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Due to fast transmission and various circulating SARS-CoV-2 variants, a significant
increase of coronavirus 2019 infection cases with acute respiratory symptoms has
prompted worries about the efficiency of current vaccines. The possible evasion
from vaccine immunity urged scientists to identify novel therapeutic targets for
developing improved vaccines to manage worldwide COVID-19 infections. Our study
sequenced pooled peripheral blood mononuclear cells transcriptomes of SARS-CoV-
2 patients with moderate and critical clinical outcomes to identify novel potential host
receptors and biomarkers that can assist in developing new translational nanomedicines
and vaccine therapies. The dysregulated signatures were associated with humoral
immune responses in moderate and critical patients, including B-cell activation, cell
cycle perturbations, plasmablast antibody processing, adaptive immune responses,
cytokinesis, and interleukin signaling pathway. The comparative and longitudinal analysis
of moderate and critically infected groups elucidated diversity in regulatory pathways
and biological processes. Several immunoglobin genes (IGLV9-49, IGHV7-4, IGHV3-
64, IGHV1-24, IGKV1D-12, and IGKV2-29), ribosomal proteins (RPL29, RPL4P2, RPL5,
and RPL14), inflammatory response related cytokines including Tumor Necrosis Factor
(TNF, TNFRSF17, and TNFRSF13B), C-C motif chemokine ligands (CCL3, CCL25,
CCL4L2, CCL22, and CCL4), C-X-C motif chemokine ligands (CXCL2, CXCL10, and
CXCL11) and genes related to cell cycle process and DNA proliferation (MYBL2,
CDC20, KIFC1, and UHCL1) were significantly upregulated among SARS-CoV-2
infected patients. 60S Ribosomal protein L29 (RPL29) was a highly expressed gene
among all COVID-19 infected groups. Our study suggested that identifying differentially
expressed genes (DEGs) based on disease severity and onset can be a powerful
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GRAPHICAL ABSTRACT |

approach for identifying potential therapeutic targets to develop effective drug delivery
systems against SARS-CoV-2 infections. As a result, potential therapeutic targets, such
as the RPL29 protein, can be tested in vivo and in vitro to develop future mRNA-based
translational nanomedicines and therapies to combat SARS-CoV-2 infections.

Keywords: SARS-CoV-2, PBMCs, RNA sequencing, upregulated genes, mRNA based nanotherapeutics,
COVID-19 management

INTRODUCTION

The main virus driving the COVID-19 (coronavirus disease
2019) pandemic, SARS-CoV-2 (Severe Acute Respiratory
Syndrome Coronavirus 2), is highly contagious and can
cause a wide spectrum of infections. This death-causing
pneumonia epidemic has resulted in 452,201,564 cases and
6,029,852 fatalities worldwide, according to WHO1 (Liu T.
et al., 2020). The symptoms, including dry cough, fever,
sneezing, and malaise, were detected in patients with mild
and moderate infections (Chen G. et al., 2020; Huang
et al., 2020; Wang D. et al., 2020). In contrast, the severe
patients are marked with ALI (Acute Lung Injury), ARDS
(Acute Respiratory Distress Syndrome), pneumonia, and
multiple organ failure (Liu T. et al., 2020). The older age
groups also possess comorbidities, including hypertension,
diabetes, cardiac diseases, hypoxia, and angiogenesis
(Fung and Babik, 2020; Zhou et al., 2020). According to
SARS-CoV-2 hospitalization data, the acute illness phase
disproportionately infects elderly individuals and those
with pre-existing comorbidities (Ahmed-Hassan et al., 2020;
Cummings et al., 2020).

The literature shows that a dysregulated host inflammatory
response plays a significant role in the morbidity and death of

1https://covid19.who.int/

the viral disease (Lucas et al., 2020). When the virus infects a
cell, it has the potential to activate and degrade the adaptive and
innate host immune responses, which are critical components
of the defense against viral invasion (Cao et al., 2021). SARS-
CoV-2 infections lead to massively complicated metabolic
pathways and cellular processes, and it is becoming progressively
clear that the infected organism’s immune system has a
significant effect on the disease progression (Islam et al., 2021).
Moreover, immune profiling of moderate and critical patients
using mass spectrometry and transcriptome/RNA sequencing
has revealed monocyte-derived inflammatory macrophages, cell
cycle perturbations, impaired G1/S phase transitions, DNA
proliferation, T-cell responses, reduction in natural killer cells
(NK), high neutrophil to lymphocyte (NLR) ratio, elevated
expression of growth factors, and a delayed IFN response
leading to the immune dysfunctioning (Blanco-Melo et al.,
2020; Kuri-Cervantes et al., 2020; Zhang et al., 2020; Zheng
H. Y. et al., 2020; Zheng M. et al., 2020). The signaling
pathways driven by IL-6, IL-1β, and TNF-α have remained
implicated in SARS-CoV-2 pathogenesis (Vabret et al., 2020), and
antibodies against the IL-6 receptor have shown early promise.
The severity and magnitude of such inflammatory responses
have emphasized scientists’ interventions that modulate the
immune responses in SARS-CoV-2 infected patients from
corticosteroids to specific cytokine inhibitors (Guo et al., 2020;
Price et al., 2020).
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In contrast to early findings that identified a cytokine
storm-associated inflammatory response as a distinct feature
of SARS-CoV-2-induced infections, current research using
extensive profiling of host immune responses and more
comprehensive cohort data suggests that a hyper-activated
inflammatory response and abnormally repressed antibody-
mediated immune signatures are a leading cause of fatal
infections in COVID-19 patients (Lombardi et al., 2020;
Unterman et al., 2022). Moreover, SARS-CoV-2 belongs to
an RNA family. Therefore, the recent findings suggest that
the first encoded viral protein virulence factor of SARS-CoV-
2 named NSP1 (non-structural protein 1) inhibits human
mRNA translation by binding with human ribosomal proteins,
disrupting the protein’s translational mechanism (Lapointe
et al., 2021). Such inconsistent results might originate due to
variations in disease severity, the onset of infection diagnosis,
environmental conditions, and several other consequences that
may differ across studies. Considering that SARS-CoV-2 is a fatal
pathogenic disease, it is still significant to investigate alterations
in the host immune systems based on disease severity and
onset to identify targeted host receptors that can be helpful
in designing more effective and standard drug therapies for
COVID-19 patients.

Recent advances in sequencing technologies and multi-
omics investigations have made it easier to employ genomes,
transcriptomics, and proteomics data to investigate complicated
biological processes and host-pathogen interactions. The
yield from NGS (Next-generation sequencing) platforms has
exceeded the order of terabytes (and billions of sequencing
reads). Therefore, it has become easier and essential to
interpret and visualize the data related to nano-biomaterials
using best practices such as RNA sequencing, metabolic
pathway associated transcriptome studies, and single-cell
RNA studies (Paunovska et al., 2019). Nanotechnology tools
play an essential role in advancing SARS-CoV-2 treatments
and vaccine production. Current therapeutics focus on the
complex molecular interactions in viral infections devoid of
certain antivirals against SARS-CoV-2 (Varahachalam et al.,
2021). Nanomaterials provide an emergent platform to improve
diagnostic carriers for a vaccine and therapeutic development
because of their distinctive size, tunable charge, low toxicity,
and chemical modification abilities (Gage et al., 2021). They
can bind with target host receptors and bioactives to establish
a measurable signal that allows identification and detection
of the virus (Bidram et al., 2021; Chaudhary et al., 2021;
Gage et al., 2021). The distribution spectrum of nanocarriers
becomes critical because most COVID19 vaccine candidates are
intricate biological moieties (DNA, mRNA, engineered APCs,
recombinant proteins) (Varahachalam et al., 2021). Identifying
mRNA-based therapeutic targets employing omics studies is easy
to operate and has accurate, stable, and susceptible landscapes,
which can help design more effective nanotechnology-based
mRNA therapeutics for several viral infections, including SARS-
CoV-2. Therefore, nanotechnologists and omics-data analysts
should work together to understand molecular biology, data
analysis, and data visualization by innovative technologies to
combat deadly pathogens and SARS-CoV-2.

