [34]. Compared to non-transgene expressing con-

trols (shown here: Tg(CK-tTA) and TRE-tauP301L), rTg samples

had additional DA9 signals that appeared as a dense series of

diffuse bands up to ,60 kDa in rTg(tauwt) samples and ,58 kDa

in rTg(tauP301L) samples. Strikingly, the diffuse band in tauwt-

expressing samples had a slower migrating component than

tauP301L-expressing neurospheres. The slower migration of tauwt

also was revealed by DA9, Tau13, CP13, AT8, and PHF-1

antibodies (Figure 4A), possibly suggesting that wild type, rather

than P310L mutant, tau was hyperphosphorylated. Immunostain-

ing with an additional antibody, MC6, which is specific for

pSer235, demonstrated that wt tau is more heavily phosphorylated

at this epitope than P301L mutant tau; these results are presented

in Figure S4.

To better characterize the tau species within the diffuse bands

and the nature of the slower migrating tauwt band, we used

human-specific Tau13, phospho-tau specific antibodies, and

alkaline phosphatase treatment. The diffuse series of bands in

rTg samples and the slower migrating tauwt species were observed

with the Tau13 antibody confirming that they contained

transgene-encoded human tau. All tau transgene-negative control

samples lacked Tau13 signal confirming its specificity for human

tau. We analyzed the neurosphere lysates for phosphorylated tau
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epitopes using CP13, AT8, and PHF-1 antibodies. The phospho-

tau immunoreactivity in Tg(CK-tTA) and TRE-tauP301L control

samples indicated endogenous mouse tau and appeared as distinct

52 and 53 kDa bands (Figure 4A). Human transgene expressing

samples with mouse tau contained the 52 and 53 kDa bands with

an additional protein smear up to ,60 kDa in rTg(tauwt) samples

and to ,58 kDa in rTg(tauP301L) samples indicative of phosphor-

ylated human tau. Strikingly, the more slowly migrating tauwt

band became more apparent with the phospho-tau antibodies

providing evidence that it was a phosphorylated tau species.

Densitometric normalization to GAPDH, showed that rTg

samples had greater immunoreactivity to CP13 (2.9x), AT8

(1.9x), and PHF1 (2.4x) than controls without human tau

transgenes.

Tau1 immunoreactivity and alkaline phosphatase treatment

confirmed that the migration difference between tauwt and

tauP301L was due to phosphorylation. The Tau1 antibody

recognizes tau species that are not phosphorylated at or near

Ser198/202, and has decreased immunoreactivity when tau is

phosphorylated at these epitopes. Both tauwt and tauP301L-

expressing cultures contained Tau1-immunoreactive non-phos-

phorylated tau with identical banding patterns migrating at ,53

and 52 kDa (Figure 4A). TRE and Tg(CK-tTA) samples displayed

only the 52 kDa band with Tau1 representing non-phosphorylat-

ed mouse tau. We treated lysates with calf intestinal phosphatase

(CIP); to restrict analysis to human tau only, we analyzed

neurosphere lysates from tauwt and tauP301L expressing cultures

on the Mapt0/0 background lacking endogenous mouse tau

expression. Phosphatase treatment abolished the higher molecular

weight bands (.52 kDa) providing evidence that they were

phosphorylated human tau. Only a single tau band migrating at

,52kDa, the known molecular weight of recombinant human tau

4R0N [35], remained after phosphatase treatment in both mutant

and wild type samples (Figure 4B). Collectively, these data

indicated that the difference between mutant and wild type tau

protein migration was due to phosphorylation, and not other post-

translational modifications. We did not recover sarkosyl insoluble

tau indicating that insoluble tau aggregates did not form in

undifferentiated cultures of either genotype indicating that tau

hyperphosphorylation at tauopathy-associated epitopes such as

those recognized by AT8 and PHF1 does not necessarily lead to

tau aggregation (data not shown).

Mapt0/0 cultures have not been fully characterized. Here we

used them to help distinguish between mouse and human tau

bands. The wt3 rTg(tauwt) Mapt0/0 culture with low total tau (DA9)

and human tau (Tau13) immunoreactivity may be due to the low

proportion of human tau expressing cells (42%) compared to the

other rTg(tauwt) Mapt0/0 culture, wt4 with 62% tau-expressing

cells.

