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Abstract: In a world of rapidly changing technologies, reliance on complex engineered systems
has become substantial. Interactions associated with such systems as well as associated manufac-
turing processes also continue to evolve and grow in complexity. Consider how the complexity of
manufacturing processes makes engineered systems vulnerable to cascading and escalating failures;
truly a highly complex and evolving system of systems. Maintaining quality and reliability requires
considerations during product development, manufacturing processes, and more. Monitoring the
health of the complex system while in operation/use is imperative. These considerations have com-
pelled designers to explore fault-mechanism models and to develop corresponding countermeasures.
Increasingly, there has been a reliance on embedded sensors to aid in prognosticating failures, to
reduce downtime, during manufacture and system operation. However, the accuracy of estimating
the remaining useful life of the system is highly dependent on the quality of the data obtained.
This can be enhanced by increasing the number of sensors used, according to information theory.
However, adding sensors increases total costs with the cost of the sensors and the costs associated
with information-gathering procedures. Determining the optimal number of sensors, associated
operating and data acquisition costs, and sensor-configuration are nontrivial. It is also imperative
to avoid redundant information due to the presence of additional sensors and the efficient display
of information to the decision-maker. Therefore, it is necessary to select a subset of sensors that not
only reduce the cost but are also informative. While progress has been made in the sensor selection
process, it is limited to either the type of the sensor, number of sensors or both. Such approaches do
not address specifications of the required sensors which are integral to the sensor selection process.
This paper addresses these shortcomings through a new method, OFCCaTS, to avoid the increased
cost associated with health monitoring and to improve its accuracy. The proposed method utilizes
a scalable multi-objective framework for sensor selection to maximize fault detection rate while
minimizing the total cost of sensors. A wind turbine gearbox is considered to demonstrate the efficacy
of the proposed framework.

Keywords: sensor selection; fuzzy clustering; ordered clustering

1. Introduction

The performance of every system degrades over time due to external factors such
as the environment it operates in or due to its operating condition. Maintenance is the
key to ensuring the safe and reliable operation of a system throughout its operational
life. Depending on the industry, ineffective maintenance could cost the industry up to
$60 billion each year [1]. With the development of the concept of the internet of things
(IoT) and the development of wireless sensor network technology, a newer maintenance
strategy termed Prognostics and Health Monitoring (PHM) is growing in usage due to its
cost-effectiveness and the increasing availability of the number of Internet-enabled devices
on the market [2]. The functional architecture of PHM typically consists of six layers,
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including 1. Data acquisition 2. Data Manipulation 3. Condition Monitoring 4. Health
assessment 5. Prognostics and 6. Decision Making.

Since the data acquisition layer forms the bedrock on which subsequent layers de-
pend, it is imperative to provide high-quality information for effective fault diagnosis and
prognosis to aid in decision making. A primary component of the data acquisition layer is
the sensor units. Sensor units provide a means for measuring, monitoring and tracking
environmental and operational parameters. Considering the recent developments in sen-
sor technology there are numerous types of sensors available in the market to measure
parameters such as displacement, acceleration, force, temperature, light, touch, location,
gas and biological matter [3]. In light of the increasing type and number of sensors, for
effective deployment of the PHM system, an efficient sensor selection process needs to be
established. (in order to avoid confusion, it should be noted that sensor selection has two
meanings in the field. One refers to the selection of sensors from the set already deployed
into a network; the selection process is used to optimize the network by choosing which
sensors will be active at a given time [4]. The meaning intended in this work refers to the
selection of sensors to be integrated into a system during the design and build process or
after the process; in this case, the selection process is focused on incorporating the most
appropriate sensors for the task at hand [5]).

The sensor selection process varies from smaller systems or experimental setups to
larger systems that are deployed and being used by the end-user. The sensor selection
process for the experimental systems/setups is empirical in nature and simple, whereas
the selection process for large complex systems is mainly systematic and requires several
additional considerations. Several sensor selection methods have been proposed over the
years, but most methods are not scalable, i.e., the selection method for experimental setups
cannot be used for large complex systems and vice versa. In addition, the task of sensor
selection itself is complicated by the lack of standard vocabulary in characterizing existing
sensors and associated specifications. Most existing sensor selection processes are quite
complicated; some require the use of specialized software and advanced approaches. This
paper aims to establish a sensor selection framework suitable for both experimental setups
and large complex systems.

In the past, sensor selection relied heavily on the domain knowledge of the decision-
maker thereby making it subjective. Recently, several sensor selection methods have been
proposed based on graphical and semantic approaches, with explicitly stated objectives
and constraints as shown in Figure 1. The objectives are also referred to as performance
requirements or figures-of-merits (FOM) in the literature. Some sensor selection processes
have been proposed for experimental setups, but most of them are for large complex
systems. Sensor selection as outlined by Santi, Sowers and Aguilar [6], forming the basis
for the methods proposed in the literature. This process starts with design engineers
creating a detailed and unambiguous list of the operating, environmental, physical and
cost specifications for the system. After building an in-depth understanding of the physics
of the system and its use context, the next step is to identify the measurement principle.
Next is the identification of the sensing methods. Note that a multitude of sensing methods
are available for each of the candidate measurement principles in the list. The final step in
the process is to select the sensors that best fit the constraints of the scenario. In Cheng,
Azarian and Pecht [7], the authors discuss criteria such as parameters to be measured,
performance needs, electrical and physical attributes, reliability and cost for sensor system
selection for PHM applications. In the next section, a review of the literature associated
with the study of sensor selection is classified into (a) empirical sensor selection process
for experimental setups and (b) sensor selection through structural equations for large
complex systems.
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Figure 1. Classification of Objectives for Sensor.