The most effective COVID-19 vaccines are composed of
mRNA derived from SARS-CoV-2 cell surface proteins and are
encapsulated into nanoliposomes with specific physicochemical
characteristics (Rashidzadeh et al., 2021). The studies have
shown that mRNA-based vaccinations produce better humoral
host responses. The splendid improvement toward the SARS-
CoV-2 research and diagnostic treatments is the development
of fast-tracking approved nanotechnology-based SARS-CoV-2
mRNA vaccines from Moderna and Pfizer/BioNTech employing
lipid nanoparticles (Chaudhary et al., 2021; Milane and
Amiji, 2021) and 77 additional vaccines in fast-tracked
trials are also nanotherapeutics (MCVTJAohctov Team, 2021).
In principle, an mRNA vaccine is composed of synthetic
mRNA molecules encoded with an immunogenic sequence
that instructs the cell’s ribosomal machinery to synthesize
vaccine protein antigens and triggers the host immune
response. Once the vaccine is transported to the cells,
the ribosomes decode the mRNA vaccine sequence and
generate the antigenic SARS-CoV-2 spike protein. The spike
protein subsequently initiates the immunological response,
including antibody synthesis and cellular immune responses
(Chaudhary et al., 2021).

Entirely 57.2% of the worldwide population has been fully
vaccinated (see text footnote 1). Still, with the emergence
of the new variants, SARS-CoV-2 has become a primary
epidemiological, virological, and clinical concern, predominantly
concerning the risk of escape from the vaccine-induced
immunity (Hastie et al., 2021; Tao et al., 2021; Colson et al., 2022).
The Omicron (B.1.1.529.1) variant, first reported on November
24, 2021, has rapidly been recognized as the fifth Voc (a variant of
concern) and has potentially spread globally (Karim and Karim,
2021). The widespread infections associated with the Omicron
variant circulating even among doubly vaccinated individuals
have confounded virologists, infectious disease specialists, and
epidemiologists as the mutated variants are expected to be more
transmissible and infectious than existing deadly Delta variants
of the virus and are potentially invasive toward the cutting-
edge therapeutics approaches, including vaccines (Mostafavi
et al., 2022). Concerns about vaccine efficacy being harmed by
new variations have shifted our perspective on the COVID-
19 endpoint, casting doubt on the assumption that global
vaccination is adequate to prevent SARS-CoV-2 infections
(Karim and Karim, 2021).

To tackle this devastating pandemic, scientists still struggle to
comprehend the host immune responses and biological processes
to uncover new possible treatments and vaccine targets. In the
current study, we opted for the total RNA sequencing techniques
to identify the key regulators responsible for the dysregulated
adaptive immunity of SARS-CoV-2 patients using the peripheral
blood mononuclear cells (PBMCs) transcriptome based on their
disease severity and progression. We evaluated the differentially
expressed genes (DEGs), host-pathogen interactions, and
regulatory networks interrupted during COVID-19 progression.
The transcriptome data obtained from the current study has
contributed to identifying novel therapeutic targets to design
mRNA-based translational nanomedicines and vaccine therapies
against SARS-CoV-2.
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Patients with COVID-19 symptoms and diagnosis exhibit
dysregulated immune signatures accompanying the humoral
immunity, including B-cell receptor signaling pathway, cell
cycle perturbations, DNA proliferation, plasmablast antibody
processing, adaptive immune responses cytokinesis, and
interleukin signaling pathway. Our findings also revealed that
60S Ribosomal L29 (RPL29) is a highly expressed gene in
all COVID-19 infected groups, regardless of illness severity
stage, implying a novel host receptor. Future mRNA-based
translational nanomedicines and pharmacological therapies
against SARS-CoV-2 infections can be proved in vivo.

MATERIALS AND METHODS

The schematic diagram deciphering the experimental settings,
grouping COVID-19 patients’ PBMC (Peripheral Blood
Mononuclear Cell) samples into RNA pools, RNA sequencing
(RNA-seq) of pooled samples, and sequencing data analysis
pipeline adopted for the current study is illustrated in Figure 1.

Settings and Ethics Statement
The current study was implemented on PBMC samples (Ficoll
preparation) isolated from the whole blood of twenty COVID-19
patients obtained with informed consent on a protocol approved
by the Medical Ethical Committee of The First Affiliated Hospital
of the University of Science and Technology of China (USTC)
(approval number 2020-XG (H)-019).

Patients and Samples
The histopathology and baseline characteristics of the group of
patients used in this study have been given in Supplementary
File 1. According to the New Coronavirus Pneumonia Diagnosis
and Treatment Plan (Trial Sixth Edition): the 10 patients
had moderate symptoms such as fever, respiratory tract
inflammation, and pneumonia diagnosed by imaging. At the
same time, ten patients were diagnosed with acute COVID-
19 symptoms based on lesion progression upon lung imaging,
shortness of breath, higher breathing rate, lower oxygen
saturation, and lower arterial blood oxygen partial pressure
(Supplementary File 1).

Preparation of Peripheral Blood
Mononuclear Cells
The PBMC samples (Ficoll preparation) were extracted from the
fresh blood of the twenty SARS-CoV-2 patients. Peripheral blood
samples (4 ml) from each patient were drawn into vacutainer
tubes by using Dipotassium (K2) Ethylene Diamine Tetraacetic
Acid (EDTA) as an anti-coagulant within the vacutainers. The
Ficoll 1.077 (Sigma Aldrich) density gradient centrifugation
method separated the PBMC samples. The blood was diluted
with 1 × phosphate-buffered saline (PBS) 1:1 and was shifted to
the Ficoll tube. After centrifugation (20 min, 1,000 × g at room
temperature), the buffy coat of PBMCs was pooled and moved
into a 15-ml falcon tube. The cells were then washed twice with
10 ml PBS and centrifuged at 250× g for 10 min.

RNA Isolation and Sample Pooling
According to the manufacturer protocol of E.Z.N.A. R© Total RNA
Kit I,2 the total RNA was extracted from PBMC samples by spin
columns. The DNA was removed by the on-membrane DNase
I digestion. Following the cost-effective RNA sample pooling
strategy (Takele Assefa et al., 2020; Sawicki et al., 2021), the
extracted RNA samples of all patients were pooled into four
groups [Group 1: early moderate (n = 5), Group 2: later moderate
(n = 5), Group 3: early critical (n = 7), Group 4: later critical
(n = 3)] as illustrated in Figure 1. Patient groups’ early and
later stages refer to the disease onset and diagnosis days when
the SARS-CoV-2 virus infected the individuals for the first time.
The early stage of patients groups refers to the first 15 days
(average) after the disease onset, during which patients were at
the acute phase of the infection, while the later stage of patients
groups refers to the days from the 20th day after the disease
onset during which patients were at the acute phase of the disease
(Supplementary File 1).