Brain homogenates from E14, the developmental stage at which

neurospheres were harvested, and young adult 2.5 month-old mice

were analyzed for tau phosphorylation. As seen in neurospheres,

rTg(tauwt) brain homogenates displayed a distinctly slower

migrating tau species than rTg(tauP301L) (Figure 4C) demonstrat-

ing that neurospheres reliably model the difference between wild

type and mutant tau phosphorylation that is seen in vivo. Of note, a

lower molecular weight mouse tau isoform that stained intensely

with phospho-tau antibodies in E14 brains was absent in 2.5-

month-old mice. During embryonic development, the vast

majority of tau is the lower molecular weight 3R tau isoform

(,48 kDa without posttranslational modifications) [34] that is

heavily phosphorylated [36,37]. By postnatal day 24, fetal tau

isoforms have been replaced with larger, though less phosphor-

ylated, tau isoforms [34,38]. The lower molecular weight tau

species unique to E14 brains likely represents heavily phosphor-

ylated fetal mouse tau. Also of note, adult rTg(tauwt) mice

contained a higher molecular weight Tau1-immunoreactive tau

species than adult rTg(tauP301L), suggesting that young adult

rTg(tauwt) mice express a tau species not phosphorylated at Ser198/

202 that is either more heavily phosphorylated at other epitope(s),

or has other post-translational modifications distinct from tauP301L.

Results from these analyses are summarized in Table 1.

We assessed tau phosphorylation in dispersed cells from

dissociated neurospheres. For each cell culture we determined

the proportion of nestin stained cells that also were immunore-

active with phospho-tau antibodies. rTg cultures contained a

greater proportion of cells immunoreactive to phospho-tau

antibodies than Tg(CK-tTA) controls. The AT8 antibody revealed

focal staining in nuclei of all genotypes expressing mouse tau

(Figure 5). The staining was absent in Mapt0/0 cells and likely

represents binding of 3R pSer202/Thr205 mouse tau to nucleolar

organizing regions in dividing cells as reported previously [39–41].

This staining was not observed with CP13, which recognizes a

different epitope associated with pSer202, nor in non-dividing cells

after differentiation. The presence of appropriately phosphorylat-

ed nucleolar mouse tau in dividing, but not differentiated cells,

indicates that overexpression of human tau did not compromise

physiological tau modification and function.

Stem or Progenitor Cell Populations that Express Human
Tau Transgenes Maintained Stem Cell Properties

We examined the variability of self-renewal and differentiation

among independent cell lines. Although there was an effect of the

P301L mutation on tau phosphorylation, expression of mutant or

wild type human tau did not obviously interfere with their SC

properties. Human tau expression did not alter the proliferation

rate of neurosphere lines; regardless of genotype, all cell lines

required passaging every 5–7 days. We conducted quantitative cell

proliferation assays between passages 2–3 and between passages 6–

7 on cell lines of all genotypes. Independent cultures of all

genotypes had similar doubling times ranging from 20 to 32 hours

as previously reported for neural SC lines [42]. TauP301L-

expressing cultures had a shorter, though non-significant, doubling

time of 23.364 hours (n = 3), than controls and rTg(tauwt) with

29.468.8 hours (n = 5) and 29.365.5 hours (n = 3) doubling times.

Figure 2. Single-cell staining revealed protein expression heterogeneity in transgene expressing cells. Nestin staining is shown in
green (A through F), Tau13 (A through E) or Tau46 (F) in red, and DAPI in blue (A through F). A proportion of cells from rTg(tauwt) (21–30%) (A) and
rTg(tauP301L) (38–44%) (B) cultures displayed strong immunoreactivity with Tau13 (solid arrow), while others had weak immunoreactivity with Tau13
(open arrow). Cultures containing responder transgene alone, TRE-tauwt (C) and TRE-tauP301L (D), did not contain any cells with strong Tau13
immunoreactivity, but they did contain some cells with weak immunoreactivity (open arrows) indicative of leaky transgene expression. (E) Cultures
containing only the transactivator transgene, Tg(CK-tTA), did not express human tau but were immunoreactive with Tau46 (F), an anti-tau antibody
that reacts with both mouse and human tau. Nearly all cells of all genotypes were immunoreactive with the anti-nestin antibody (green). Scale bar
= 25 mm. (G) Immunohistochemistry of cryosectioned neurospheres probed with Tau13 revealed that some neurospheres from rTg cultures,
rTg(tauP301L) shown here, contained a large proportion of transgene expressing cells (closed arrow), other neurospheres from the same culture
contained very few transgene expressing cells (open arrow). (H) Control Tg(CK-tTA) neurospheres were not immunoreactive with Tau13.
doi:10.1371/journal.pone.0039328.g002
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Sex of the mice of neurosphere origin did not influence transgene

expression or growth rates.