1.1. Empirical Sensor Selection Process

A graphical toolset for sensor selection using 2D performance charts has been pro-
posed [8]. This process focuses on collecting and defining the sensor characteristics for
each sensor type from the manufacturers’ datasheets. The collected information is then
plotted on two-dimensional charts, with sensor performance indices as the axes. These per-
formance charts illustrate various trade-offs; for example, resolution vs. range or frequency
vs. range. Only the common elements corresponding to a type of sensor listed on the
manufacturers’ technical specifications are used for the performance charts. The strongest
sensor candidates are identified from the charts. A subset of the sensor candidates is then
selected after accounting for cost, practicality and reliability. According to the authors,
this method gives an overview of sensor performance thus graphically illustrating the
sensors best suited for a given task. Although this method acts as a straightforward visual
selection tool, it is not scalable. Unstructured and variable outcomes result due to the
lack of a systematic method to guide the designers in the pairing of attributes within the
performance chart.

Schmidt and Laerhoven [9] proposed a semantic approach to sensor selection in
the context of building a smart appliance. The approach begins with the analysis of the
conditions of the informational, physical and social environment in which the appliance is
used or interacted with. Situations that are similar for the device are grouped in a single
context that is labeled. Variables such as time interval, temperature, value, number of
people in the vicinity, etc. that help discriminate the contexts are identified. Based on the
variables identified, sensors are selected while accounting for the accuracy and cost of the
sensors. The selection begins all over if the sensors do not perform well in the lab setting
with a prototype of the device. This is time-consuming and an inefficient approach for
sensor selection. A similar context-aware approach to sensor selection using the dynamic
skyline technique is proposed by Kertiou et al. [10]. The dynamic skyline technique is
utilized to reduce the search space and select the best sensors following user requirements.
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According to the authors, this method can be adopted by different IoT middleware for
designing relevant solutions with a high level of accuracy and minimize the search and
selection time. To counter the slow-acting dynamic skyline technique and to make it
scalable the authors propose the use of distributed gateways connected to a server, each
gateway responding to a local request by the user.

A novel sensor selection algorithm utilizing the concept of entropy and information
gain from information theory is proposed by Tjen, Smarra and D’Innocenzo [11] for struc-
tural damage detection. The main idea is to choose a sensor from each pair of sensors
such that the information gain is maximized. The authors use a Principal Component
Analysis-based metric to achieve a trade-off between prediction accuracy and computa-
tional complexity. Zhang, Ayoub and Sundaram [12] show that greedy algorithms are
optimal for estimating the states for a certain class of linear dynamical systems. Along with
budget constraints, they consider the objective of minimizing the trace of the steady-state a
priori or a posteriori error covariance produced by a Kalman filter. The authors also provide
proof that even under the assumption of a stable system, a priori and a posteriori error
covariance-based sensor selection problems are NP-hard. The authors also demonstrate
that certain objective functions are not submodular or supermodular in general which
makes it difficult to evaluate the performance of greedy algorithms in theory. Through
simulations, the performance of the proposed greedy algorithms is illustrated. A similar
greedy algorithm approach is proposed by Clark, Brunton and Kutz [13] to approximate the
number of economic and expensive sensors in an environment or state space. The authors
evaluate the composition of both types of sensors along with their placement to assess their
ability to reconstruct a higher dimensional state space. The preliminary sensor positions
are obtained through QR-decomposition. The sensor noise levels, sensor cost, total budget
and the single value spectrum of the data measured play a significant role in selecting the
number of sensors. The sensor recommendations are based on the computational results of
asymptomatic regions of parameter space.

A three-sieve sensor selection method is proposed by Jones et al. [14] which takes
into account performance requirements, environmental constraints and economic consid-
erations. This method starts with an analysis of the system. The candidate sensors are
assessed for specific requirements from the operators and the final decision is based on the
cost of the sensors. This method, however, is meant specifically for experimental setup
and small systems. This method can be used to consider homogenous sensors and the
comparison can be made only with similar sensors.

1.2. Sensor Selection through Linear and Non-Linear Equation

To guide the sensor selection process in highly complex systems with a large num-
ber of interacting parameters, modeling tools and software may be needed. The Drexel
University Intelligent Infrastructure Institute proposed a sensor selection methodology
for bridge health monitoring [15]. The first step in the process is to analyze the bridge
and its surroundings as well as the environment in which the sensors are needed to be
deployed. Based on the analysis a candidate set of sensors are selected in consideration
of performance characteristics, environmental constraints and cost. Zhang and Vachtse-
vanos [16] proposed a methodology to decide the type, number and location of sensors. A
novel graph-based technique called quantified-directed-model for fault propagation from
subsystems to subsystems in a large complex system is presented. The authors quantify the
fault detectability metric via signal-to-noise ratio, time-to-detection to the time-to-failure
ratio, sensitivity of a sensor and symptom duration to time-to-failure ratio. These, along
with cost as the objectives, are modeled and optimized using particle swarm optimization.
The performance of the proposed method is tested on a five-tank system.