The RNA concentration per sample sequencing was 50 ng/µl
for Group 1 and Group 2, 500 ng/µL for Group 3, and 60 ng/µl
for Group 4, respectively. The ratio of absorbance at 260 nm
and 280 nm for all RNA samples was approximately 2.0. The
cDNA libraries were prepared for the existing RNA samples,
and the Illumina Novaseq 6000 platform performed total RNA
sequencing for each RNA pool.

RNA-Seq Data Analysis
The paired-end RNA-sequencing raw data (fastq format)
obtained from Illumina sequencing were analyzed using the
Differential Gene Expression pipeline (Figure 1). The RNA-
seq data acquisition and interpretation comprise several steps;
obtaining raw reads, read alignment and mapping, and
expression quantification. Thorough checks should monitor the
sequencing data’s quality and consistency at each stage. The
actual analysis of RNA-seq data exhibits several discrepancies
as the technology has several dimensions and applications. The
primary research opted for the current RNA-seq experimental
data involves quality control, read mapping and alignment with
the reference genome, quantifying gene and transcript expression
levels, and detecting DEGs among infected PBMCs RNA samples
extracted from COVID-19 patients’ blood in comparison with the
healthy PBMCs control RNA datasets. The downstream analysis
involves global, comparative, and longitudinal GSEA (Gene Set
Enrichment Analysis) of the selected DEGs from each infected
group of patients.

Control Data Accessions
The seven RNA-seq datasets for PBMCs healthy control
samples were recruited from the previous studies. The raw
RNA sequencing data for four PBMCs healthy human donors
(accession numbers: SRR1373441, SRR1373442, SRR1373453,
and SRR1373454) were obtained from the NCBI SRA (Sequence
Read Archive) database3 (Dvinge et al., 2014). The three PBMCs
healthy donors (accession numbers: CRR125446, CRR125445,

2https://www.omegabiotek.com/
3https://www.ncbi.nlm.nih.gov/bioproject/PRJNA252189
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FIGURE 1 | The schematic illustration of the pipeline adopted for the current study. The upper section of the figure illustrates the experimental design, isolation of
PBMCs from the blood of COVID-19 patients, distribution of patients in each RNA pool, and sequencing method carried out for the current study. The lower section
of the figure describes the data analysis pipeline, tools, and packages executed for this study.

and CRR119890) were obtained from the BIG DATA GSA
(Genome Sequence Archive)4 (Xiong et al., 2020).

Quality Control Checkpoints
FASTX-Toolkit-v0.0.145 and fastp-v0.19.56 is an ultra-fast fastq
pre-processor, and it was utilized to calculate the quality
checkpoints of the raw sequenced reads. The read quality reduces
toward the 3’ end of the reads, and if it becomes too short,
nucleotide bases should be removed to expand the mapping
quality of the reads (Conesa et al., 2016). For accuracy, original
sequencing data were filtered by SeqPrep,7 and the Sickle tool8

4https://ngdc.cncb.ac.cn/gsa/browse/CRA002390
5https://github.com/agordon/fastx_toolkit
6https://github.com/OpenGene/fastp
7https://github.com/jstjohn/SeqPrep
8https://github.com/najoshi/sickle

was used to remove low-quality reads, eliminate poor-quality
bases, and trim adaptor sequences.

Reference Genome-Based Mapping
Hisat2-v2.1.0 alignment program9 with the default parameters
was employed to align the cleaned RNA reads with the
human (GRCh38.p13) reference genome.10 The percentage of
aligned reads is a comprehensive mapping quality indicator
referring to the sequencing accuracy and the presence of
contaminated RNA. The quality evaluation of the mapped
transcripts, including read distribution on different genome
regions and read distribution at chromosomes, was done by
RSeQC-2.3.6 (Wang et al., 2012).

9https://daehwankimlab.github.io/hisat2/
10http://asia.ensembl.org/Homo_sapiens/Info/Index
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Reference-Based Transcript Assembly Construction
Short RNA reads rarely span several splice junctions; therefore,
it is challenging to infer all full-length transcripts directly. The
aligned reads for each RNA pool were spliced and merged
into potential transcripts by the stringtie-v1.3.3 assembler.11

The gffcompare program12 was adopted to compare, merge,
annotate, and the transcript assembly when compared with
reference genome for identifying similar and novel genes
and transcripts.

Expression Quantification of Transcripts
The most straightforward approach for expression quantification
is aggregating raw counts of mapped reads. RSEM (RNA-Seq
by Expectation Maximization)13 was employed to estimate
the gene and transcript expression levels. RSEM constructs
a maximum likelihood abundance estimation method that
depends on the highest expectation algorithm, considering
paired-end reads, read length, fragment length distribution,
and quality value, among other factors, to determine which
transcripts are divergent isoforms of the same gene (Li and
Dewey, 2011). This approach may distribute reads over multiple
transcripts and generate within-sample normalized values
corrected for sequencing biases (Conesa et al., 2016). Moreover,
the RSEM algorithm uses an expectation-maximization
method that returns TPM (Transcripts per million) reads
which first normalizes the gene length and sequencing
depth. The normalization process of TPM values marks
the total expression in different samples consistent with
comparing the gene expression more intuitively based on read
counts.

Sample Correlation Analysis
The intergroup variability between experimental and control
conditions referring to biological or technical variability is
higher than the intragroup variability. Pearson’s correlation
analysis was executed to identify the directionality and strength
of the relationship between all samples. VENN diagram
analysis displayed the unique and shared genes among the
samples. PCA (Principal component analysis was performed
to calculate the gene expression differences different among
experimental conditions (control and infected). NOISeq-
v2.18.014 and Limma-v3.38.315 were used to obtain exploratory
plots to assess and visualize the samples’ expression matrix and
differential expression.

Differential Gene Expression Analysis
The differential gene expression analysis was performed to
compare and evaluate the DEGs between healthy controls and
infected groups based on standard processing and screening
conditions. As the current study consists of biological replicates

11https://ccb.jhu.edu/software/stringtie/
12https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
13https://github.com/deweylab/RSEM
14https://www.bioconductor.org/packages/release/bioc/html/NOISeq.html
15https://www.bioconductor.org/packages/release/bioc/html/limma.html

from the same species (Homo sapiens), R package DESeq2-
v1.24.016 was utilized, which integrates normalized counts data
(TPM) to expedite the quantitative analysis of RNA-seq data
employing fold change (Fc). The default parameters for screening
significant DEGs were p-adjust < 0.05 and | log2fc| ≥ 1.

Functional Enrichment and Interactome Analysis of
Selected Differentially Expressed Genes via
Metascape
Functional enrichment and pathway analysis of selected DEGs
among the samples were done by Metascape17 multiple gene
set analysis. Metascape is an efficient annotation and regulatory
pathway predicting tool. It applies prevalent bioinformatics
analysis techniques for analyzing batch genes and proteins to
reflect their functions (Zhou et al., 2019) by integrating numerous
authoritative, functional databases such as GO (Gene Ontology)
(Dimmer et al., 2012) and KEGG (Kyoto Encyclopedia of Genes
and Genomes) (Kanehisa and Goto, 2000) for analyzing the
human as well as other species data. The obtained regulatory
networks and interactomes were visualized and analyzed by
Cytoscape-v2.8 (Smoot et al., 2011), an open visualization
software tool. The Cytoscape plug-in known as MCODE
(Molecular Complex Detection tool) (version 1.5.1) (Bader and
Hogue, 2003) was utilized to screen and identify the most
significant modules in the Interactome of proteins, with the
threshold values of MCODE scores > 5, node score cut-
off = 0.2, k-score = 2, the degree of cut-off = 2, and maximum
depth = 100.