To investigate effects of transgene expression on neurosphere

multipotency and differentiation, we plated dissociated neuro-

sphere cells on laminin/poly-L-ornithine coated glass bottomed

plates in basal medium supplemented with retinoic acid [43,44].

After 21 or 25 days, we fixed, stained, and visualized the cells with

IFA using antibodies against neuronal and glial antigens.

Differentiated rTg(tauP301L), rTg(tauwt), and Tg(CK-tTA) control

neurospheres all contained cells positive for neuronal proteins

microtubule associated protein 2 (recognized by Map2 antibody)

and b-tubulin III (recognized by TUJ-1 antibody) or the astrocytic

protein, glial fibrillary acidic protein (GFAP) (Figure 6). Though

mature neurons restrict Map2 expression to dendritic spines,

immature neurons express Map2 in developing axons as well as in

developing dendrites [45–48]. Neuritic projections contained both

b-tubulin III and Map2 expression, but in contrast to the smooth

axonal TUJ-1 staining, Map2 staining had a spiny morphology

indicative of developing dendritic-spines (Figure 6).

The rTg cell lines contained cells that co-expressed neuronal

proteins and human tau and cells that co-expressed GFAP and

human tau (Figure 6A, B). All genotypes contained similar

proportions of cells immunoreactive with both Map2 and TUJ-

1, 3–5%, indicating that transgene expression did not alter

neuronal cell differentiation. Compared to tauwt-expressing

cultures, tauP301L cultures contained fewer neuronal protein

expressing cells that also expressed human tau; the proportions

mirrored that of undifferentiated cells co-expressing nestin and

human tau (Figure 7).

We observed a difference in filopodia-spine density between

rTg(tauP301L) and rTg(tauwt) differentiated cells at 25 days after

exposure to differentiation stimuli. Mature dendritic spines

develop from elongated filopodial projections [49–53]. Here we

counted the density of these dendritic spine precursors, filopodia-

spines, from differentiated cells derived from neurosphere cultures.

The filopodia-spine density among genotypes did not differ

significantly at 21 days post-differentiation, but became statistically

significant 4 days later (Figure 8B). The filopodia-spine density

increased between days 21 and 25 in tauP301L cultures; conversely,

the filopodia-spine density in the tauwt and control cultures slightly

decreased during this interval. At 25 days post-differentiation, cells

derived from tauP301L-expressing neurospheres had a 2363%

higher filopodia-spine density than neurons derived from tauwt-

expressing cultures, and 20+/24% higher filopodia-spine density

than non-Tg expressing controls (p,0.0001); rTg(tauP301L) Mapt0/

0 and rTg(tauwt) Mapt0/0 cultures showed similar results (data not

shown). Interestingly, we saw an association with cell culture

genotype, but not with the level of transgene expression in

individual cells, with spine density. Within a single culture, cells

expressing high levels of human tau had filopodia-spine densities

similar to those in cells expressing low levels of human tau and

cells in which transgene-encoded protein was not detectable

(Figure 8C). We did not observe any genotype-specific differences

in tau localization to spines in differentiated cells (Figure 8A);

transgene-positive tauwt and tauP301L cells expressed human tau

throughout their neuritic projections.