A knowledge-based selection of sensors and actuators for plant equipment was pro-
posed by Riedel, Arroyo and Fay [17]. The authors argue that selection decisions are taken
one device at a time, which is time-consuming and results in suboptimal solutions. To
overcome this limitation the proposed method presents a concept based on plant descrip-
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tion and semantic models. The paper states that this function-oriented selection process
is capable of considering a wider solution space as well as seamless integration of this
procedure into plant workflow. L. Santi’s’ [6] a systematic sensor selection (S4) policy for
aerospace vehicle design forms the basis for most sensor selection processes. The proposed
method supports the selection of sensors adapted to a system in a particular situation. After
establishing constraints through a computer-assisted analysis, sensor selection is carried
out via a process of iterative optimization. The proposed method addresses a complex
situation that needs a large number of interacting sensors. This method is also utilized
for boost stage rocket engines, turbo-fan engine diagnostics, and aircraft engine health
estimation [18–20]. A sensor selection based on the physical model and sensitivity analysis
for a helicopter transmission system is proposed by Lyu et al. [21]. The first step in the
proposed method builds a physical model of the gear tooth damage and mesh stiffness.
In the next step, effective condition indicators (CI) are presented and the optimal CI set is
selected via the Mann-Kendall test. The selected optimal CI is used to develop a health
indicator through the sen slope estimator. Based on the monotonic relevance and sensitivity
to damage levels sensors are selected. The selected approach is validated by simulation.
The authors state that the proposed approach effectively reduces the test cost and improves
the system’s reliability. The proposed methods require knowledge of advanced modeling
software and algorithms which can time consuming and expensive to implement making
it viable only for large complex systems.

Based on sensitivity analysis and the capability of the sensors in predicting the polymer
electrolyte membrane (PEM) fuel cell performance sensor selection algorithms such as the
largest gap method and exhaustive brute force search are explored by Mao and Jackson [22].
A sensitivity matrix related to sensor measurements and fuel cell health parameters is
generated using a fuel cell model. The sensitivity matrix is used as the input for the
sensor selection algorithms proposed in the paper. The authors demonstrate that accurate
prediction can be obtained with optimal sensors. A sensor selection algorithm for PEM
fuel cells considering sensor sensitivity, fuel cell performance and resistance to noise is
proposed by Mao, Davies and Jackson [23]. The sensitivity of the sensors is calculated
via a fuel cell model and the sensitivity to different failure modes is then ranked. The
performance of the selected sensors is evaluated via an adaptive neuro-fuzzy inference
system (ANFIS). The proposed methods are focused mainly on the health of PEM fuel cells;
it is not suitable to be used as a general tool for sensor selection.

A comprehensive evaluation method of sensor selection for PHM based on grey
clustering for an electronic control system of radar was proposed by Guan et al. [24]. The
first step in the proposed approach is to define and quantify three grey indexes based on
the dependency matrix and classify the sensors into grey classes. The next step is to utilize
the whitening weight function in consideration of the objective and subjective tendency to
improve the effectiveness of the result. The final step in the process is to cluster the sensors
by analyzing the clustering coefficient calculated based on grey clustering theory.

The most commonly used sensors for predictive maintenance of industrial motors
are listed by Murphy [25]. The report summarizes the advantages and disadvantages of
various sensors and when to use sensors for health monitoring. It also acts as a guide for
parameters that need to be sensed/measured for predictive maintenance. However, beyond
simple comparison, it does not provide a method for selecting the sensors. Summary of the
literature review is shown in Table 1.

Based on the literature review the following conclusions can be drawn. First, the sensor
selection process regardless of the application technology always begins with the analysis of
the system and its failure modes. Second, the selected sensors need to be compared with the
specific system and environmental constraints. Third, the sensor selection tools developed
in the literature for both classes of the sensor selection process are not interchangeable.
Finally, the cost considerations are taken into account after considering the technical
constraints. Additionally, the methods proposed are not usable if the practitioner is not
well versed in semantic processes or complex selection algorithms.
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Table 1. Summary of Literature Review.

Authors Title Key Attributes

J. Shieh, J. E. Huber, N. A. Fleck, and M. F. Ashby The Selection of Sensors

Provides an overview of sensor
performance thus graphically

illustrating the sensors best suited for
a given task

Schmidt and Laerhoven How to build smart appliances?

• Variables that help discriminate
the contexts are identified.

• Sensors are selected to account
for the accuracy and cost of the
sensors.

Kertiou et al.
A dynamic skyline technique for a
context-aware selection of the best

sensors in an IoT architecture

This method can be adopted by
different IoT middleware for

designing relevant solutions with a
high level of accuracy and minimize

the search and selection time

Tjen, Smarra, and D’Innocenzo
An entropy-based sensor selection
algorithm for structural damage

detection

PCA is used to achieve trade-off
between prediction accuracy and

computational complexity

Jones et al. A Straightforward Route to Sensor
Selection for IoT Systems

• It considers performance
requirements, environmental
constraints, and economic
considerations.

• This method starts with an
analysis of the system. The
candidate sensors are assessed
for specific requirements from
the operators and the final
decision is based on the cost of
the sensors

P. A Emin, Aktan; F Necati, Catbas; Kirk A,
Grimmelsman; Mesut

Development of a model health
monitoring guide for major bridges

Candidate set of sensors are selected
in consideration of performance
characteristics, environmental

constraints, and cost

Zhang and Vachtsevanos
A Methodology for Optimum

Sensor Localization / Selection in
Fault Diagnosis

Fault detectability metric is
quantified. Cost is the modeled
objective that is optimized using

particle swarm optimization.