RESULTS

In the present study, we sought to gain deeper insights into the
host immune responses toward SARS-CoV-2 infections across
disease severity stages and onset. We adopted a transcriptomics-
based approach to evaluate four pooled RNA groups (early
moderate, later moderate, early critical, and later critical)
of PBMC samples isolated from twenty COVID-19 patients
(Figure 1).

The sequenced RNA-datasets of COVID-19 infected PBMC
samples were allocated into two bands: “Group” and “Control”
where “Group” refers to the four infected patients’ RNA pools
(Group 1, Group 2, Group 3, Group 4) which are sequenced
for the current study (Figure 1) and “Control” refers to the
seven previously published healthy PBMCs RNA-seq datasets (see
section “Materials and Methods”).

As the study consists of pooled RNA samples of COVID-
19 patients, a “control” cohort for entire healthy individual
datasets was generated to obtain statistically significant
outcomes of DEGs.

Transcriptome Data Preprocessing and
Quality Control
PBMC samples from all four COVID-19 infected groups and
seven healthy controls were used to prepare RNA-seq datasets

16http://bioconductor.org/packages/release/bioc/html/DESeq2.html
17https://metascape.org/gp/index.html#/main/step1
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FIGURE 2 | Gene expression quantification and sample correlation of PBMC samples. (A) The violin map illustration of expression distribution in each sample
(X-axis) is based on the log10 (TPM) (Y-axis), which is the parametric value of the expression level. (B) PCA (Principal Component Analysis) plot presenting entire
samples along PC1 (X-axis) and PC2 (Y-axis), describing 36.6 and 30.4% of the variability within the expression data set. PC analysis practiced normalized (reads
per kilobases of transcript per 1 million mapped reads) and log-transformed count data. The closer the distance of each sample, the higher the similarity between
the samples. (C) Venn diagram illustrating the number of co-expressed genes among all samples at the intersection (10841) and the number of uniquely expressed
genes in each individual that are not part of this common set. (D) Pearson’s correlation matrix visualizes the correlation values between samples with numbered
Scale bar representing the range of the correlation coefficients.

with 7.95E ± 07 million raw reads per specimen and 8.07E ± 09
million raw bp (base pairs). In contrast, an average of 7.78E± 07
million clean reads and 7.77E ± 09 million clean bases were
obtained after quality control checks and trimming of the
adapter sequences (Supplementary Table 1). For each RNA-seq
dataset, ∼90% of the total reads were uniquely mapped to the
reference human genome GRCh38.p13 (see text footnote 10)
(Supplementary Table 2).

Gene prediction should ideally identify all exons and
introns, including those in the Mrna’s 5′-UTR and the 3′-
UTR (Untranslated regions), to appropriately reconstruct the
dominant mRNA species. However, it is beneficial to accurately
assemble the coding exons (CDs) to determine the protein
sequence for a practical purpose. The gene coverage ratio and
homogeneity distribution analysis provided insights into the
distribution of the expected reads within and across the genes.
It was also suggested that maximum genes ∼ 63.81% of the
reads were mapped to exonic regions of the reference sequence

(Supplementary Figure 1). The gene coverage and chromosome
distribution of all RNA-Seq datasets revealed a more significant
similarity in mapping density across different chromosomes for
each sample (Supplementary Figure 2).

Expression Quantification of Peripheral
Blood Cells Transcriptome
The expression profile of the resulting transcript assembly
detected 39,307 expressed genes (38,390 known and 917 new
genes). The expression distribution violin map for each sample
is illustrated in Figure 2A. The precision and accuracy of
the results were also confirmed by testing the correlation and
variability between samples based on the experimental conditions
(COVID-19 infected groups) compared to the healthy control
conditions. PCA (Principal Component Analysis) showed that
36.6% of the variation could be described by PC1 and 30.47%
by PC2, primarily separating the infected and healthy groups.
It was reflected by PCA analysis that biological replicates have a
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similar condition resulting in the clustering of the infected groups
together and the dispersion of the other seven healthy samples,
proposing that COVID-19 infected groups have variability in
terms of expression level (Figure 2B). The Venn diagram analysis
determined the number of co-expressed genes in all samples,
representing the core of 10,841 common genes entirely expressed
and a minimum of 56 and a maximum of 526 genes in each
sample that were not a part of this common set (Figure 2C).
The inter-sample clustering done by the Pearson correlation
coefficient matrix illustrated a high consistency and similarity
among all RNA-seq samples (Figure 2D). Therefore, the sample
correlation analysis elucidated a more significant variability
among the two conditions (infected and healthy), representing
technical or biological variability.

Global Transcriptome and Functional
Enrichment Analysis of Cohort Data
To identify global signature pathways and genes in patients
with SARS-CoV-2 infections, we combined the transcriptome
data of all infected groups (early moderate, later moderate, early
critical, and later critical groups) and their healthy controls.
We made a comprehensive cohort called “Group” to compare
against healthy controls cohort “Control” to identify DEGs
(see section “Materials and Methods”). We identified 5,710
significant DEGs, including 1,101 significantly upregulated genes
and 4,609 significantly downregulated genes (Supplementary
File 1). Several immunoglobulin genes (IGLV9-49, IGHV7-4,
IGHV3-64, IGHV1-24, IGKV1D-12, and IGKV2-29), ribosomal
proteins (RPL29, RPL4P2, RPL5, and RPL14), inflammatory
response related cytokines including Tumor Necrosis Factor
(TNF, TNFRSF17, and TNFRSF13B), C-C motif chemokine
ligands (CCL3, CCL25, CCL4L2, CCL22, and CCL4), C-X-C
motif chemokine ligands (CXCL2, CXCL10, and CXCL11) were
significantly upregulated among SARS-CoV-2 infected cohort
in comparison with the healthy control cohort (Supplementary
Figure 3 and Supplementary File 2).

We sorted 500 upregulated DEGs obtained from the “cohort”
based on their highest log2fc values and performed Gene Set
Enrichment analysis via Metascape to interrogate signaling
pathways and host immune responses induced by SARS-CoV-2
(Table 1 and Supplementary File 2). The upregulated DEGs were
mainly enriched in adaptive immune response-related pathways,
immunoglobulin production, B-cell receptor signaling pathways,
PID aurora pathway, SARS-CoV-2 infection pathway, and several
other infectious pathways (Figures 3A,B).

Altered Transcriptome Profiles Across
COVID-19 Severities
Furthermore, we evaluated and compared DEGs to the healthy
control cohort to determine whether the above global signatures
and the identified upregulated genes and their functional
enrichment pathways are similar or vary by disease severity stage
and onset. Our results suggested a diverse transcriptome profile
of DEGs in each group of patients based on the disease onset and
severity. The DEGs are represented in the hierarchical clustering
heat map depicting the significant differentially expressed gene

clusters across each sample (Figure 4A). The expression pattern
of genes was diversified across each sub-cluster corresponding
to the clustering heat map (Supplementary Figure 4 and
Supplementary Files 2, 3).