In addition to cell types with antigen expression and morphol-

ogy characteristic of neurons or astrocytes, a population of very

large cells that, in some cases, had a diameter over 100 mm

emerged. These cells had a flattened appearance, some were

Figure 3. rTg(tauwt) neurospheres contain more human tau
expressing cells than rTg(tauP301L) neurospheres. Undifferenti-
ated single cells (shown in Figure 2) stained with DAPI and nestin were
counted and the proportion co-expressing Tau13 was determined. (A)
Consistently the proportion of cells co-expressing Tau13 was signifi-
cantly higher in rTg(tauwt) cultures than rTg(tauP301L) cultures. Four
independent experiments consisting of 11 independent rTg(tauwt)
cultures and 11 independent rTg(tauP301L) cultures are shown here
(ANOVA: variation due to experiment F = 5.5, P = .01; ANOVA mutant
versus wild type F = 65.9, P,0.0001. Interaction between experiment
and tau genotype was marginally significant: F = 3.8, P = 0.035.)
Following Bonferonni/Dunn correction, the mutant versus wild type
comparison remained significant at P,0.0001. Paired t test also
indicated a significant difference between rTg(tauP301L) and rTg(tauwt)
neurospheres (P,0.0001). Closed circles represent tauwt; open circles
represent tauP301L. (B, C) Fluorescence intensity histograms from
Figure 3A’s Experiment 3 cells revealed heterogeneity in transgene
expressing cells. Transgene positive cells were binned (1 to .10) based
on fluorescence intensity. ‘‘1’’ indicates a ‘‘dim’’ cell with low transgene
expression (open arrow from Figure 2), and bins 6 through .10
indicated ‘‘bright’’ cells with high transgene expression (closed arrow
from Figure 2); proportion of cells is on the y-axis. The left-skewed
rTg(tauwt) histogram (B) indicated that most Tau13-positive cells
expressed human tau at low levels. In contrast, the bimodal
rTg(tauP301L) histogram indicated two distinct cell populations: one
comparable to rTg(tauwt) and one with higher transgene expression

levels. TRE cell lines, TRE-tauP301L in this experiment, expressed human
tau at low levels; all cells fell in bins 1 and 2.
doi:10.1371/journal.pone.0039328.g003
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elongated, and they expressed low levels of nestin and GFAP but

not Map2, b-tubulin III, or GABA; some expressed human tau.

These cells first appeared in culture ,7 days after induction of

differentiation and grew in size until the cultures reached

confluence. Examples of these cells can be seen in Figure 6. They

appeared after growth factor withdrawal upon receiving differen-

tiation stimuli and developed morphological phenotypes resem-

bling senescent cells [54] and may indicate cells that did not

receive the appropriate stimuli to complete differentiation and

remained in a pseudo-stem cell state. While morphologically and

antigenically distinct neural precursor cells have been identified in

neurospheres, one of which is EGF-responsive and the other

morphologically large EGF/FGF-2 responsive cells [55], we did

not supplement cultures with FGF-2. Though neurospheres may

have endogenously synthesized FGF-2 [25], the uncharacterized

cells did not display strong nestin immunoreactivity typical of

neural SCs.

Discussion

The impetus for these studies was to use a well-characterized

mouse model for frontotemporal dementia to assess whether CNS-

SC cultures reproduced genetic differences seen in the mice from

which they were derived and whether independent isolates from

genetically identical hosts produced consistent phenotypes. Neuro-

spheres derived from tauwt–expressing mice contained more

heavily phosphorylated tau species with slower electrophoretic

motility than tauP301L. The phosphorylation differences between

tauP301L and tauwt also occurred in fetal mouse brains and

persisted through young adulthood. Though hyperphosphorylated

tau is considered a hallmark feature of tauopathy, several disease-

causing mutant tau variants actually are less phosphorylated than

tauwt in vitro [56–59] and in young mice [60–62]. While

abnormally phosphorylated tau in aged rTg(tauP301L)4510 mice

coincides with memory and behavioral abnormalities [20,60], the

hypophosphorylated tauP301L seen in young mice may have pre-

clinical significance and deserves attention. Transgenic mice that

express pseudohyperphosphorylated tau, an engineered tau

variant that mimics constitutively phosphorylated tau by replacing

Ser/Thr residues with glutamate [63], did not develop tau

aggregates, neuronal loss, or behavioral abnormalities [64]. In

contrast, mice expressing tauR406W, a variant that remains

hypophosphorylated compared to tauwt even in aged mice,

developed age-dependent tau aggregates [65] and memory and

behavioral abnormalities [66].