Riedel, Arroyo, and Fay

Knowledge-based selection of
principle solutions for sensors and
actuators based on standardized
plant description and semantic

concepts

The paper presents a concept based
on plant description and semantic

models. The function-oriented
selection process is capable of

considering a wider solution space as
well as seamless integration of this

procedure into plant workflow

Amol Kulkarni, Janis Terpenny, and Vittal Prabhu Sensor Selection Framework for
Designing Fault Diagnostics System

The key step that sets this sensor
selection process apart is the

utilization of constraints that are
general to most engineered systems

while also catering to the specific
needs of each system with the

integration of the two-sieve method

2. An Ordered Fuzzy Clustering Approach to Sensor Selection

This section introduces the OFCCaTS (Ordered Fuzzy C-means Clustering and Two
Sieve) methodology for sensor selection. This includes an overview of the methodology
as well as details for each of its core components. The proposed sensor selection process
integrates the features of a typical sensor selection process and facilitates making a final
decision based on the system requirements. The selection process starts with the analysis
of the system and assesses the sensor needs for condition monitoring and allows for
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the selection of the sensor right down to the specification of the sensor. The few key
steps that set this sensor selection process apart are the utilization of constraints that are
general to most engineered systems while also catering to the specific needs of each system
with the integration of the two-sieve method. Sensors are considered clustering objects.
A fault-sensor dependency matrix is created. To design an effective PHM system, the
following parameters are considered: fault detection probability, fault tolerance, sensor
value and fault detection time. To estimate some of these parameters, a few common
assumptions are made. The first assumption is that all the sensor data are forward to a
central data processing unit. This is a simple and convenient assumption as it does not
require the use of any distributed computing algorithms for statistical computation. The
second assumption is that the data received by the fusion center are not corrupted by any
communication fault. The final assumption is that the data fusion center indicates whether
the operational condition of the system is healthy or abnormal. The definitions of the
parameters considered are provided below.

2.1. Fault Sensor Dependency Matrix

Fault-sensor mapping matrix is a diagnostic model utilized to catch the fault data
and its causal relationship at the hierarchical system level [26]. It typically consists of the
dependency relationship between observable failure modes and symptoms associated with
a system. The fault dependency matrix is modified to reflect the relationship between the
fault modes and the sensors, as the fault diagnosis here depends largely on the information
collected by the sensors. A matrix D =

[
dij
]
, i = 1, 2, 3, . . . , n denotes the system fault-

sensor dependency matrix. If a sensor sj can detect the fault fi, element dij = 1; otherwise,
dij = 0. The fault-sensor mapping matrix is shown below:

The parameters considered below will be used to form the clustering object, which
will be used as the input for the clustering algorithm.

2.1.1. Likelihood Estimation

The fault-sensor mapping matrix approximately describes the simple matched rela-
tionship between fault modes and sensor set. In Table 2, dij = 1 indicates that the sensor can
detect the fault fi with a probability of 1. Due to sensor reliability and complex environ-
mental factors, a sensor may not detect a fault with absolute certainty. The fault detection
probability for each sensor is obtained via MCMC (Markov Chain Monte Carlo) simulation
in python-3.

Table 2. Fault Sensor mapping matrix.

s1 s2 s3 . . . sn

f 1 0 1 0 . . . 1
f 2 1 1 0 . . . 0
...

...
...

...
...

f m 0 0 1 . . . 0

2.1.2. Sensor Value Estimation

Cost is always a factor while designing any system; the same holds for PHM systems as
well. To evaluate the cost of sensors usually purchase cost, installation cost, data processing
cost and the sensor usage cost is considered. However, this does not accurately reflect the
sensor value. To calculate the sensor value, the following parameters are considered:
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Maintenance Cost = Labor Cost + Productivity Loss Cost + Component Replacement Cost, (1)

Sensor Cost = Purchase Cost + Installation Cost + Sensor Communication Cost + Sensor Replacement Cost
+ Disassembly Cost + Inspection Cost,

(2)

Sensor Value(i) =
Maintenance Cost + Sensor Cost

Total Number o f Sensor(i)
(3)

2.1.3. Fault Tolerance

The reliability of a sensor after a fault has occurred is defined as fault tolerance. It
is difficult to replace the sensors when they operate in extreme environmental conditions
or remote places such as space. Fault tolerance depends on the application in which the
sensors are deployed. Given a set of sensors K, the reliability of the sensors R(K, t) is defined
as the probability that no sensor in K fails during the interval (0, t). If sensor failures are
independent, one has:

R(K, t) = Πk∈KRk(t)Πk/∈K(1− Rk(t)) (4)

where Rk(t) is the reliability of sensor k. The reliability of the sensors is modeled as a
Poisson distribution:

Rk(t) = e−λkt (5)

where λk is the failure rate of sensor k, typically considered to be constant under steady-
state conditions. According to reliability engineering, the sum of reliability and unreliability
of any component or system should be 1. Therefore, the unreliability or the probability of
failure of the sensors is given by

Qk(t) = 1− Rk(t) (6)

2.1.4. The Proportion of Fault Detection

The proportion of fault detection is defined as the ratio of the number of faults a
sensor can detect to all the faults under consideration. This metric considers the proportion
of faults that can be detected by the sensors. If a sensor can detect all the faults under
consideration, then the value is 1. However, in reality, no one sensor can detect all the
failures, and therefore the value lies between 0 and 1. The proportion of fault detection is
given by the following equation.

PFD =
∑ fij

F
(7)

where, fij is the fault ‘i’ that is detected by sensor ‘j’. F is the total number of faults under
consideration.

2.1.5. Criticality Term

Criticality is a term that was introduced by Reeves [27]. This method considers the
effect of the failures that can be detected by the sensors on the system. It is based on
the Fussell-Vesely importance measure. The importance measure considers the failure’s
contribution towards the unavailability of the system.

