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3D convolutional neural networks-based segmentation to
acquire quantitative criteria of the nucleus during mouse
embryogenesis
Yuta Tokuoka 1, Takahiro G. Yamada 1, Daisuke Mashiko2, Zenki Ikeda2, Noriko F. Hiroi 3, Tetsuya J. Kobayashi4,
Kazuo Yamagata2 and Akira Funahashi 1✉

During embryogenesis, cells repeatedly divide and dynamically change their positions in three-dimensional (3D) space. A robust
and accurate algorithm to acquire the 3D positions of the cells would help to reveal the mechanisms of embryogenesis. To acquire
quantitative criteria of embryogenesis from time-series 3D microscopic images, image processing algorithms such as segmentation
have been applied. Because the cells in embryos are considerably crowded, an algorithm to segment individual cells in detail and
accurately is needed. To quantify the nuclear region of every cell from a time-series 3D fluorescence microscopic image of living
cells, we developed QCANet, a convolutional neural network-based segmentation algorithm for 3D fluorescence bioimages. We
demonstrated that QCANet outperformed 3D Mask R-CNN, which is currently considered as the best algorithm of instance
segmentation. We showed that QCANet can be applied not only to developing mouse embryos but also to developing embryos of
two other model species. Using QCANet, we were able to extract several quantitative criteria of embryogenesis from 11 early mouse
embryos. We showed that the extracted criteria could be used to evaluate the differences between individual embryos. This study
contributes to the development of fundamental approaches for assessing embryogenesis on the basis of extracted quantitative
criteria.
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INTRODUCTION
During embryogenesis, cells repeatedly divide and dynamically
change their positions in three-dimensional (3D) space1. In early
embryos, cells are loosely connected to each other. At the 8-cell
stage, the embryo becomes compact, and the cells form a
spherical mass called a morula. The space inside the embryo
spreads, and the morula becomes a blastocyst. Thus, embryo
development is highly dynamic.
A robust and accurate algorithm to acquire the 3D positions of

the cells with high temporal resolution would undoubtedly help to
reveal the mechanisms of embryogenesis. The improved technol-
ogies for live-cell imaging enable obtaining high-quality and high-
throughput time-series 3D fluorescence microscopic images2–14.
In embryology, a number of studies have tried to acquire
quantitative criteria such as chromosome numbers, the synchrony
of cell division and the rate of development15–17. To analyse the
time-series 3D microscopic images of developing embryos with
fluorescently labelled nuclei, these studies used image segmenta-
tion. Segmentation algorithms in bioimage processing (such as
filtering, thresholding, morphological operations, watershed
transformation and mask processing7,17–21) require some para-
meter values. Because these algorithms are based on heuristic
image-processing algorithms, they fail to detect an object in an
image when this object does not fit the pattern that the algorithm
can process. Even though the optimal parameter values depend
on the features of each image and the microscopy system, these
values are arbitrarily set by the analyst, and further optimisation
tends to be neglected. As a result, it is hard to accurately acquire

quantitative criteria with the existing heuristic image processing-
based segmentation algorithms.
Various heuristic image processing algorithms have been used

to investigate embryonic development7,17–21. For time-lapse
observation of early-stage Drosophila embryos, Keller et al.7

implemented digital scanned laser light-sheet fluorescence
microscopy in combination with incoherent structured-
illumination microscopy (DSLM-SI) and performed nuclear seg-
mentation of time-series images acquired by DSLM-SI. The
algorithm was based mainly on heuristic image processing; the
images had a high signal-to-noise ratio. Drosophila embryos are
easily amenable to imaging because they are more transparent
than the embryos of other model organisms, such as mice.
Although Keller et al. were able to perform segmentation of time-
series images, some limitations remained in their image proces-
sing. The segmentation accuracy dramatically decreased with the
progress of embryo development: it was 95% for 2–4.5 h post-
fertilisation (h.p.f.), 73% for 4.5–7 h.p.f. and 54% for 7–11.5 h.p.f.
Analysis of time-series 3D fluorescence microscopic images is
difficult: (i) fluorescence intensity decreases along the z-axis
because the inner part of the embryo is not completely
transparent; (ii) fluorescence intensity decreases with time
because of fluorophore fading; and (iii) high spatial resolution
cannot be achieved because a balance between cytotoxicity and
the speed of photography needs to be maintained. The current
low segmentation accuracy can be attributed to the fact that the
variation in the spatiotemporal features of time-series 3D
fluorescence microscopic images is not correctly grasped.
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Deep learning algorithms named Convolutional Neural Net-
works (CNNs) may ameliorate these problems22–32. In general
image processing, CNNs perform better than other algorithms33; a
critical advantage of CNNs is automatic extraction of image
features. CNNs have also been applied to bioimage segmentation
algorithms, and the performance of CNNs was superior to that of
the previous heuristic algorithms22–25,28,32. Ciçek et al.23 imple-
mented 3D U-Net based on CNN and used it for segmentation of
microscopic images of Xenopus kidney tissue. The authors
produced training data by manually annotating each image
voxel-wise with “kidney tubule”, “inside kidney tubule”, or
“background”. As a result of learning the training data, a high
value of Intersection over Union (IoU), an evaluation metric for
segmentation, was achieved (0.723). Ho et al.28 developed a CNN
algorithm and used it to perform segmentation of 3D fluorescence
microscopic images of labelled nuclei of rat kidney28; this
algorithm achieved a voxel accuracy of 0.922. However, in both
algorithms, some segmented nuclear regions are fused with other
regions, which disturbs the acquisition of quantitative criteria from
bioimages.
The segmentation algorithms just mentioned are based on Fully