Figure 4. Transgene-encoded human tauwt is more heavily
phosphorylated than tauP301L. (A) Electrophoresed and blotted
neurosphere lysates were probed with antibodies against total tau
(mouse and human): DA9; human tau: Tau13; phospho-tau: CP13, AT8,
and PHF-1; and non-phospho tau: Tau1. In control samples, TRE
(tauP301L shown here) and Tg(CK-tTA), all antibodies, except Tau13,
revealed a mouse tau band at ,52kDa that is absent from Mapt0/0

samples. Human tau from rTg samples migrated as a diffuse series of
bands indicative of a heterogenous population of tau species. Human
tauwt-expressing cells contained more slowly migrating tau species
(,53 to 60 kDa) than tauP301L-expressing cells (,53 to 58 kDa) with all
anti-tau antibodies, except Tau1, indicating a more heavily phosphor-
ylated tau species in rTg(tauwt) than rTg(tauP301L). Tau1 probed samples
revealed an identical migration pattern with both rTg genotypes. In all
blots, MW lines indicate 60, 58, 53, 52 kDa, respectively. All samples
probed with the each tau antibody were blotted on the same
membrane. GAPDH was probed simultaneously with each tau antibody;
the example of GAPDH immunostaining shown is taken from the Tau1
blot. Mapt0/0 and control samples were run on each blot but rearranged
in the figure for presentation purposes. See Figures S1 for the original

blots for each antibody showing the Mapt0/0 and control samples in
their locations before rearrangement for presentation, along with
GAPDH immunostaining for each blot. (B) Tau protein from rTg(tauwt)
Mapt0/0 and rTg(tauP301L) Mapt0/0 neurosphere lysates had the same
electrophoretic mobility after phosphatase treatment. Untreated
samples (-) showed the characteristic slower migrating (,60 kDa)
trailing edge for tauwt compared to tauP301L. Calf-intestinal phosphatase
(CIP) treatment (+) abolished the higher molecular weight phospho-tau
bands (.52 kDa) leaving a single tau band migrating at ,52kDa in
both rTg genotypes. (C) Human tau from rTg(tauwt) E14 and adult mice
contained more slowly migrating phospho-tau species than
rTg(tauP301L) as seen in neurospheres. No immunoreactivity was
observed in Mapt0/0 samples with any anti-tau antibody; * = mouse
tau. All samples probed with each tau antibody were blotted on the
same membrane. GAPDH was probed simultaneously with each tau
antibody; the example of GAPDH immunostaining shown is taken from
the AT8 blot. Mapt0/0 and control samples were run on each blot but
rearranged in the figure for presentation purposes. See Figures S2 and
S3 for complete, un-rearranged blots showing all samples that were
run.
doi:10.1371/journal.pone.0039328.g004
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The hypophosphorylated tauP301L species in neurospheres and

young mice may represent free tau not associated with microtu-

bules (MT). Tau bound to MTs acquires more phosphorylation

than free tau as demonstrated by in vitro phosphorylation of tau in

the presence or absence of MTs [59,67]. Many of the MAPT exon

10 missense mutations that cause dementia, including P301L,

reduce the ability of tau to interact with MT [68–71], and tauwt

displaces mutant tau from MTs [63,72]. The absence of tauP301L

aggregates or neurofibrillary tangles (NFTs) in neurospheres and

in young mice, despite phosphorylation at many of the sites most

frequently phosphorylated in AD and FTD (pSer202, pSer396,

pSer235, pSer404) [36,73–76], also may correspond to unbound tau

as MT association has been implicated as an important step for tau

nucleation [77,78]. The quantity of NFTs correlates with disease

severity [79]. However, recent studies have dissociated NFTs from

neuronal death [80–82] and decreased memory function [19], and

instead suggest a deleterious effect of soluble tau.

Phosphorylation of mouse tau also reflects appropriate phos-

phorylation corresponding to the differentiation state. Heavily

phosphorylated 3R mouse tau is know to bind to nucleolar

organizing regions in dividing cells [39–41] and was also observed

in neurospheres, indicating that human tau did not inhibit either

the cellular machinery or kinases involved. This reinforces the

same conclusion coming from the recapitulation of the genetic

differences in human tau phosphorylation seen in neurosphere

culture.