The criticality term is measured by subtracting the probability of system failure given
that the sensor does not detect the critical failure. It is given by the following equation:

CR{s} =
Qsys−Qsys(qs=0)

Qsys
(8)

where Qsys is the probability of system failure Qsys(qs = 0) is the probability of system failure
given that the sensor does not detect the failure.

The value of the criticality term is 1 if a sensor can detect all the failures and 0 if it
cannot. From the considered set of failures, only a few of the failures are considered critical
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failures and are marked as such. The critical failures are identified based on the method
proposed by Konstantinidis, Katsavounis and Botsaris [28].

2.2. Ordered Fuzzy C-Means Clustering with PROMETHEE Algorithm

The analysis for sensor selection presented in this paper is based on the Ordered Fuzzy
C-means clustering (OFCM) algorithm combined with the preference ranking organization
method for enrichment evaluation (PROMETHEE) proposed by Bai et al. [29]. This method
was developed to overcome the shortcoming of traditional clustering algorithms in which
the clusters have little to no relation with one another, and the weight of each criterion
is not considered. The classic fuzzy c-means clustering algorithm typically utilizes Eu-
clidean norm for similarity measure between objects, which does not consider the relative
importance of the criteria under consideration. The PROMETHEE method considers the
difference between the criteria as well as the priority degree for each pair of objects. It is an
efficient method for the pairwise comparison of a given set of alternatives. However, the
algorithm alone does not provide the specifications for each type of sensor selected. This is
achieved by utilizing a method called three-sieve sensor selection, proposed in [14].

Given a set of alternatives A = {a1, a2, . . . , an} and a set of criteria G = {g1, g2, . . . , gn},
an ordered partition of A should satisfy the following three conditions:

• A = Ui=1, 2, ..., ci Ci
• ∀ i 6= j : Ci ∩ Cj = ∅
• C1 � C2 � . . . Cn

where Ci denotes the ith order cluster and C1 is considered as the best cluster. Similar to
the classic Fuzzy Clustering Method, the authors define a new objective, shown in (9):

minJm =
Σc

i=1Σn
j=1(µij)

mφ(aj)−ϑi
2

c min_(1≤i, j≤c, i 6=j ϑi−ϑj
2 = J1

J2
(9)

where ϑi represents the fuzzy centroid of the ith order cluster, φ (aj) is the net outranking
flow and µij is the fuzzy membership. The following steps need to be taken to implement
the algorithm.

2.3. Two-Sieve Sensor Specification Selection Method

After selecting the type of sensors, to identify the specification of the sensors to be
placed, two-sieve sensor selection is utilized. A three-step analysis method feeds into a
selection tool that can be adapted to nearly any IoT system or situation. The proposed
method is a modified version of the selection process that was proposed by Jones et al. [14].
Incorporating these two methods together makes it easier for the decision-maker to identify
the specification of the sensor that needs to be purchased. The sensor performance data is
obtained from the sensor manufacturer’s datasheet, which feeds into the three-step analysis.
The results are used to populate a two-sieve selection tool, represented as a succession
of color-coded matrices. Each sieve provides a simple go/no go decision for each sensor
based on the constraints. The number of candidate sensors is reduced progressively. After
the final matrix is obtained, the sensor with the highest aggregate score is chosen.
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Algorithm. OFFCATS

1. Determine the difference denoted as dk (ai, aj) between the evaluation of ai and aj with
respect to the criterion gk:

dk

(
ai, aj

)
= gk(ai)− gk

(
aj

)
(10)

2. Transform the difference dk (ai, aj) into a single criterion using a preference function Pk (ai,
aj) for each criterion gk:

Pk

(
ai, aj

)
= fk

(
dk

(
ai, aj

))
(11)

where fk (.) is a monotonically non-decreasing function varying between 0 and 1, i.e., greater
the value higher the preference to ai over aj based on the criterion gk.

3. Compute the preference degree π
(

ai, aj

)
by aggregating all the single criterion preference

function in the form of a weighted sum:

π
(

ai, aj

)
= Σs

k=1wk.Pk

(
ai, aj

)
(12)

4. Calculate the positive and the negative net outranking flow:

φ+(ai) =
1

s− 1
Σx∈A{ai}π(ai, x) (13)

φ−(ai) =
1

s− 1
Σx∈A{ai}π(ai, x) (14)

The positive outranking flow φ+(ai) denotes the extent to which the alternative ai is
preferred to the other alternatives. The larger the value, the better the alternative and vice
versa when it comes to the negative outranking flow φ−(ai)

5. Compute the net outranking flow φ(ai) which represents the total priority of ai over all the
other alternatives.

φ(ai) = φ+(ai)− φ−(ai) (15)

If φ(ai) = 1, then ai is the absolute best alternative; if the net outranking flow of two
alternatives is the same, then both alternatives are equal.

6. Set c = 2 and randomly initialize µij of φ
(

aj

)
belonging to cluster i.

7. Calculate the fuzzy centroid ϑi

ϑi =
Σn

j=1

(
µij

)m
φ
(

aj

)
Σn

j=1

(
µij

)m (16)

8. Rank the cluster according to the fuzzy centroid (ϑi) of each cluster. For example, if ϑi > ϑj
then Ci � Cj

9. Update µij based on (17):

µij =

m−1

√
1

φ(aj)−ϑi

Σc
i=1

(
m−1

√
1

φ(aj)−ϑi

) (17)

10. Repeat steps 8 and 9 until the value of J1 in (9) has only negligible changes.
11. Calculate J2 and Jm. Then, let c = c + 1. If c = γ (stop value), stop; otherwise return to step 6,

where the stop value γ will reach optimal value at n/2.