We detected 917 upregulated and 1,754 downregulated
genes in group 1 (early moderate), 112 upregulated and
114 downregulated genes in group 2 (later moderate), 1,067
upregulated and 1,786 downregulated genes in group 3 (early
critical), and 838 upregulated and 683 downregulated genes in
group 4 (later critical) (Figure 4B and Supplementary File 4).
When visualized as the scatter plots (Supplementary Figure 5),
it was evident that a higher number of genes were upregulated
in group 3 (early critical) while group 2 (later moderate) showed
limited statistical significance.

Functional Enrichment Analysis Across
SARS-CoV-2 Severity Elucidating Diverse
Host Immune Response Profile
To further delineate the differences among each SARS-CoV-2
infected RNA group, we sorted each group’s DEGs based on the
highest log2fc value and lowest p-value. We picked the top 100
significantly upregulated DEGs from each infected RNA group
and performed functional enrichment analysis. The maximum
DEGs among all COVID-19 groups were highly enriched in
adaptive immune response regardless of the disease onset and
severity specific stage (Figure 5A and Supplementary File 4).
The intergroup comparison reflected that DEGs in the early
moderate, early critical, and later critical stages had dysregulated
regulatory networks, including B-cell receptor signaling pathway,
complement activation pathway, adaptive immune response, and
phagocytosis compared to their healthy controls. Patients with
early moderate symptoms were mainly enriched in cell cycle
perturbations, DNA proliferation, and inflammatory response-
related pathways (Figure 5B).

The Interactome analysis of several proteins based on
regulatory networks elucidated a higher diversity of immune
fluctuations across each severity stage. Upregulated gene CCNB2
was identified in the moderate stage of patients, and it is
the conventional marker of mitotic cells and regulates the
cell cycle transition at the G2/M phase. Several upregulated
genes (KIF14, KIF4A, UCHL1, and KIFCI) were involved in
aberrant biological cell responses, including cell migration and
adhesion, DNA damage, repair, and replication. Mesenchymal
stem cells (MSCs) induced and upregulated MYBL2 gene was
present in all infected COVID-19 groups. Several upregulated
immunoglobulin genes influenced the dysregulated antibody-
mediated immune response. IGKV2d-29 was upregulated in all
groups, while IGHG1 and IGHG3 were upregulated in three
infected groups except the later moderate stage. CDC20 (cell
division cycle 20) protein-coding gene was upregulated in all
groups of patients (Figure 5C and Supplementary File 4).
Therefore, comparative functional enrichment analysis of DEGs
across each severity-specific stage suggested a diverse expression
profile of each infected COVID-19 group.

The 60S Ribosomal Protein L29 (RPL29) was highly expressed
among all SARS-CoV-2 infected RNA groups with an average
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TABLE 1 | Top 20 upregulated differentially expressed genes and their GO terms and fold change (log2fc) values.

No Sequence ID Gene name Description log2fc
(Group/Control)

Padjust GO term

1 ENSG00000230202 RPL29 Ribosomal protein L29 (RPL29)
pseudogene

9.001 4.01E-25 GO:0006660 phosphatidylserine catabolic process;GO:0052651 monoacylglycerol
catabolic process;GO:0046462 monoacylglycerol metabolic process

2 ENSG00000183260 ABHD16B Abhydrolase domain containing 16B 8.23 2.12E-15 GO:0006660 phosphatidylserine catabolic process;GO:0052651 monoacylglycerol
catabolic process;GO:0046462 monoacylglycerol metabolic process

3 ENSG00000262526 AC120057.2 Novel protein 7.95 0.036478 None

4 ENSG00000223350 IGLV9-49 Immunoglobulin lambda variable 9-49 7.21 4.77E-14 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

5 ENSG00000282122 IGHV7-4-1 Immunoglobulin heavy variable 7-4-1 6.79 2.30E-05 GO:0006910 phagocytosis, recognition;GO:0006958 complement activation, classical
pathway;GO:0002455 humoral immune response mediated by circulating
immunoglobulin

6 ENSG00000253691 IGKV2OR22-4 Immunoglobulin kappa variable
2/OR22-4 (pseudogene)

6.60 2.28E-08 No Hit

7 ENSG00000256663 AC112777.1 Ubiquitin-like with PHD and ring finger
domains 1 (UHRF1) pseudogene

6.56 7.00E-07 None

8 ENSG00000087116 ADAMTS2 ADAM metallopeptidase with
thrombospondin type 1 motif 2

6.48 0.002565 GO:0030574 collagen catabolic process;GO:0030199 collagen fibril
organization;GO:0032963 collagen metabolic process

9 ENSG00000230699 AL645608.2 Novel transcript 6.38 5.72E-09 None

10 ENSG00000223648 IGHV3-64 Immunoglobulin heavy variable 3-64 6.24 4.01E-14 GO:0006910 phagocytosis, recognition;GO:0006958 complement activation, classical
pathway;GO:0002455 humoral immune response mediated by circulating
immunoglobulin

11 ENSG00000277125 AC211476.4 PMS2 postmeiotic segregation
increased 2 (S. cerevisiae) (PMS2)
pseudogene

6.21 0.000115 None

12 ENSG00000211950 IGHV1-24 Immunoglobulin heavy variable 1-24 6.20 1.48E-13 GO:0006910 phagocytosis, recognition;GO:0006958 complement activation, classical
pathway;GO:0002455 humoral immune response mediated by circulating
immunoglobulin

13 ENSG00000257027 AC010186.3 Novel transcript 5.78 4.74E-05 None

14 ENSG00000278857 IGKV1D-12 Immunoglobulin kappa variable 1D-12 5.74 5.39E-05 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

15 ENSG00000253998 IGKV2-29 Immunoglobulin kappa variable 2-29
(gene/pseudogene)

5.70 1.49E-15 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

16 ENSG00000211655 IGLV1-36 Immunoglobulin lambda variable 1-36 5.69 8.01E-16 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

17 ENSG00000211658 IGLV3-27 Immunoglobulin lambda variable 3-27 5.65 6.55E-32 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

18 ENSG00000211663 IGLV3-19 Immunoglobulin lambda variable 3-19 5.61 2.68E-13 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

19 ENSG00000211642 IGLV10-54 Immunoglobulin lambda variable 10-54 5.59 7.30E-22 GO:0002377 immunoglobulin production;GO:0002440 production of molecular
mediator of immune response;GO:0002250 adaptive immune response

20 ENSG00000232216 IGHV3-43 Immunoglobulin heavy variable 3-43 5.56 8.04E-18 GO:0006910 phagocytosis, recognition;GO:0006958 complement activation, classical
pathway;GO:0002455 humoral immune response mediated by circulating
immunoglobulin
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FIGURE 3 | Enrichment analysis of differentially expressed genes in COVID-19 cohort. (A) Bar Graph representation of top twenty clusters with corresponding
enriched terms across a provided list of DEGs colored by –log10(P) on the X-axis. The functional annotation terms and their corresponding categories are M
(canonical pathways), GO (Gene Ontology), WP (Wiki pathways), R-HSA (Reactome Gene Sets), and hsa (KEGG pathway). (B) Functional enrichment analysis of
DEGs compared between infected and healthy control groups illustrating the dysregulated regulatory pathways in COVID-19 cohort data. The network cluster labels
are added manually. The nodes are represented as pie charts and colored by p-value, where enriched networks having more genes tend to have a higher p-value.