Figure 5. Overexpression of human tau did not interfere with localization of mouse tau to the nucleus in undifferentiated dividing
cells. IFA revealed a punctate nuclear tau species (arrow) immunoreactive to AT8 (A) but not CP13 (B) in dissociated undifferentiated neurospheres.
AT8 immunoreactivity, indicative of pSer202/Thr205 tau, was seen in the nucleus of all genotypes that expressed mouse tau, but was absent in cultures
derived from Mapt0/0 or in differentiated cells providing evidenced that it was of mouse origin and corresponded to actively dividing cells but not
mature cell types.
doi:10.1371/journal.pone.0039328.g005

Figure 6. Dissociated neurospheres stimulated with retinoic acid differentiated into cells that expressed neuronal or glial antigens.
Each rTg(tauP301L) (panel A) and rTg(tauwt) (panel B) culture contained cells positive for Tau13 and TUJ-1, Tau13 and Map2, and Tau13 and GFAP;
merged images of Tau13 (red) with TUJ-1, Map2, or GFAP (green) are presented; yellow color indicates overlapping expression. Tg(CK-tTA) control
cells are shown in panel C. Arrows point to spiny projections labeled with Map2 staining. Scale bar = 10 mm. Cells were simultaneously stained with
three different secondary antibodies (Alexa 546 a-mouse for Tau13; Alexa 647 a-rabbit for TUJ-1; Alexa 488 a-chicken for Map2) and each fluorophore
was imaged in separate channels. Alexa 546 was artificially colored red, and Alexa 647 and 488 were both artificially colored green for color-combine
with Tau13.
doi:10.1371/journal.pone.0039328.g006
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We observed differences in filopodia-spine densities between

tauwt and tauP301L differentiated cells. Developmentally, dendritic

spine morphology evolves from long thin filopodia-spines to

mature spines of various morphologies; during this transformation,

filopodia-spine density decreases [49–53]. We observed a slightly

higher filopodia-spine density in Map2 and TUJ-1 double-positive

cells from tauP301L cultures than those derived from tauwt or

cultures that did not express MAPT. While the level of transgene

expression within individual cells did not affect filopodia-spine

density, we have not ruled out an effect of the transgene insertion

site. Interestingly, in a separate P301L mouse line that that

harbors the mutation in the longest mouse tau isoform, 4R2N,

driven by the Thy1 promoter, young mice with ‘‘hypopho-

sphorylated’’ tau have enhanced learning and memory and

increased Long Term Potentiation (LTP) in the dentate gyrus

compared to controls [61]. With age, the spine density of

rTg(tauP301L)4510 mice decreases and coincides with increased

neuronal excitability [81]. Whether or not the greater filopodia-

spine density we observed in differentiated tauP301L cultures relates

to enhanced LTP in young mice or neuronal vulnerability later in

life in unknown, but warrants further exploration.

We did not observe mislocalization of tauP301L to dendritic

spines, as reported in aging mice [60] or in transfected rat neuron

cultures [21]. We saw high levels of transgenic tau protein

throughout neuritic projections in differentiated neurospheres

from both human tau transgene genotypes. The presence of tau in

the filopodia-spines of developing cells [74,83] suggests that the

phenomenon correlates with a dynamic morphology and does not

necessarily indicate pathological injury.

Overall, phenotypes of neurosphere cultures isolated from

individual fetuses at different times reflected the genotype of the

mice from which they were derived and proved highly similar in

transgene expression, proliferation, and differentiation. Unlike

clonal cultures, these neurospheres were formed by aggregation,

which results in culture heterogeneity [22–25]. During culture

they merge and fuse as well as proliferate [84,85], which likely

resulted in the heterogeneous composition of transgene expressing

and non-expressing cells within the same sphere. The minor

transgene expression variability among neurosphere cultures

generated from littermate fetuses possibly occurred during the

initial brain harvest. We did not specifically dissect the forebrain

from each fetus. Nestin expressing neural SCs in the developing

midbrain [86] and hindbrain [87] may have contributed to the

transgene expressing cell population since CKIIa, the promoter

driving tTA-transgenic human tau expression, is expressed

throughout the brain at this developmental age [88]. We saw

more variability among independent experimental harvests than

among cultures derived from littermate fetuses; we attribute this

variation to inconsistencies inherent to IFA. Regardless, IFA

consistently demonstrated that undifferentiated cells derived from

rTg(tauwt) expressing fetal brains expressed human tau in a higher

proportion of cells than those derived from rTg(tauP301L)

expressing fetal brains.