Three-Step Analysis

A relevant set of candidate sensors can be selected only after understanding the
system and its fault as a whole. The three-step analysis aids in the practitioners’ effort in
understanding the system.
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1. Define the parameters to be measured: Several parameters can be measured either di-
rectly or indirectly through simple calculations. An example of such a parameter is
provided by Regtien [5], where the author uses the amount of fluid in a tank which
can be measured either through mass or volume of the fluid. Several parameters are
measured typically simultaneously as the complexity of the system increases;

2. Define the performance requirements for the sensors needed for each measurement parameter:
These requirements could be related to any functional attribute of the sensor such
as accuracy, resolution, sensitivity, etc. A detailed list of requirements is provided in
Cheng, Azarian and Pecht [7].

3. Consider the environment in which the system will operate and the availability of the sen-
sors: The environmental factors affecting the sensor performance acts as a physical
constraint for the measurement system as a whole. The number of sensors that are
available in the market also needs to be considered.

The three-step analysis not only provides an in-depth understanding of the processes
occurring within the system but also aids in the identification of parameters for measure-
ment. The performance requirements, derived from the three-step analysis, are used in the
two-sieve tool show to identify the appropriate set of sensors. A spreadsheet template uti-
lized for sensor selection for the three-sieve sensor selection method is provided in [14]. As
OFFCATS considers the criteria for sensor selection this negates the need for a three-sieve
selection process. While the first will help us identify the specification of the sensor, the
second sieve will help us identify the environmental and stock requirements of the sensor.

3. Results

To demonstrate the effectiveness and the scalability of the framework, a wind turbine
gearbox is considered for the following reasons. First, the wind turbine gearbox is simul-
taneously the most troublesome and the most critical system in a wind turbine. Second,
the gearbox failures are generic and independent of the manufacturer. Finally, downtime
due to gearbox failures takes an average of 256 h to repair and 20% of the downtime is
due to gearbox failures [30]. The basic faults under consideration and fault occurring rate
for wind turbine gearbox with sensors used to detect the associated faults are provided
in Table 3. The corresponding sensors for each failure mode are identified and the sensor
selection algorithm will provide the type and number of sensors. The sensors used to
detect the failures and the associated parameters are provided in Table 4.

A gearbox is used to convert the slow rotational speed of the rotor blades of around
30 rpm to acceptable rotational speeds of 1000–1800 rpm via a high-speed shaft. It typically
consists of a lubrication system, a combination of planetary gears and parallel gears held
in mesh with axial and radial supporting bearings. The transformation from the low-speed
stage is typically done in several stages for stepwise alteration of speed. Each of the stages
usually has a ratio of about 1:4–1:5. The gears in wind turbines deal with partial loads,
variable speeds, and dynamic torques due to wind speed turbulence. This puts severe
stress on the gears and the bearings inside the system. Due to the friction between the
surfaces, small metal particles drop in the lubricant, which is a wear-out process known as
micro-pitting.
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Table 3. Faults under consideration.

System Faults Fault Occurrence
Rate (/year)

Sensors to Detect
the Faults

Gearbox

Abnormal Filter (f1) 0.0158 S5, S6, S10
Poor quality of lubrication oil (f2) 0.0158 S3, S4, S6, S10

Dirt (f3) 0.0126 S5, S10
Abnormal vibration (f4) 0.0187 S1, S2, S8, S9

Corrosion of pins (f5) 0.1051 S2, S5, S6, S8, S10
Abrasive wear (f6) 0.0876 S2, S8, S9

Glued (f7) 0.0021 S2, S3, S9
Pitting (gear) (f8) 0.0114 S2, S6, S8, S10

Pitting (gear bearing) (f9) 0.0263 S2, S6, S8, S10
Excessive pressure (f10) 0.0088 S4

Excessive temperature (f11) 0.0021 S3

Gear fatigue (f12) 0.0026 S1, S2, S8, S9
Tooth surface defects (f13) 0.0026 S10

Gear tooth deterioration (f14) 0.0026 S2, S8
Cracks in gears (f15) 0.0135 S2, S8

Oil leakage (f16) 0.3504 S4, S5, S7

Table 4. Sensors and associated parameters for Sensor Selection.

Sensors Failure Rate
(/hour)

Proportion of
Faults Detected

Sensor Value
(cost/sensor)

Probability of
Failure Criticality Term

Strain sensor (S1) 3 × 10−7 0.043478 192.33 0.051 0.84
Vibration Sensor (S2) 4.22 × 10−7 0.195652 220.44 0.071 0.92

Temperature Sensors (S3) 8.5 × 10−7 0.065217 156.20 0.013 0.76
Pressure (S4) 5 × 10−7 0.065217 165.08 0.084 0.78

Flow (S5) 1.7 × 10−5 0.086957 97.14 0.949 0.60
Oil Debris sensor (S6) 1.852 × 10−6 0.108696 130.87 0.277 0.68

Level (S7) 4.3 × 10−7 0.021739 48.34 0.073 0.97
AE sensor (S8) 4.29 × 10−6 0.173913 209.95 0.528 0.89

Rotary Torque Sensor (S9) 5 × 10−6 0.086957 205.63 0.584 0.87
Oil Particle Counter(S10) 9 × 10−7 0.152174 239.35 0.146 0.84

The early failures and long downtime of a gearbox make the design, construction and
maintenance of wind turbines a challenge to the renewable energy industry. Although
designed to achieve a lifetime of 20 years, the gearbox falls short of the lifetime by 5−7 years.
Due to its massive size, the repair and replacement of gearbox components are difficult to
handle. The involvement of support ships and cranes in repairing offshore wind turbines
creates its own set of issues. Only a few of the wind turbine failures can be rectified on site.
To repair the gearbox failures, the entire sub-system needs to be removed from the turbine
with significant cost and downtime. About 38% of the total cost of replacement of the
components is from the gearbox. A typical gearbox replacement costs about $300K–$775K
including the rental equipment and labor costs [31].