Convolutional Networks (FCNs), which consist only of convolu-
tional layers in CNNs, and the segmentation methodology of FCNs
is called semantic segmentation34. Because semantic segmenta-
tion assigns the same label to the objects of the same class (Fig. 1),
the regions are fused when neighbouring or overlapping objects
are segmented35,36. Therefore, semantic segmentation is appro-
priate for the tissue, but not for individual cells or organelles. In
this study, we focused on the other segmentation methodology,
called instance segmentation27,31,37–39, which adds a different
label to each object of the same class (Fig. 1) and is suitable for
segmentation of cells and nuclei. This property of instance
segmentation avoids the fusion of cells and is especially important
for the analysis of stages such as morula or blastocyst, in which
the cells are located close to each other; instance segmentation
makes it possible to accurately acquire quantitative criteria of
embryogenesis.
Here, we developed Quantitative Criteria Acquisition Network

(QCANet), a new CNN-based instance segmentation algorithm for
3D fluorescence microscopic images of cell nuclei of early
embryos. Its simple structure combines conventional semantic

segmentation algorithms and it can be easily applied to bioimage
analysis. We prepared a dataset that sampled early development
of 11 mouse embryos with nuclei fluorescently labelled with
mRFP1 fused to the chromatin marker histone H2B2 and trained
QCANet to perform instance segmentation of 3D fluorescence
microscopic images from this dataset. A comparison of the
accuracy of the trained models using four other mouse embryos
as a test dataset showed that QCANet was superior to 3D Mask R-
CNN39, which is the state-of-the-art of the instance segmentation
algorithm, in terms of segmentation accuracy called IoU, SEG and
MUCov. To check whether QCANet performs segmentation with
high accuracy in other species, we used the datasets of
developing embryos of Caenorhabditis elegans and Drosophila
melanogaster. QCANet showed high segmentation accuracy on
almost all metrics. Using trained QCANet, we extracted quantita-
tive criteria of mouse development based on the accurately
acquired shapes of cell nuclei without fusion and quantitatively
evaluated the differences between individual embryos. We also
classified each cell nucleus segmented by QCANet as belonging to
an inner cell or outer cell and demonstrated that the estimated
ratio of the numbers of inner and outer cells can serve as a proxy
of differentiated cells in morulae and blastocysts.

RESULTS
Evaluation of 3D instance segmentation
The implemented algorithm QCANet is a tool for instance
segmentation of 3D fluorescence microscopic images (Fig. 2).
QCANet consists of two subnetworks: Nuclear Segmentation
Network (NSN) and Nuclear Detection Network (NDN). Because
instance segmentation in QCANet relies on nuclear detection by
NDN, we compared the segmentation accuracy of QCANet with
that of QCANet without (w/o) NDN. We also compared QCANet
with the conventional 3D segmentation algorithms 3D U-Net23

and 3D Mask R-CNN39. The latter is a 3D extension of the state-to-
the-art instance segmentation algorithm Mask R-CNN37. These
algorithms learned the same dataset, which included 11 early-
stage mouse embryos. We used 11-fold cross-validation with
121 samples of 3D fluorescence microscopic images (Supplemen-
tary Fig. 1); 10 embryos (110 samples) were used as training data
and 1 embryo (11 samples) as validation data (Supplementary Fig.
2, embryo split). In addition, we prepared a test dataset of four
early mouse embryos (44 samples) with a different observation
environment from that of the training and validation datasets
(Supplementary Tables 1 and 2). The trained model with the
highest IoU in cross-validation was used to analyse the test
dataset, and we evaluated its segmentation accuracy.
IoU is conventionally used to evaluate segmentation accuracy

because it comprehensively measures false-positive and false-
negative rates23. However, because IoU is calculated for each
image, it cannot evaluate whether or not segmentation is accurate
(i.e., nuclei are not fused) and is thus unsuitable for evaluating
instance segmentation. A metric called SEG40 represents the
average of the IoU of each instance by the sum of the numbers of
correct nuclear regions. Another metric, called Mean Unweighted
Coverage (MUCov)41, can evaluate individual segmented nuclear
regions and represents the average of the IoU of each instance by
the sum of the numbers of segmentation regions. SEG is used to
evaluate the absence of false-negative instances of segmentation,
whereas MUCov is used to evaluate the absence of false-positive
instances.
In 11-fold cross-validation, the values of IoU, SEG and MUCov of

QCANet exceeded those of the other algorithms (Supplementary
Table 3). Each value does not deviate largely among embryos. We
also analysed the test dataset with the model showing the highest
IoU for the validation dataset, and QCANet outperformed the
other algorithms on all metrics (Table 1). Visualisation of the

Semantic Segmentation Instance Segmentation
2D Fluorescence

Microscopic Image

10 m 10 m 10 m

10 m10 m10 m

Fig. 1 Conceptual diagram of different segmentation algorithms.
In a 2D fluorescence microscopic image, all objects to be segmented
are of the same class (nucleus). Semantic segmentation assigns the
same label to all objects of the same class, whereas instance
segmentation assigns different labels. When the objects are
sufficiently separated in space (upper panels), segmentation of
both types is accurate. When objects are adjacent or overlap (lower
panels), semantic segmentation fuses the object regions, but
instance segmentation does not.
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segmentation results showed that QCANet detected nuclei
accurately, whereas 3D U-Net and QCANet w/o NDN fused some
nuclei to each other and 3D Mask R-CNN missed several nuclei
(Fig. 3). We concluded that QCANet has a small false-negative
error in nucleus detection and allows accurate segmentation to
acquire the quantitative criteria of early mouse development.
To evaluate the temporal robustness of the accuracy of instance

segmentation by QCANet, we evaluated the training of QCANet by
11-fold cross-validation with the dataset divided into time points
(Supplementary Fig. 2 time split). The average values were 0.808
for IoU, 0.761 for SEG and 0.787 for MUCov (Supplementary Fig. 3),
almost the same as in Supplementary Table 1. Thus, we
demonstrated the temporal robustness of the accuracy of instance
segmentation by QCANet during embryo development.
Using QCANet, we performed instance segmentation of time-

series 3D fluorescence microscopic images of 11 mouse embryos
(Supplementary Video 1) and qualitatively showed that QCANet
correctly determined the nuclear regions and accurately per-
formed instance segmentation without fusion of cell nuclei.
Although developing mouse embryos have complex character-
istics such as the rate of development, nucleus arrangement, cell
and nucleus shape, and fluorescence intensity, the QCANet
performance was robust.