Total brain homogenates indicate that rTg(tauwt) mice express

comparable levels of transgenic tau as rTg(tauP301L) [21]. While

the rTg(tauP301L) cultures had a lower proportion of total cells

expressing human tau, they contained a greater proportion of cells

that expressed higher levels of tau (brighter fluorescence intensity).

This feature of some transgenes is caused by position-effect

variegation [89–91]. Neurospheres, like the mice from which they

were derived, may show this effect and could be useful models for

screening transgene expression in founder lines. Consistent with

the difference in transgene expression seen in undifferentiated

neurospheres, differentiated cells derived from tauwt-expressing

neurospheres expressed human tau in a higher proportion of cells

than those derived from tauP301L-expressing neurospheres. Likely,

non-transgene expressing progenitor cells gave rise to non-

transgene expressing differentiated cells and transgene expressing

progenitor cells differentiated into transgene expressing mature

cells. Alternatively, tauP301L transgene expression may have

decreased neural precursor survival. Since neurospheres prolifer-

ated and differentiated over several passages in both genotypes,

and differentiated transgene expressing cell proportions mirrored

that of the undifferentiated condition, evidence favors the former

explanation.

Some of the differences we saw between tauP301L and tauwt may

stem from differences in transgene insertion sites. Neurosphere

cultures from mouse lines expressing the same human tau variants,

but at lower levels than rTg(tauP301L)4510 and rTg(tauwt)21221,

overlapped in the percentages of cells expressing human tau, but

within the same range as our more extensively studies lines. It is

likely that there are effects of transgene insertion site as well as the

tau mutation.

With the emergence of methodologies to culture neurospheres

from human patients [14], experiments evaluating the culture

system’s relevance and validity are crucial. Our data provide

supporting evidence that neurospheres can reliably model

phenotypes of their derived source over extended culture periods.

The neurosphere culture system provides a robust assay for

studying effects of external factors on the development and

differentiation of the CNS, and the genetic susceptibility to

neurological disorders. While it is unreasonable to expect that an

in vitro system will fully recapitulate a complex disease process

involving complex cell interactions, biologically relevant models

that provide reproducible results are invaluable resources. This SC

model shares the genetics of mice that model human FTD, and

has shown the capacity to model pre-disease, genotype-specific

phenotypes. By using mice expressing either of two distinct

transgenes as the source of SCs, we have established that

neurosphere cultures maintain genotype-specific characteristics.

Our results lend credence to the growing body of data

supporting the development and use of patient specific-stem cell

lines to study disease. We have already shown that these cells

reproducibly mimic biological events of the mice from which they

Figure 7. The proportion of differentiated cells that expressed
human tau reflected that of undifferentiated neurospheres.
Differentiated cells immunoreactive with both Map2 and TUJ-1
antibodies were counted; the proportion co-expressing Tau13 is
presented here. Presented are results from four independent rTg(tauwt)
cultures and three independent rTg(tauP301L) cultures generated from
two litters of each Tg(CK-tTA) 6 TRE-tau mating. The four litters were
harvested, genotyped, and cultured simultaneous. They yielded four
rTg(tauwt) and three rTg(tauP301L) pups for neurosphere culture shown
here. By ANOVA, the proportions of differentiated cells (closed symbols)
did not differ from those of the neurospheres (open symbols) (ANOVA,
F = .008, P = .93). The different symbols represent individual cell lines
before and after differentiation. Genotype had a highly significant effect
even after Bonferroni correction (**: ANOVA, p,0.0001).
doi:10.1371/journal.pone.0039328.g007
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Figure 8. rTg(tauP301L) cells developed more filopodia-spines than differentiated rTg(tauwt) and non-transgene expressing control
cells. (A) Cells differentiated for 21 or 25 days were evaluated for the number of Map2 positive filopodia-spines and tau localization. Shown here are
data pooled from three independent rTg(tauP301L) and four independent rTg(tauwt) lines. We observed transgenic tau expression, visualized by Tau13
immunoreactivity, throughout Map2 positive neurites and filopodia-spines in both tauP301L (top panel) and tauwt (bottom panel) expressing cells.
Arrows point to filopodia-spines. Scale bar = 10 mm. (B) The density, filopodia-spines/100 mm, was plotted for each genotype (n indicates number of
cells counted). Time post-differentiation did not significantly affect spine density (ANOVA, F = 1.2, P = .28), but there was a significant interaction
between genotype and time (F = 6.5, P = 0.0016) with spine density in rTg(tauP301L) neurospheres at 25 days significantly (**, P,.0001) greater than in
rTg(tauwt) or TgCKtTA neurospheres. Overall the effect of genotype was highly significant (ANOVA, F = 13.3, P,0.001) The horizontal lines inside the
boxes demarcate the mean filopodia-spine densities, circles indicate outliers; ‘‘n’’ indicates number of cells counted. (c) Plotting of spine density
against fluorescence intensity revealed no correlation (R2 = 0.01) between protein expression level and filopodia-spine density. Closed circles
represent rTg(tauwt) cells, open circles represent rTg(tauP301L) cells.
doi:10.1371/journal.pone.0039328.g008
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were derived, and that they express the appropriate molecules