OFCCaTS

This section illustrates how to utilize OFCM for sensor selection. The complete list
of sensors that need to be selected, as well as their associated criteria, are provided in
Table 5. The complete list of sensors and the associated criteria for sensor selections is
provided in Table 4. The fault detection likelihood of the sensors for all the faults can
be seen in Appendix A. For sensor selection, the maximum likelihood of each sensor is
selected regardless of the number of faults detected by the sensors. Let S = {sj|j = 1, 2, . . . ,
n} be the set of sensors.
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Table 5. The complete list of sensors and the associated criteria for sensor selection.

Sensors
Fault Detection

Likelihood
Estimates

The Proportion
of Faults
Detected

Sensor Value Probability of
Failure Criticality Term

Strain sensor (S1) 0.85 0.043478 192.33 0.051 0.84
Vibration Sensor (S2) 0.94 0.195652 220.44 0.071 0.92

Temperature Sensors (S3) 0.826 0.065217 156.20 0.013 0.76
Pressure (S4) 0.97 0.065217 165.08 0.084 0.78

Flow (S5) 0.92 0.086957 97.14 0.949 0.60
Oil Debris sensor (S6) 0.818 0.108696 130.87 0.277 0.68

Level (S7) 0.94 0.021739 48.34 0.073 0.97
AE sensor (S8) 0.94 0.173913 209.95 0.528 0.89

Rotary Torque Sensor (S9) 0.78 0.086957 205.63 0.584 0.87
Oil Particle Counter (S10) 0.93 0.152174 239.35 0.146 0.84

The step-by-step procedure for clustering based on Algorithm is given as follows:

1. The preference degrees π
(
si, sj

)
are computed between each pair of sensors and then

the net outranking flow φ
(
sj
)

of each sensor is calculated. For each criterion, the
Gaussian preference function shown in Equation (18) is utilized.

fk(d) =

{
0 d ≤ 0

1− e−
d2

2s2 d > 0
(18)

where the equal weights are assigned for each preference criteria and only the parameter ‘s’
needs to be fixed. The value of ‘s’ lies between the threshold of indifference (below which
there is no preference to either of the actions) and the threshold of absolute preference
(above which there is a total preference to one of the two actions) shown in Table 6.

Table 6. The preference thresholds and the weights of the five criteria.

Threshold of Indifference (q) 0.0409 0.229936 0.0472 0.672 0.81

Threshold of absolute preference
(p) 0.1412 0.840427 0.4652 0.885 0.94

Weights (wi) 1/5 1/5 1/5 1/5 1/5

The preference degree of each sensor is then obtained and φ
(
sj
)

is calculated using
Equation (15). The net outranking flow for each sensor is shown in Figure 2 and the net
outranking flow for each criterion is shown in Table 7. Then, set the number of clusters to
be 2. (c = 2).

2. Randomly initialize the memberships of µij of φ
(
sj
)

belonging to cluster ‘i’.
3. The fuzzy centroid for each cluster is calculated using equation 16. Let the fuzziness

parameter be set to 2.
4. Rank the clusters according to the fuzzy centroid ϑi. Thus, we can obtain C1 and C2.
5. Update the value of µij based on equation 17.

6. Repeat Steps 3 and 4 until
∣∣∣Jt

1 − Jt−1
1

∣∣∣ ≤ ε, where ‘t’ denotes the iteration and ε =

0.000001 is the absolute difference between J1
t and J1

t−1.
7. Compute Jm. Then, let c = c+1, stop when the number of clusters c = 10/2 ≈ 5,

otherwise return to step 2.
8. Select the number of clusters with the minimum value of ‘Jm’ and defuzzify the

memberships
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Figure 2. Net outranking flow for each alternative.

Table 7. Net outranking flow for each criterion.

Sensors g1 g2 g3 g4 g5

Strain Sensor 0.043 0.753835 0.051 0.84 0.85
Vibration Sensor 0.196 0.901 0.071 0.92 0.94

Temperature Sensor 0.065 0.564682 0.013 0.76 0.826
Pressure Transducer 0.065 0.611172 0.084 0.78 0.97

Flow Sensor 0.087 0.255484 0.949 0.6 0.92
Oil Debris Sensor 0.109 0.432072 0.277 0.68 0.818

Level Sensor 0.022 0 0.073 0.97 0.94
AE sensor 0.174 0.846081 0.528 0.89 0.94

Rotary Torque Sensor 0.087 0.823465 0.584 0.87 0.78
Oil Particle Counter 0.152 1 0.146 0.84 0.93

In Table 8 the membership value of each sensor for a given cluster is shown. Consider-
ing C1 � C2 the sensors belonging to cluster C1 are selected. The next step in the process is
to proceed with the two-sieve method to identify the specification for the chosen sensors.
At least three different alternatives for each sensor are chosen. The specification data for
each sensor are obtained through the https://www.digikey.com, website last accessed on 2
April 2021.

Table 8. The membership value of each sensor for the cluster with minimum value of Jm.