Applicability of QCANet to developing embryos of C. elegans and
D. melanogaster
We tested whether QCANet could perform segmentation with
high accuracy for other model species. We used public datasets of
developing embryos of C. elegans and D. melanogaster40,42–44. The
datasets of each species were split into the training (2 embryos),
validation (1 embryo) and test (1 embryo) data. Both datasets
consisted of time-series 3D fluorescence images acquired by live-
cell imaging during development.
The C. elegans dataset contained images acquired from the two-

cell stage to a stage including ~300 cells or more. We manually
created a ground truth of segmentation by sampling 5 or 7 time
points per embryo. This ground truth was used for training and
evaluation. In the training step, we performed 3-fold cross-
validation (Supplementary Table 4) and selected the model with
the highest IoU (the metric for the accuracy of semantic
segmentation) to perform segmentation for the test embryo.
Although the value of IoU was the highest with 3D U-Net, the
values of SEG and MUCov (metrics for the accuracy of instance
segmentation) were the highest with QCANet and 3D Mask R-
CNN, respectively (Table 2). A comparison of segmentation by
different algorithms is shown in Fig. 4a. In 3D U-Net, a large
fraction of nuclei was fully fused; such fusion prevents acquisition
of quantitative criteria, therefore, 3D U-Net is not applicable to the
analysis of developing embryos. In 3D Mask R-CNN, nuclei were
not fused, but many of them were missed; this fact was also
supported by the low SEG value. Missing nuclei lead to the
incorrect estimate of the cell number. In QCANet, nuclei were not
fused or missing; thus, QCANet is the most accurate among the
tested algorithms in acquiring quantitative criteria.
The D. melanogaster dataset contained images acquired from a

stage with ~2500–3000 cells or more. We manually created a
ground truth of segmentation by sampling 2 time points per
embryo. The ground truth was used for training and evaluation. In
the training step, we performed 3-fold cross-validation (Supple-
mentary Table 5). Then, we selected the model with the highest
IoU to perform segmentation for the test embryo. The highest IoU
was obtained with 3D U-Net, and the highest SEG and MUCov
with QCANet (Table 2). A comparison of segmentation by different
algorithms is shown in Fig. 4b. As in C. elegans, QCANet did not
fuse or miss nuclei. This result confirmed that QCANet robustly

Fig. 2 Flow diagram of the QCANet algorithm and downstream analysis of quantitative criteria acquisition from QCANet segmentation
results. QCANet performs instance segmentation from time-series 3D fluorescence microscopic images of early-stage embryos as an input.
QCANet first pre-processes the input image at each time point. The pre-processed image is then processed in parallel by the Nuclear
Segmentation Network (NSN), which segments the nuclei, and the Nuclear Detection Network (NDN), which identifies them. The nuclear
region segmented by NSN is divided by marker-based watershed in post-processing using the nuclear centre identified by NDN. By
performing instance segmentation at each time point, QCANet acquires a time-series instance segmentation image. We used time-series
segmentation images acquired by QCANet to acquire quantitative criteria of early mouse development. QCANet can also be used for
classification and quantification of differentiated cell nuclei.

Table 1. Quantification of the segmentation accuracy of QCANet,
QCANet without (w/o) NDN, 3D U-Net23 and 3D Mask R-CNN39 using
IoU (metric for semantic segmentation), and SEG and MUCov (metrics
for instance segmentation).

Algorithm IoU SEG MUCov

3D U-Net 0.702 (0.054) 0.206 (0.161) 0.243 (0.170)

3D Mask R-CNN 0.558 (0.195) 0.476 (0.248) 0.607 (0.144)

QCANet w/o NDN 0.742 (0.060) 0.533 (0.265) 0.520 (0.173)

QCANet 0.746 (0.060) 0.710 (0.109) 0.721 (0.085)

Each value (mean and standard deviation) was calculated on the basis of
the test dataset analysis.
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performs accurate instance segmentation even in embryos
containing thousands of cells (Fig. 4b).
Overall, these results indicate that QCANet is superior to all of

the other algorithms in terms of performing instance segmenta-
tion of cell nuclei of various developing embryos.

Acquisition of quantitative criteria of early mouse development
Using these time-series instance segmentation images by QCANet,
we first extracted the time-series data of the nuclear number,
volume, surface area and specific surface area (Fig. 5). We found a
periodical tendency of sharp decreases in nuclear volume
followed by its partial recovery. This tendency was consistent
with the increase in the number of cells nuclei (Fig. 5a, b and
Supplementary Fig. 4). We concluded that QCANet extracts feature
characteristic of mitosis. The nuclear volume from the pronuclear
to 2-cell stage (0–1.3 days) was 5000-10,000 μm3 (Fig. 5b). The
volume of the mouse embryo at the 2-cell stage is ~56,000 μm3 45;
thus, our estimate of the nuclear volume appeared to be

reasonable. The nuclear surface area followed a similar tendency,
probably because the nucleus is spherical (Fig. 5c), whereas the
tendency of the nuclear specific surface area was opposite (Fig.
5d). Because the specific surface area increases as the sphere
volume decrease, this result showed that the cell nuclei were
becoming smaller yet maintained their spherical shape during
development. The similar tendency was confirmed by the
previous report46. The specific surface area increased because
the shape of the nuclear region changed rapidly at the beginning
of mitosis (Supplementary Fig. 5); also, the volume decreased
dramatically and then partially recovered after mitosis.
Second, we extracted the time-series data of the nuclear centre

of gravity coordinates (Fig. 6). During the development from
morula to blastocyst, the internal space expands and cells of
the outer layer of the blastocyst (trophectoderm47) become the
source of extraembryonic tissue. We observed an expansion of the
internal space during blastocyst formation. We calculated
the space fill factors from all-time data of the nuclear centre of

Fig. 3 Qualitative comparison of segmentation for mouse embryo by 3D U-Net23, 3D Mask R-CNN39, QCANet without (w/o) NDN and
QCANet. Segmentation of 3D fluorescence microscopic images of mouse embryo at four stages is shown. Each colour represents an individual
segmented nuclear region. Days elapsed after the pronuclear stage are indicated.