FIGURE 4 | Altered transcriptome profiles across COVID-19 severities. (A) Hierarchal clustering Heat map for significantly upregulated and downregulated DEGs
(fold change (log2FC ≥ 2) in COVID-19 PBMC samples compared to controls. The negative numbers having blue color indicate down-regulated genes, and the
positive numbers with red color indicate upregulated genes. The sub-cluster labels on the Y-axis are added manually and specified by their corresponding color in
the heat map. (B) Venn Diagram Analysis: Venn diagram of the healthy control cohort and each patient’s group. Circles with different colors represent the four
infected Groups, and the number of genes/transcripts screened based on expression levels in each sample/group compared to the control cohort. The individual
and overlapping portions in the Venn diagram illustrating the number of explicitly expressed and co-expressed genes among different groups.

fold change of 9 (Figure 5C and Supplementary File 4). The
KEGG pathway analysis of RPL29 protein revealed two pathways,
“ribosome” and “Coronavirus pathway.” The detailed GO and
KO annotation for the RPL29 protein has been illustrated in
Table 2.

Longitudinal Analysis of Early and Later
Disease Onset of COVID-19 Severity
The longitudinal studies of RNA-seq data are essential for
differentiating variations among different samples, and gene
expression repeatability to decipher gene and transcript variants
(Rondina et al., 2020). In the current study, we also performed
longitudinal analysis to examine within (intra-) and between

(inter-) sample variability of the PBMCs transcriptome of
infected groups based on their early and later disease onset with
respect to the healthy controls.

The early and later stages of patient groups refer to the days
of the disease onset of the COVID-19 diagnosis when the SARS-
CoV-2 virus infected the individuals for the first time. The early
stage of patients groups refers to the first 15 days (average) after
the disease onset, during which patients were at the acute phase
of the infection, while the later stage of patients groups refers to
the days from the 20th day after the disease onset during which
patients were at the acute phase of the disease (Supplementary
File 1). We explored diverse alterations in the transcriptome
profiles of infected groups based on their disease onset.
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FIGURE 5 | Functional enrichment analysis of multiple DEGs from all SARS-CoV-2 infected groups. (A) Heat map displaying the top 20 enriched clusters for early
and later moderate and critical patients using a distinct color scale to represent statistical significance using -log10(P). The functional annotation terms and their
categories are M (canonical pathways), GO (Gene Ontology), WP (Wiki pathways), R-HSA (Reactome Gene Sets), and hsa (KEGG pathway). Gray color designates
the lack of significance. (B) Enrichment network visualization of multiple DEG lists. Cluster labels representing the network name were added manually. The clustered
network showed that processes such as the B-cell signaling pathway, cytokinesis, interleukin signaling pathway, and cell cycle are shared between the early and later
moderate gene lists. (C) Interactome analysis of proteins between DEGs of each group. Each color code describes the gene identities in the four COVID-19 groups.

Longitudinal Analysis of Early and Later Moderate
Stages of SARS-CoV-2 Infected Groups
Firstly, we compared the DEGs among the group of moderate
patients. The top 20 enriched annotation terms demonstrated
that the moderate group of patients who were diagnosed at the
early stage of disease onset (Group 1) was functionally annotated
to the mitotic cell cycle process (GO: 1903047), cytokinesis
(GO: 0000910), adaptive immune response (GO: 0002250)
and phagocytosis (GO: 0006910) based on higher –log10(P)
value. Therefore, early moderate patients exhibited aberrant
host immune response to a greater extent than the moderate
(Group 2) patients’ with the later disease onset (Figure 6A).
Enrichment network visualization revealed that later moderate
patients had the highest number of upregulated genes and their
related GO terms compared to the early moderate patients. The
regulatory pathways and clusters, including PID Aurora Pathway,
cytokinesis, B-cell signaling pathway, Ig production pathway, and

Interleukin signaling pathway, were evenly distributed among
early and later disease onset of the moderate COVID-19 patients
(Figure 6B). The Metascape generated heat map illustrating the
functionally annotated enriched terms of the top 100 clusters for
the moderate group is provided in Supplementary Figure 8A.

Interactome analysis of the protein-protein interaction (PPI)
network derived from MCODE revealed several significant
interactions among early and later moderate patients’
genes, including TNF, CXCL2, IL-32, CCL3, TK1, CCNB2,
CCL3L1, CDK1, and CDC20 as crucial genes of the early and
later moderate disease onset (Supplementary Figure 6 and
Supplementary File 5).

Longitudinal Analysis of Early and Later Critical
Stages of SARS-CoV-2 Infected Groups
Similarly, we compared the DEGs among the early and later
disease onset of the critical COVID-19 patients. The functional
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TABLE 2 | Functional Enrichment analysis of highly expressed RPL29 protein deciphering the GO terms and KEGG pathways.

Functional annotation GO term GO ID GO description

GO Biological process GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-

GO:0002181 mediated decay

GO:0006412 Cytoplasmic translation

GO:0006413 Translation

GO:0006614 Translational initiation

GO:0007566 SRP-dependent cotranslational protein targeting to membrane embryo implantation

Cellular component

GO:0019083 Viral transcription

GO:0005829 Cytosol

GO:0005840 Ribosome

GO:0016020 Membrane

GO:0022625 Cytosolic large ribosomal subunit

Molecular function GO:0003723 RNA binding

GO:0003735 Structural constituent of ribosome

GO:0008201 Heparin-binding

GO:0045296 Cadherin binding

KO KO ID KO name KEGG pathway

K02905 RP-L29e, RPL29 Map03010: Ribosome map05171: Coronavirus disease—COVID-19

enrichment analysis elucidated that the upregulated DEGs
of both groups were evenly enriched in annotation terms,
including; adaptive immune response (GO: 0002250), humoral
immune response mediated by circulating immunoglobulin
(GO: 0002455), and cytokinesis (GO: 0000910) (Figure 7A).
Enrichment network visualization shows that processes such
as adaptive immune response, complement activation pathway,
and PID Aurora Pathway were evenly distributed among the
early and later disease onset stages of critical COVID-19 groups
(Figure 7B). The Metascape generated heat map illustrating
the functionally annotated enriched terms of the top 100
clusters for the moderate group is provided in Supplementary
Figure 8B.

The complex PPI networks revealed multiple complex
interactions among genes, including IFI27, CDC20, CDC6,
CCR10, IGHG2, IGHV4-31, and several other genes
(Supplementary Figure 7 and Supplementary File 6).