Sensors Cluster 1 Cluster 2

Strain Sensor 0.613501 0.386499
Vibration Sensor 0.861319 0.138681

Temperature Sensor 0.555019 0.444981
Pressure Transducer 0.439907 0.560093

Flow Sensor 0.730557 0.269443
Oil Debris Sensor 0.360895 0.639105

Level Sensor 0.526111 0.473889
AE sensor 0.418491 0.581509

Rotary Torque Sensor 0.586528 0.413472
Oil Particle Counter 0.752694 0.247306

The two-sieve method provides the specifications of the sensors and provides a
method to compare different sensor specifications with that of the system information.
System information is converted to constraints and entered into the table as shown in
Table 9.

https://www.digikey.com


Sensors 2021, 21, 6470 15 of 17

Table 9. Selection of an oil sensor using the two-sieve method.

Sieve 1 Performance
Requirements

Criteria

Total
Description

Minimum
Detectable

Particle Size
(>4 µm)

Detects Both
Ferrous and
Non-Ferrous

Particles

Fluid Tem-
perature Fluid Compatibility Detects

Humidity

Sensors

S1

Gill Sensors &
Controls 4212

OIL
CONDITION

SENSOR

1 µm No 40 to 150

Hydraulic, gear, mineral,
vegetable synthetic ester,

semi-synthetic,
polyalphaolefin,

polyalkyleneglycol

No 8

S2 SKF CMSS-
ONL-1000-2

Ferrous—40
µm Non-

Ferrous—135
µm

Yes −20 to 85 Mineral, synthetic oils and
water/oil emulsions Yes 0

S3 Filtertechnik
PC9001 4 µm Yes 0 to 70

Hydraulic and lubrication oils,
mineral, synthetic (phosphate
ester compatible) diesel fuels

Yes 16

S4 Pamas S50 4 µm No 20 to 60 Mineral and synthetic oils No 1

Total 4 Total Score = Minimum Detectable Particle × Detects both types of particles × Fluid Temperature × Fluid Compatibility 3

Sieve 2 Physical &
Environment
Requirements

Criteria
Total

Description Operating Temperature 29–50 ◦C Sensor Housing Dimension Volume (mm3) Weight (kg)

Sensors

S1

Gill Sensors &
Controls 4212

OIL
CONDITION

SENSOR

Yes 727,650 0.84 32

S2 SKF CMSS-
ONL-1000-2

Yes 847,547 0.75 64

S3 Filtertechnik
PC9001

Yes 31,680,000 5 0

Total 4 Total Score = Total Score Sieve 1 × Operating Temperature × Sensor Housing Dimension ×Weight 1

An example of oil particle counters from different sensor providers is shown in Table 9.
In the example shown below, the color codes are keyed to scores: red = 0, yellow = 1, and
green = 2. The total score in each sieve is calculated by multiplying the scores of each
constraint. In the first sieve, the sensors with scores more than 0 are filtered out. In the
second sieve, the scores are calculated by multiplying the scores of the first sieve with that
of the total score of the second sieve, and the sensor with the maximum score is selected.
In this case, the ‘Filtertechnik PC9001′ is selected.

This process is repeated for all the other types of sensors that are selected. In the
two-sieve method the scores do not reflect the sensor performance in the long run nor do
they indicate the superiority of any sensor over another.

4. Conclusions

In this paper, a sensor selection framework for designing a fault diagnostic system
has been presented. A case study based on the gearbox subsystem of a wind turbine is
provided to demonstrate the OFCCaTS methodology, utilizing a fuzzy clustering method
with preference ranking that has been established based on the wind turbine gearbox
fault history data and expert experience. The constraints and metric proposed in the
graphical method proposed in this paper generate two 2D graphs. No candidates are
discarded between the graphs so that analysis is performed with simultaneous comparison
of multiple graphs. Further, while most sensor selection processes become unmanageably
complex given a large system, the proposed process is scalable and generalizable to any size
system. In contrast to the complex, and sometimes specialized approaches, the proposed
sensor selection process offers a more general and easily adaptable approach.

In the case of an extremely large system, the proposed method is scalable until the
OFCM step, where the two-sieve method becomes time-consuming and extremely ineffi-
cient. Future work will investigate extending the process to automate the two-sieve step of
the proposed sensor selection method such that the decision-maker is provided with a list
of sensors with associated specifications.
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Appendix A

Table A1. Sensor and fault mapping with their probability of detection.

Strain
Sensor

Vibration
Sensor

Temperature
Sensor

Pressure
Trans-
ducer

Flow
Sensor

Oil
Debris
Sensor

Level
Sensor

AE
Sensor

Rotary
Torque
Sensor

Oil
Particle
Counter

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

f1 0 0 0 0 0.641 0.709 0 0 0 0.78
f2 0 0 0.52 0.59 0 0.82 0 0 0 0.72
f3 0 0 0 0 0.59 0 0 0 0 0.93
f4 0.72 0.77 0 0 0 0 0 0.84 0.72 0
f5 0 0.64 0 0 0.45 0.45 0 0.50 0 0.59
f6 0 0.82 0 0 0 0 0 0.94 0.63 0
f7 0 0.84 0.56 0 0 0 0 0 0.78 0
f8 0 0.64 0 0 0 0.56 0 0.8 0 0.63
f9 0 0.68 0 0 0 0.65 0 0.67 0 0.56

f10 0 0 0 0.97 0 0 0 0 0 0
f11 0 0 0.83 0 0 0 0 0 0 0
f12 0.85 0.83 0 0 0 0 0 0.84 0.54 0
f13 0 0 0 0 0 0 0 0 0 0.73
f14 0 0.94 0 0 0 0 0 0.72 0 0
f15 0 0.76 0 0 0 0 0 0.85 0 0
f16 0 0 0 0.78 0.92 0 0.94 0 0 0
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