Table 2. Quantification of the segmentation accuracy of QCANet, QCANet without (w/o) NDN, 3D U-Net23 and 3D Mask R-CNN39 using IoU (metric
for semantic segmentation), and SEG and MUCov (metrics for instance segmentation) for C. elegans and D. melanogaster embryos.

C.elegans D.melanogaster

Algorithm IoU SEG MUCov IoU SEG MUCov

3D U-Net 0.549 (0.226) 0.290 (0.205) 0.002 (0.001) 0.637 (0.016) 0.000 (0.000) 0.004 (0.001)

3D Mask R-CNN 0.476 (0.075) 0.290 (0.155) 0.355 (0.145) 0.344 (0.006) 0.085 (0.007) 0.218 (0.010)

QCANet w/o NDN 0.500 (0.179) 0.257 (0.141) 0.124 (0.079) 0.514 (0.024) 0.002 (0.000) 0.012 (0.003)

QCANet 0.508 (0.160) 0.386 (0.069) 0.340 (0.171) 0.516 (0.024) 0.243 (0.010) 0.260 (0.010)

Each value (mean and standard deviation) was calculated on the basis of test dataset analysis.
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Fig. 4 Qualitative comparison of segmentation for C. elegans and D. melanogaster embryos by 3D U-Net23, 3D Mask R-CNN39, QCANet
without (w/o) NDN and QCANet. Each colour represents an individual segmented nuclear region.

Fig. 5 Quantitative criteria of mouse development extracted by QCANet from time-series data. a Nuclear number. b Nuclear volume. The
tendency of nuclear volume to rapidly decrease and then recover may indicate mitosis. c Nuclear surface area. This time course also captures
the features of mitosis. d Nuclear specific surface area. The tendency of nuclear specific surface area is rapidly increasing immediately before
mitosis and then recover after division.
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gravity coordinates in each embryo (Supplementary Fig. 6); the
values of these factors indicate the position bias of cell nuclei in
the developing embryo. Many space fill factors reached maximum
near the embryo centre, indicating the persistence of cell nuclei
there during the 2–4-cell stages.
Third, we extracted the synchrony of cell division (Fig. 7). An

embryo at the 32-cell stage or more at 3.5 days is a normal
embryo at the blastocyst stage48,49. Embryos 3 and 10 did not
reach the 16-cell stage. The interstage duration (3-, 5- to 7-, 9- to
15-, 17- to 31-cell stage) in these embryos tended to be longer
than in the others. Therefore, cell division in embryos 3 and 10
was not synchronised.
Thus, we showed that we can extract quantitative criteria of

early mouse development using QCANet and quantitatively
evaluate differences between individual embryos.

Classification and quantification of differentiated cell nuclei
The first cell differentiation in early mouse development begins
with the separation of the inner cell mass (ICM), which will form
the embryo body, and trophectoderm (TE), which will form the
placenta. This differentiation begins at the morula stage50. The cell
fate choice between the ICM or TE is correlated with the spatial
arrangement of cells inside or outside each region after the
morula stage51,52. However, there are no reports on the temporal
changes in the ratio of outer cells to inner cells within each stage,
the morula and the blastocyst. Therefore, we quantified the
temporal changes in the numbers of the inner and outer cells
from the 16-cell stage, which we considered as morula, to the
blastocyst.
Differentiated cells in the blastocyst can be used to reliably

distinguish between the inner and outer cells52. To establish a

Fig. 6 The time-series data of the nuclear centre of gravity coordinates extracted by QCANet for 11 mouse embryos. Colour shift from
cold to warm indicates the course of development. Over time, the internal clearance widens, indicating blastocyst formation. In each panel,
the results are displayed in 2D (XY, XZ and YZ cross-sections).
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boundary between the inner and outer cells, we used immuno-
fluorescence staining of four blastocysts with antibodies against
OCT3/4 and CDX2, transcription factors specifically expressed in
the ICM and TE, respectively. Then, using the centre of gravity
coordinates of the nuclei determined with the H2B probe, we
determined a spherical boundary around the centre of the
embryo that separates the inner and outer regions. Using the
determined boundary, we classified the nuclei in time-series
images into those belonging to the inner cells or outer cells from
the 16-cell stage to the blastocyst stage (Supplementary Fig. 7a).
The inner and outer cell areas classified at a ratio of 0.4 coincided
with the experimentally confirmed ICM and TE areas (Fig. 8a and
Supplementary Fig. 7b).
Nine embryos (except embryos 3 and 10) had normal cleavage

synchronisation and reached the blastocyst stage (Fig. 7). The time
at which these embryos formed the blastocoel was defined as the
time at which they reached the blastocyst stage (Fig. 8b); the inner
cells/outer cells were classified at this time, which was defined as
0 days. Then, the inner cells/outer cells were classified at time
points before and after 0 days, and the temporal changes in the
number of nuclei were extracted (Fig. 8c). After 0 days, the
number of nuclei belonging to outer cells, but not to inner cells,
increased rapidly with time. Quantification by immunofluores-
cence staining of ICM/TE cells in the early blastocyst53,54 did not
allow the acquisition of live cells in time series, i.e., it is not
available to count the ICM/TE cell number at various time points.
Previous studies have quantified the inner and outer cells in the
morula47,51; however, as with the blastocyst, the time variation is
unknown. Before 0 days (at the morula stage), the number of the
nuclei of outer cells increased gradually with time and that of
inner cells remained constant.