Cytokines Related Inflammatory
Response Across COVID-19 Severity and
the Onset
The significantly upregulated cytokines-related genes were
screened from the cohort data and compared across each
infected group based on their presence (Table 3). The cytokine-
associated genes were produced unevenly during the SARS-CoV-
2 progression based on the disease severity. C-X-C-chemokine
ligands; CXCL10, CXCL11, and CXCR3 were only upregulated in
early critical patients and absent in other patients. In comparison,
CXCL2 was only upregulated in the early moderate stage. IL32
The C-C-chemokine ligands; CCL3L1, CCL3, CCL20, CCL4, and
CCL4L2 were only upregulated in the early moderate stage.
This finding suggests that these C-C-chemokine ligands can

be further tested as biomarkers for early-stage disease patients.
IL7, IL17RC, and IFNLR1 were upregulated in the early stages
of COVID-19 while absent in later disease stages. The TNF
response was detected in all the groups except the later critical
stage of patients. We suggested that high production of TNF,
TNFRSF13B, and IL32 might be associated with and can serve
as markers for COVID-19 severity. Based on the disease onset
and severity, it is suggested that in our patients’ data, TNF
expression was highly elevated among critical patients at early
diagnosis of the disease compared to the moderate patients
at the late stage of disease diagnosis. IL-32 was elevated in
all patient groups, suggesting it to be a potential gene for
producing cytokines-induced inflammatory storms regardless
of the disease severity and onset. Several cytokine-induced
inflammatory response-related genes were observed across each
infected stage.

DISCUSSION

In early 2020, the WHO (World Health Organization) declared
the SARS-CoV-2 epidemic, and experts worldwide began
looking for ways to manage patients and treat them effectively.
The primary cause of mortality is the fast escalation of
a severe pulmonary inflammatory response, subsequent
tissue damage, fibrosis, and dysregulated host immunological
response. Another critical cause of prevailing COVID-19
infections is the shutdown of host protein synthesis, a frequent
viral infection hallmark. Besides cell-based therapeutics,
various pharmaceutical alternatives have been developed to
tackle SARS-CoV-2 infections. Thousands of researchers and
laboratories have actively responded to this threat, generating
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FIGURE 6 | Longitudinal analysis of early and later moderate stages of SARS-CoV-2 infected groups. (A) Heat map displaying the top 20 enrichment clusters for
early and later disease onset of moderate COVID-19 groups colored by -log10(P) values using a discrete color scale representing statistical significance. The
functional annotation terms and their corresponding categories are M (canonical pathways), GO (Gene Ontology), ko (KEGG ontology), WP (Wiki pathways), R-HSA
(Reactome Gene Sets), and hsa (KEGG pathway). (B) Network visualization of the enriched clusters for the list of DEGs generated by Metascape. The clusters were
labeled manually. The pie chart color code depicts the gene lists’ identities, where the red color represents early moderate patients, and the blue color represents
later moderate patients.

FIGURE 7 | Longitudinal analysis of early and later critical stages of SARS-CoV-2 infected groups. (A) Heat map displaying the top 20 enrichment clusters for early
and later disease onset of critical COVID-19 groups colored by -log 10 (P) values using a discrete color scale representing statistical significance. The functional
annotation terms and their corresponding categories are M (canonical pathways), GO (Gene Ontology), WP (Wiki pathways), R-HSA (Reactome Gene Sets), and hsa
(KEGG pathway). (B) Network visualization of the enriched clusters for the list of DEGs generated by Metascape. The clusters were labeled manually. The pie chart
color code describes gene lists’ identities, where the red color represents early critical patients, and the blue color represents later critical patients.

vast amounts of biological data and biomedical information that
computational biologists can use to define molecular disease
bases, virus propagation, and development and identify potential
treatments and vaccines.

On the cutting edge of medical science, nanotechnology
has enabled tailored gene delivery systems, targeted drug
delivery systems, imaging, biosensor platforms, and SARS-CoV-2
infection diagnostics (Gage et al., 2021). Recent research indicates
that mRNA translational vaccines elicit more favorable humoral

responses in the host than conventional drugs (Eren Sadioğlu
et al., 2021). Recently, eight COVID-19 vaccines based on diverse
technologies and formulations, including nanopharmaceuticals,
have been authorized and approved for emergency use. The
mRNA vaccines include; mRNA-1,273 from Moderna and
BNT162 from Pfizer/BioNTech, the virus-inactivated Covaxin
vaccine manufactured by Indian Barhat Biotech, the CoronaVac
vaccine by Sinovac Biotech, China, the Ad26-based viral vector
vaccine synthesized by Johnson and Johnson, the human
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TABLE 3 | Comparison of upregulated cytokine-storm-related genes in all groups of patients.

Number Upregulated cytokines Group1 Early moderate Group2 Later moderate Group3 Early critical Group4 Later critical

1. TNF Yes Yes Yes No

2. TNFRSF13B Yes No Yes Yes

3. TNFRSF17 No No Yes No

4. TNFRSF4 No No No Yes

5. TNFRSF21 Yes No No No

6. CXCL10 No No Yes No

7. CXCL11 No No Yes No

8. CXCR3 No No Yes No

9. CXCL2 Yes No No No

10. CCL3L1 Yes No No No

11. CCL3 Yes No No No

12. CCL20 Yes No No No

13. CCL4 Yes No No No

14. CCL4L2 Yes No No No

15. IL32 Yes Yes Yes Yes

16. IL2RB Yes Yes No No

17. IL7 Yes No Yes No

18. IL17RC Yes No Yes No

19. IFNLR1 Yes No Yes No

adenovirus-based Sputnik V vaccine from the Gamaleya National
Center of Epidemiology and Microbiology, Russia and the
chimpanzee adenovirus-based AZD1222 (Covidshield) vaccine
from Oxford-Astra Zeneca (Bidram et al., 2021; Mishra and
Tripathi, 2021). The development of novel SARS-CoV-2 variants
with high morbidity, mortality, and transmissibility has posed
a new challenge for these vaccines, highlighting the need
for new vaccine formulations with high efficacy (Gage et al.,
2021). Nanotechnologists and omics-data analysts should work
together to understand molecular biology, data analysis, and data
visualization to utilize innovative technologies to combat deadly
pathogens.

Recent advances in multi-omics methods, including
proteomics, genomics, metabolomics, total RNA sequencing,
transcriptomics, and single-cell transcriptomics, have made
comprehending the pathogen and disease (Wang et al.,
2021; Zhang et al., 2021). Therefore, we employed an RNA-
sequencing-based approach to identify new therapeutic
vaccines and drug targets to diagnose and inhibit SARS-CoV-2
infections. The preliminary studies of SARS-CoV-2 patients
having severe respiratory disorders and failure in respiratory
tracts divulged a dysregulated host immune response, hyper-
inflammatory responses, and lymphopenia (Unterman et al.,
2022). It is suggested that blood acts as the potential remote
biosensor to reflect the multifaceted variations arising in the
immune system and other cells and highly infected tissues
in PBMCs (Sadanandam et al., 2020) to explain system-wide
changes, disease progression, and onset in COVID-19 patients
(Huang et al., 2020; Liao et al., 2020; Sadanandam et al.,
2020). Our study sequenced and analyzed the four PBMC
transcriptomes of SARS-CoV-2 infected groups to identify the
key regulators and DEGs responsible for the dysregulated host
adaptive immune response. Each group was specified based on

their disease severity and the onset (Methods). Our experimental
design allowed us; (1) to sequence profile the pooled PBMCs
transcriptome of all infected samples used in the current study,
(2) to quantify the expression profile of SARS-CoV-2 infected
groups, (3) to evaluate the DEGs in comparison with the healthy
controls, (4) to determine the global transcriptome profile in
cohort data (5) to compare the DEGs across disease severity and
the onset (6) new potential therapeutic and vaccine targets to
combat SARS-CoV-2 infections. The current systems biology
method applying differential gene expression analysis pipeline
manifested the progressive dynamics of the host immune
responses toward this deadly disease based on severity and
onset. It has underlined the unique and diverse hallmarks of
the host immune system that distinguish moderate and critical
SARS-CoV-2 patients. The immunological regulatory networks
identified in this study have the potential to improve and improve
the understanding of the numerous host-pathogen interactions
that promote pathology and virulence in the early stages of
disease.