involved in tau modification genetically validating the utility of SC

as a model system. We are now in a position to interrogate the

system. We are focusing on microarray analysis experiments to

uncover differentially regulated genes between tauP301L and tauwt

mice and neurosphere cultures. Preliminary results are encourag-

ing and show consistency in genotype-specific gene expression

patterns among independently derived neurosphere lines. This will

direct hypotheses about potential pathways targeted in cells that

carry the tauP301L gene. By extending this research to patient-

specific SCs, high-throughput cell based genetic screening (cDNA

or siRNA) assays could uncover small molecules and potential

pathways involved in pathogenesis and, ideally, the genetic

specificity of the system may lead to treatment therapies tailored

to unique patient needs.

Supporting Information

Figure S1 Entire, unrearranged immunoblots used to
generate Figure 4. Figure 4 immunoblots were rearranged for

clarity of presentation and some lanes removed for uniform

presentation of our results. In this supporting figure, we present

entire blots with their respective GAPDH loading controls. (A)

Lane loading was identical for DA9 and Tau1 membranes as

shown. (B) The Tau13 blot was loaded in the same orientation as

DA9 and Tau1, but contained only the TREwt control. (C) Lane

arrangement was identical for CP13 and AT8 membranes. (D)

Lane arrangement for PHF-1. In Figure S1 A–D, DA9, Tau1,

Tau13, and PHF-1 membranes were blotted simultaneously with

GAPDH and the full membranes are shown. CP13 and AT8

antibodies required a more sensitive ECL system than the other

antibodies, requiring probing GAPDH independently after cutting

the blot; membrane reconstruction is shown. rTg(tau) sample

labels (i.e. wt1, P301L1, wt2, P301L2, etc.) correspond to those

shown in Figure 4.

(TIF)

Figure S2 Original immunoblots used to generate
Figure 4C showing results from embryonic day 14 mice.

For simplicity, only one representative mouse for each genotype

was shown in Figure 4C; all samples are shown here. GAPDH was

probed simultaneously with each of the anti-tau antibodies; whole

immunoblots are shown.

(TIF)

Figure S3 Original 2.5-month-old mouse immunoblots
used to generate Figure 4C. For simplicity, only one

representative mouse for each genotype was shown in Figure 4C;

all samples are shown here. GAPDH was probed simultaneously

with each of the anti-tau antibodies; whole immunoblots are

shown.

(TIF)

Figure S4 rTg(tauwt) neurospheres were more heavily
phosphorylated at Ser235 than rTg(tauP301L) neuro-
spheres. rTg(tauwt) and rTg(tauP301L) neurospheres, with or

without endogenous mouse tau, were immunoreactive with the

MC6 (anti-pSer235) antibody. As seen with the other phospho-tau

antibodies, rTg(tauwt) neurospheres displayed a slower migrating

band than rTg(tauP301L) neurospheres. The membrane was

subsequently probed with Tau13; the characteristic migration

difference between tauwt and tauP301L–expressing samples was

apparent.

(TIF)
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