DISCUSSION
Segmentation is an important and challenging task of bioimage
analysis aimed at uncovering biological phenomena such as
embryogenesis. QCANet was able to solve the problem of nucleus
fusion in the test data, which was not solved by 3D U-Net, and that
of missed nucleus detection, which was not solved by 3D Mask R-
CNN. The test data were different from training and validation
data in terms of imaging conditions. Thus, QCANet can robustly
perform instance segmentation for images acquired under
different imaging conditions. QCANet performed instance seg-
mentation with higher accuracy than the other algorithms in three
model organisms, mouse, C. elegans and D. melanogaster. Thus,
QCANet is the best algorithm in terms of segmenting cell nuclei
during embryonic development in different species.
QCANet can qualitatively classify development into normal

versus abnormal using quantitative criteria extracted from early

mouse embryos. Embryos reaching the blastocyst stage (32 cells
or more) are considered to be normal48,49. Embryos 3 and 10
reached only the 9- to 15-cell stage, whereas other embryos had
already passed the 16-cell stage (Fig. 7). The duration of the 9- to
15-cell stage in embryos 3 and 10 was much longer than in the
other embryos. These results indicate that embryos 3 and 10 lost
the ability to proceed to the next developmental stage with
normal rate. In these embryos, the developmental abnormality
started early, because the 3- and 5- to 7-cell stages were already
much longer than in the other embryos. The fate of the mouse
embryo, in particular whether it reaches the blastocyst stage, is
greatly affected by the initial cell division pattern1,55; synchronicity
of the 2nd and 3rd mitoses within 5.8 h has been proposed as one
of the criteria for classifying normal human embryos56. In normal
embryos, the second and third cell synchrony is good, that is, the
duration of the 3-cell stage is short. The duration of the 3-cell
stage exceeded 1 day in embryos 3 and 10 but was within 5.8 h in
the other embryos (Fig. 7). In embryo 10, the specific surface area
from 0.5 to 1.5 days was larger than in the other embryos (Fig. 5d),
and the values and fluctuations of the space fill factors were
smaller (Supplementary Fig. 6). Two criteria, the number of cells
and duration of each stage, could be used to qualitatively classify
embryogenesis into normal or abnormal.
Comparison of the accuracy of the extraction of the synchrony

of cell divisions showed that QCANet w/o NDN detected more
embryos with long interstage duration (Supplementary Fig. 8a)
than QCANet did (Fig. 7). In embryo 4 at 0.08 days, QCANet w/o
NDN showed an apparent false-positive nucleus (three nuclei in
total), whereas QCANet recognised it as a 2-cell-stage embryo
(Supplementary Fig. 8b). In embryo 9 at 0.08 days, QCANet w/o
NDN extracted a false-positive nucleus and defined embryo 9 as
the 4-cell stage (Supplementary Fig. 8b), whereas QCANet
recognised 3 cells (Fig. 7) and the absence of the synchrony of
cell division. Recognition of false-positive nuclei is the major
barrier to accurate extraction of the synchrony of cell divisions by
QCANet w/o NDN. QCANet overcomes this barrier and accurately
extracts the synchrony of cell divisions, an important criterion in
embryology.
The values of the quantitative criteria acquired by QCANet

varied among embryo. There were two possible causes for this
variation: biological variability and segmentation errors made by
QCANet. To examine whether this variability was caused by
biological variability, we created the correct answers for the
number of cell nuclei, volume, surface area and specific surface
area at 11 time points based on the ground truth. We found that
the number of cell nuclei varied among embryos from 1.4 days
after fertilisation, and other criteria varied among embryos at all
time points (Supplementary Fig. 9, cross mark). Then, we created
the correct answers for the centre of gravity coordinates of cell
nuclei and the synchrony of cell division, and examined the
variability among embryos. We found that the values of the centre
of gravity coordinates (Supplementary Fig. 10a) and the synchrony
of cell division (Supplementary Fig. 11) varied in each embryo.
Therefore, the quantitative criteria had biological variability
among early mouse embryos.
To examine whether QCANet accurately captured this biological

variability, we tested its segmentation error. The segmentation
accuracy of QCANet was considerably lower in the early
(~0.35 days) and late (after ~2.8 days) stages than in the other
stages (Supplementary Fig. 12a). The decrease in accuracy at
~0.35 days was because one of the four embryos in the test data
had low accuracy of segmentation (IoU, SEG and MUCov values
were 0.418); in this embryo, the fusion of the male and female
pronuclei occurred at this time point (Supplementary Fig. 12b).
After ~2.8 days, the accuracies for all four embryos of the test data
were consistently decreasing. For the number of cell nuclei,
volume, surface area and specific surface area, the comparison of
QCANet values with the correct answers showed that the effect of

Fig. 7 Synchrony of cell division. Each colour represents an
embryo stage. If cell division is synchronous, the 2-, 4-, 8-, 16- and
32-cell stages are longer than the other stages. In Emb.3 and
Emb.10, cell divisions were not synchronous.
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QCANet error was small before 2.8 days, except for ~0.35 days
(Supplementary Fig. 9). For the centre of gravity coordinates, we
qualitatively confirmed that the difference between correct values
and values extracted by QCANet was almost consistent (Supple-
mentary Fig. 10). Many fewer gravity coordinates of nuclei were
extracted by QCANet than in the ground truth (e.g., in Emb. 8 in
Supplementary Fig. 10, the number of red dots was considerably
lower in the QCANet results than in the ground truth). This trend
was caused by the high false-negative error of QCANet at the late
stages of development. For the synchrony of cell division, the cell
stage determined by QCANet was consistently lower than that of
the ground truth from 2.8 days for all embryos (Supplementary
Fig. 11). This trend could be caused by nuclei missing by QCANet.
Overall, we concluded that the quantitative criteria acquired by
QCANet accurately captured biological variability except at
~0.35 days and after ~2.8 days.
The number of the nuclei of outer cells specifically increased

and that of inner cells almost remained constant from the morula
to the blastocyst stage. This could be induced by a difference in
the manner of cell division in which outer cells may divide only
into outer cells, whereas inner cells may divide into inner cells and
outer cells. TE proliferates by repeated fission at the morula and
blastocyst stages52,57. ICM but not TE has the ability to divide into
ICM and TE58. We discovered a continuous increase in the number
of outer cells, which might be required for proper development.
In this study, we attempted to count the cell number in ICM and