The COVID-19 cohort’s differential gene expression analysis
revealed global transcriptome variations across COVID-19
severity levels. It was observed that the adaptive immune
response was dysregulated in the COVID-19 patients in
comparison with the healthy control datasets. Measuring
the antibody levels specific to SARS-CoV-2 in the blood,
such as immunoglobin (Ig), provides not only an alternative
method for diagnosis and treatment of SARS-CoV-2 infections
(including infected individuals) but also a simple way to
measure adaptive immunity in convalescent patients or after
vaccination (Ma et al., 2020). The high level of antibodies
specific to SARS-CoV-2, specifically those which can bind and
neutralize the virus, would strongly indicate that an immunized
host could resist SARS-CoV-2 infection. We identified several
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upregulated immunoglobin genes (IGLV9-49, IGHV7-4, IGHV3-
64, IGHV1-24, IGKV1D-12, and IGKV2-29) for dysregulation
of the antibody-mediated host immune responses. As a result,
antibody-based therapies will continue to be important in
treating and eventually preventing COVID-19.

Our results identified the elevated expression of MSCs
(Mesenchymal stem cells genes, including; KIF14, KIF4A,
UCHL1, KIFCI, MYBL2, and CDC20, contributing to
dysregulated cell cycle phases and DNA proliferations. Such
cells are necessary for tissue repair and can also influence the
pulmonary environment by paracrine production of various
mediators. They can control or enhance inflammation, drive
the development of other stem cells, and limit the viral burden
(Henriques-Pons et al., 2022). Consistent with the recent
finding (Henriques-Pons et al., 2022), our results demonstrate
that protein-encoding genes associated with these cells could
be a promising therapeutic alternative against SARS-CoV-2
infections.

We have also identified the upregulated ribosomal proteins
(RPL29, RPL4P2, RPL5, and RPL14). Some studies have indicated
that various host factors must be used to compete with
the infectious process, including Ribosomal proteins (RPs).
They can either inhibit viral replication by binding to certain
phosphoproteins or activate host immune responses (Rofeal and
El-Malek, 2020). Studies on SARS-CoV have implicated NSP1
(non-structural protein 1) as a critical factor in host translation
shutdown. In infected cells or upon its ectopic expression,
NSP1 inhibits human translation by binding with human
ribosomal subunits disrupting the translational mechanism. In
the current study, 60S Ribosomal protein RPL29 protein was
highly expressed across all disease stages. It is a component
of functionally stable ribosomes and plays a vital role in
protein synthesis (DeLabre et al., 2002; Kirn-Safran et al., 2007).
RPL29-deficient embryonic fibroblasts proliferate and synthesize
proteins at a slower pace (Jones et al., 2013). According to our
findings, future studies should look at the efficacy of anti-RPL29
mRNA-based nanomedicines and therapies in combination with
chemotherapeutics against SARS-CoV-2 infections.

Inflammation is a double-edged sword in viral pneumonia.
Even if beneficial inflammation is required to fight infections
in adjacent tissues, exaggerated inflammatory reactions result in
excessive inflammatory cytokine production, which has negative
consequences such as progressive respiratory failure and various
organ failures (Xiong et al., 2020). The critical factor in SARS-
CoV-2 infections could be reducing antiviral defense associated
with the innate immune response and the higher expression
of inflammatory cytokines (Costela-Ruiz et al., 2020). In the
limited timeframe after the COVID-19 emergence, various
studies have identified increased expression of several cytokines
and chemokines in most patients (Chen C. et al., 2020; Huang
et al., 2020; Liu K. et al., 2020; Liu Y. et al., 2020; Qin et al.,
2020; Wang W. et al., 2020; Xu et al., 2020). Although our
findings corroborate previous studies, some genes implicated
in cytokine inflammatory response identified in our study
were unique. Our results demonstrated the elevated expression
of inflammatory cytokines and chemokines, including; Tumor
Necrosis Factor (TNF, TNFRSF17, and TNFRSF13B), Interleukin

signaling pathways, C-C motif chemokine ligands (CCL3,
CCL25, CCL4L2, CCL22, and CCL4), C-X-C motif chemokine
ligands (CXCL2, CXCL10, and CXCL11). These genes are also
responsible for the activation of receptor-associated cytokine
inflammatory responses. This finding corroborates other studies
representing the mononuclear blood cell population in lung
tissues of COVID-19 patients (Vabret et al., 2020). We suggest
that high production of TNF, TNFRSF13B, and IL32 might
be associated with and serve as markers for COVID-19
severity-specific therapies. IL-32 was elevated in all infected
groups, suggesting that it can be the potential gene for
producing the cytokines-induced inflammatory storm at each
stage of the COVID-19 disease progression. IL-32 can affect
several physiological and cellular functions, including survival
inflammation, cell death, and response toward certain pathogens
like Leishmania, HIV, and Mycobacterium. A recent study
has proposed the role of IL-32 in chronic inflammatory
diseases such as airway and lung diseases, including COPD
(Chronic obstructive pulmonary disease) (Gautam and Pandit,
2021). Therefore, this unique intracellular cytokine can be
explored at protein levels to verify its role during SARS-CoV-2
infection.

In conclusion, our study highlights key functional and
molecular pathways implicated in SARS-CoV-2 pathogenesis and
identifies a distinct expression pattern linked to SARS-CoV-2-
related critical illness outcomes. This research will contribute
to understanding the host immune response during SARS-
CoV-2 progression and can help illuminate the COVID-19
infectious pathways and provide a foundation for designing
rational immunotherapies. However, the functional importance
of the therapeutic targets identified in this study remains
demonstrated by in vivo, in vitro, and in silico approaches.
However, nanobiotechnologists and pharmaceutical scientists
can consider the proposed medicinal drugs and vaccine targets
to design more effective and efficient drug delivery systems to
combat ongoing SARS-CoV-2 infections in the future.

Limitations, Challenges, and
Recommendations for Future Research
The primary goal of this work was to use differential gene
expression analysis to predict and find potential therapeutic
possibilities for SARS-CoV-2 infection treatment. The
current study’s limitations and constraints reflect various
recommendations for future research to help understand this
study more effectively. Firstly, our study mainly emphasizes
the transcriptome analysis of PBMCs in blood by using the
RNA sequencing method. The alterations in gene expression
at the protein level should also be verified. Additionally, the
qPCR technique can be carried out to confirm the results found
from the sequencing, where a smaller number of genes can be
identified for a higher number of samples.

The challenges encountered in this work show that there
is currently no validation of RNA sequencing data to identify
changes in PBMC phenotype at the protein level. In the future,
the assessment of protein expression within cells isolated from
infected patients can be done using flow cytometry or similar
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techniques to denote cell types comprising PBMCs to observe
gross genotype changes. The suggested novel targets in this study
can be verified and further investigated by in vivo and in vitro
studies at the protein levels.

Immune cell data from lesion locations such as
bronchoalveolar lavage fluid and lungs and data from various
drug delivery systems could make this study more extensive
and conclusive. In summary, this study’s data-driven research
of transcriptomics data can be compared with already published
multi-omics data, which may help determine the associations
between immune response and disease outcome.
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