TE by using a single probe, H2B. The number of inner and outer
cells was consistent with that in the ICM and TE regions
determined with specific markers. These results suggest that
correct classification of ICM and TE can be achieved by using the
indices of area and cell number. Several probes have been used in
previous studies to quantify ICM and TE52,57. Our results show that
the H2B probe alone is sufficient not only to quantify cell nuclei
(and therefore cell number) but also to classify ICM and TE.
Polar bodies have a nucleus but hardly any cytoplasm; they are

formed during oocyte meiosis and slowly degenerate during
embryo development and disappear naturally59–61. Polar bodies
may not be related to normal development and should be
excluded from segmentation targets. However, polar bodies tend
to be extracted by image processing because they produce
fluorescent protein encoded by the microinjected mRNA. In two
cases, QCANet excluded the nuclei of polar bodies from

segmentation: (i) both NSN and NDN excluded these nuclei
(Supplementary Fig. 13a–c), and (ii) NSN identified the nuclei of a
polar body, but NDN excluded them (Supplementary Fig. 13d–f).
Why did QCANet exclude the polar body in the second case? NSN
and NDN identified the nuclei independently. The watershed
process was performed using the result of NDN to divide the
nuclear region segmented by NSN. When NDN identified the false-
positive error of NSN, the nucleus of the polar body was excluded
in post-processing. This result shows that QCANet performs high-
quality analysis of bioimages.
The role of polar bodies in the development has been discussed

for a long time59,60, but there is no clear answer as to why they
exist in the embryo61. Because QCANet recognised the nuclei of
polar bodies, it seems possible to trace only polar bodies during
development; thus, QCANet will be a powerful tool in develop-
mental biology. Yet, how QCANet recognises the polar bodies was
not evident because the regression of deep learning was too
complicated. Some studies have tried to analyse learned
features62,63. It was reported that each layer in the neural network
has a role in image processing such as filtering64. The results of
these studies suggest that the regression by deep learning could
be replaced by a combination of different image processing
approaches. If this combination is revealed and the layer that has a
role in distinguishing nuclei of embryonic cells from those of polar
bodies is determined, the mechanism of recognition of polar
bodies will be uncovered.
Because QCANet is not an end-to-end learning algorithm, NSN

and NDN need separate parameter tuning and training. Therefore,
QCANet needs to be improved and further developed to become
an end-to-end learning algorithm. 3D Mask R-CNN is a state-of-
the-art in instance segmentation and is an end-to-end learning
algorithm. On the other hand, QCANet is better than 3D Mask R-
CNN for instance segmentation of developing embryos, especially
at avoiding false-negative errors in nuclear detection during
nuclear segmentation. The false-negative errors of 3D Mask R-CNN
make it difficult to accurately quantify cell number-dependent
events such as cell division during development. Therefore,
QCANet rather than 3D Mask R-CNN is suitable for obtaining
quantitative criteria of early mouse development.
We also compared QCANet and 3D Mask R-CNN from the

viewpoint of ground truth production cost. The dataset used for
QCANet training requires annotation of semantic segmentation of

Fig. 8 Classification of cells during the morula and blastocyst stages into inner cells and outer cells. a The results of sorting of the
blastocyst nuclei into those of the inner and outer cells in comparison with the results of immunofluorescent staining of OCT3/4 and CDX2 in
the same embryos. Oct3/4 is expressed in ICM (magenta) and Cdx2 in TE (green). b Time to reach the blastocyst stage for each embryo. Blue
circles show the blastocoel, whose formation indicates the blastocyst stage. c Time-series data of nuclear numbers. The origin of the time axis
represents the time at which the blastocysts formed. Lines represent the mean and the lighter shaded areas represent standard deviation.
Horizontal dotted lines represent data from previous studies47,51,53,54.
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each nucleus and the nuclear centre region. On the other hand,
the dataset used for 3D Mask R-CNN training requires annotation
of instance segmentation of each nucleus and the bounding box
of each instance. Compared with instance segmentation, semantic
segmentation does not require the addition of precise per-
instance boundary annotations and different labels. Therefore, the
cost of creating the ground truth for QCANet training is lower than
that for 3D Mask R-CNN.
Segmentation is an indispensable technology for the quantifi-

cation of vital phenomena, but it does not reach the accuracy
necessary for automation and its results need to be evaluated by
biologists. It is more expensive to manually segment a region
missed because of a false-negative error than to remove a region
detected because of a false-positive error. Therefore, our study
demonstrates the usefulness of QCANet, which has few false-
negative errors.
Although this study focused on early mouse embryogenesis, we

demonstrated that QCANet could accurately perform segmenta-
tion for cell nuclei of developing embryos of other species. The C.
elegans and D. melanogaster datasets had a wide range of
developmental stages from two to several hundred cells and
several thousand cells. Thus, QCANet is applicable across a wide
range of developmental stages and is a very useful foundational
tool in embryology.
We expect that QCANet will considerably improve the quality

and throughput of embryologic analysis. Two major future
challenges have to be considered. (i) The number of cell nuclei
occasionally decreases with time (Supplementary Fig. 9a and Fig.
8c), likely because of false-negative detection errors in QCANet.
Indeed, the value of SEG in QCANet decreased after 2.8 days in
mouse development (Supplementary Fig. 12a). Besides, the
segmentation accuracy of QCANet was low when the nucleus
shape dynamically changed, e.g., as a result of the fusion of the
male and female pronuclei at ~0.35 days (Supplementary Fig.
12b). Therefore, future improvements to QCANet will be needed
to reduce segmentation errors and false-negative detection errors
in these cases. (ii) QCANet performs segmentation at each time
point independently and does not perform tracking. Addition of a
tracking algorithm to the segmentation algorithm of QCANet
would allow applying QCANet to cell lineage analysis. We believe
that incorporating a tracking algorithm into QCANet is an
important challenge for the future.

METHODS
Ethics Statement
Male and female ICR strain multiclonal hybrid mice (Jcl: MCH (ICR)) were
used for gamete preparation for training dataset of 11 mouse embryos.
Male and female ICR (slc: ICR) strain were used for gamete preparation for
test dataset of 4 mouse embryos. All animal experiments were conducted
according to the Guide for the Care and Use of Laboratory Animals and
were approved by the Institutional Committees of Laboratory Animal
Experimentation of Osaka University and Kindai University (permit number:
KABT-31-016).

Animals
ICR mice (12–16 weeks old) were obtained from Japan SLC, Inc. (Shizuoka,
Japan). Room conditions were standardised, with the temperature
maintained at 23 ∘C, relative humidity of 50% and a 12-h/12-h light–dark
cycle. Animals had free access to water and commercial food pellets. Mice
used for experiments were killed by cervical dislocation.

Fluorescence imaging for learning and evaluation
For the training dataset used for 11-fold cross-validation, 5522 time-series
images of 11 early mouse embryos from the pronuclear stage to the
maximum of the 53-cell stage were taken under a 3D confocal

fluorescence microscope. The conditions of image acquisition are
summarised in Supplementary Table 1. Each embryo had a different
developmental rate and was at a different developmental stage
(Supplementary Fig. 1). The test dataset consisted of 521 time-series
images of four mouse embryos acquired under different imaging
conditions (Supplementary Table 2).

Immunostaining
Histone H2B-mCherry mRNA was injected into pronuclear stage embryos
as described2. Embryos were fixed at room temperature in 4%
paraformaldehyde, 0.1% polyvinyl alcohol in PBS for 30 min, permeabilised
in 0.25% Triton-X 100 in PBS for 20 min and blocked in 3% bovine serum
albumin in PBS for 1 h. Mouse monoclonal anti-Cdx2 (1:500, overnight,
MU392-UC, BioGenex, San Ramon, CA) and rabbit polyclonal anti-Oct3/4
(1:500, sc-9081, Santa Cruz Biotechnology, Inc., Dallas, TX) were used as
primary antibodies. Alexa Fluor-conjugated secondary antibodies (1:500;
1 h; Molecular Probes) were used. Laser scanning confocal images were
acquired by using a CSU-W1 SoRa microscope (Yokogawa Electric Corp.,
Tokyo, JP).

Ground truth creation
Using Fiji, an open-source platform for biological-image analysis,65 we
manually created the ground truth for training dataset from fluorescence
microscopic images at 11 time points in 11 mouse embryos (Supplemen-
tary Fig. 1). We excluded the nuclei of polar bodies from the ground truth.
The ground truth to learn the task of nuclear identification was a spherical
region with a diameter of 5 voxels; this region was based on the nuclear
centre of gravity coordinates. This size is the maximum diameter at which
adjacent nuclear centre regions do not contact each other. We also
performed these tasks on the test dataset of mouse embryos as well as the
datasets of C. elegans and D. melanogaster embryos.

QCANet overview
QCANet consists of NSN, which learns the nuclear segmentation task, and
NDN, which learns the nuclear identification task (Fig. 2); both NSN and
NDN learn their tasks from the created ground truth. QCANet performs
instance segmentation of the time-series 3D fluorescence microscopic
images at each time point. The quantitative criteria of mouse development
can be extracted from the acquired time-series instance
segmentation image.
We implemented QCANet in Python 2.7 and used Chainer66, an open-

source deep learning framework. We used NVIDIA Tesla K40 (operating
frequency, 745 MHz; single precision floating point performance, 4.29
TFLOPS) and NVIDIA Tesla P100 (1189 MHz, 9.3 TFLOPS) for calculation of
learning and segmentation. P100 is on Reedbush-H, a calculation server of
the University of Tokyo Information Infrastructure Center.

Pre-processing in QCANet
The objective of normalisation was to prevent the divergence of values
and gradient disappearance in learning. The value of each voxel to be
normalised (I0) was defined by

I0 ¼ I � Imin

Imax � Imin
; (1)

where I is the value of each voxel to be normalised, Imax is the maximum
voxel value in the image and Imin is the minimum voxel value in the image.
The value of I0 was obtained for all the voxels in the image, and the range
of the voxel values was [0, 1].
To fit the patch area within an image even if the voxel of interest was

out of the image, mirror padding was performed by acquiring voxel values
inside of m pixels from the edge of the image and extrapolating this mirror
image to the outer edge. The patch size of QCANet was 128 voxels, so the
size of the mirror-padded region was 64 voxels.
Because x, y and z-axis resolution in the microscopic image to be

analysed was 0.8:0.8:1.75 μm (Supplementary Table 1), it was necessary to
change it to the actual scale ratio of 1:1:1. Using bicubic interpolation, we
interpolated 2.1875 times in the z-axis direction.
Because the number of samples of the ground truth was small, we

performed data augmentation and increased the number of data four
times for each training image by flipping on the x-axis, y-axis and both

Y. Tokuoka et al.

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    32 



axes. Because the luminance bias in the z-axis direction (a feature of time-
series 3D fluorescence microscopic images) is always constant, we did not
expand the data in this direction.

Nuclear segmentation network
We used Stochastic Gradient Descent (SGD) as an optimisation method for
learning NSN. The structure of the network is based on 3D U-Net23, and
parameter tuning suitable for the dataset was performed by Bayesian
optimisation in SigOpt (https://sigopt.com). SigOpt was used as an
optimisation platform. NSN had 1,146,896 parameters fewer than 3D U-
Net (Supplementary Table 6).
The output function of NSN, called softmax, is defined by

yk ¼
expðxkÞ

ΣKj¼1 expðxjÞ
; (2)

where K denotes the number of classes (nucleus or background region), x
denotes each input from the final layer and y denotes the output value.
The objective function of NSN, dice loss function67, is defined by

E ¼ 2
PN

i yigiPN
i y

2
i þ

PN
i g

2
i

; (3)

where g denotes the ground truth and N denotes the number of learning
data. In the segmentation task, it is often a problem that labels (the
number of pixels or voxels in the background and objects) are not
balanced; the use of dice loss function as an objective function can
suppress the influence of dataset label imbalance67.

Nuclear Detection Network
We used Adam68 as an optimisation method for learning. The structure of
the network was based on 3D U-Net23, and parameter tuning suitable for
the dataset was performed by Bayesian optimisation in SigOpt. NDN had
44,447,940 parameters more than 3D U-Net (Supplementary Table 7). As in
NSN, softmax and dice loss functions were used as the output and
objective functions, respectively.

Post-processing in QCANet
We performed (a) reinterpolation and (b) marker-based watershed
transformation on the semantic segmentation image output from NSN
and NDN. Reinterpolation restores the resolution of the image interpolated
for segmentation and identification. Marker-based watershed divides the
semantic segmentation region by watershed with the centre region of the
identified nucleus as a marker. Post-processing enables QCANet to execute
instance segmentation.

Evaluation metrics for segmentation
An answer was considered correct when a voxel of an object region was
classified as such (true positive, TP) or a voxel of a background region was
classified as such (true negative, TN). An answer was considered incorrect
when a voxel of a background region was classified as an object region
(false positive, FP) or a voxel of an object region was classified as a
background region (false negative, FN). Accordingly, IoU was defined as

IoU ¼ TP
TPþ FPþ FN

; (4)

where TP, FP and FN denote the numbers of voxels defined as above.
SEG was defined as

SEG ¼
XNi

j

1
Ni

max
i

IoUðyi ; y�j Þ; (5)

where Ni is the number of segmented nuclei, y is the segmented nuclear
region, y* is the ground truth of the nuclear region, i is a label attached to
the segmented nuclear region (i= 1, …, Ni) and j is a label attached to the
ground truth of the nuclear region. According to a previous study40, IoU
was calculated only when (y ∩ y*) > 0.5 ⋅ y* as a constraint condition.
MUCov was defined as

MUCov ¼
XNj

i

1
Nj

max
j

IoUðyi ; y�j Þ; (6)

where Nj is the number of ground truth objects and other variables are as
for SEG. The constraint condition was defined as (y ∩ y*) > 0.5 ⋅ y*.

Model architecture and learning conditions of NSN
NSN hyperparameters were determined by Bayesian optimisation, and the
model architecture of NSN was based on these hyperparameters
(Supplementary Table 6). Epoch was fixed at 150 for learning. Using SGD
and Adam, we evaluated learning the model. Because NSN trained by SGD
performed nuclear segmentation with high accuracy, we adopted SGD-
trained NSN for QCANet.

Model architecture and learning conditions of NDN
NDN hyperparameters were determined by Bayesian optimisation, and the
model architecture of NDN was based on these hyperparameters
(Supplementary Table 7). Epoch was fixed at 150 for learning. Using SGD
and Adam, we evaluated learning the model by NDN. Because NDN trained
by Adam performed nuclear identification with high accuracy, we adopted
Adam-trained NDN for QCANet.

Training of previous algorithms
3D U-Net was trained by using reported hyperparameters23. The source
code used in a previous study39 was used to implement 3D Mask R-CNN.
Recommended values of hyperparameters were applied to 3D Mask R-
CNN, but the number of candidates output by the Region Proposal
Network was set to 200 as a result of tuning. Epoch was set at 150 for 3D U-
Net and at 100 for 3D Mask R-CNN; at these values, the learning was
judged to be sufficiently converged. Adam was used as an optimisation
technique for both algorithms.

Extraction of quantitative criteria from segmentation images
Nuclear number was extracted by counting the number of labels in
segmentation images. Nuclear volume was extracted by converting the
voxel number of the segmented nuclear region for each label to the actual
scale. Nuclear surface area was extracted by converting the voxel number
of the nuclear region that was in contact with the background region to
the actual scale. The nuclear centre of gravity coordinates was calculated
as the centre of gravity of the segmented nuclear region for each label. The
synchrony of cell division was extracted from the time-series data for the
nuclear number. The embryo was considered to have reached a certain
stage if this stage lasted for at least 1 h.

Classification of the nuclei of differentiated cells
The centre of gravity coordinates of the embryo were defined by using all
the extracted nuclear centre of gravity coordinates at a particular time
point. The distance from the centre of gravity coordinates of the embryo to
those of the farthest cell nucleus was calculated as the radius R of the
embryo. Then, for the radius R, we introduced the parameter r (0 ≤ r ≤ 1) as
a threshold to classify inner cells and outer cells. Cells with the nuclei
within rR were classified as inner cells and those with the nuclei outside rR
as outer cells (Supplementary Fig. 7). Since the classification result at r=
0.4 was qualitatively in best agreement with the result obtained with
specific markers (Supplementary Fig. 7b), r= 0.4 was adopted for the
classification of inner vs. outer cells.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Part of training and testing datasets for mouse embryo 2 have been deposited to the
Broad Bioimage Benchmark Collection (accession number BBBC050, see https://bbbc.
broadinstitute.org/BBBC050). Data for C.elegans and D.melanogaster embryos were
taken from the Cell Tracking Challenge (“C.elegans developing embryo” and
“Developing Drosophila Melanogaster embryo”, see http://celltrackingchallenge.net/
3d-datasets/).

CODE AVAILABILITY
The source code of QCANet is available from https://github.com/funalab/QCANet.
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