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Abstract: Titanium(IV) oxo-clusters of the general formula (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9 (1),
PhCl (2), PhNO2 (3)) were studied in order to estimate their potential photoactivity. The structure
of the resulting tetranuclear Ti(IV) oxo-complexes was then determined via single crystal X-ray
diffraction, infrared and Raman spectroscopy, and electron spin resonance (ESR). An analysis
of diffuse reflectance spectra (DRS) allowed for the assessment of band gap values of (1)–(3)
microcrystalline samples complexes. The use of different carboxylate ligands allowed the band gap
of tetranuclear Ti(IV) oxo-clusters to be modulated in the range of 3.6 eV–2.5 eV. Density functional
theory (DFT) methods were used to explain the influence of substitutes on band gap and optical
activity. Dispersion of (1)–(3) microcrystals in the poly(methyl methacrylate) (PMMA) matrixes
enabled the formation of composite materials for which the potential photocatalytic activity was
estimated through the study on methylene blue (MB) photodegradation processes in the presence of
UV light. The results obtained revealed a significant influence of carboxylate ligands functionalization
on the photoactivity of synthesized tetranuclear Ti(IV) oxo-complexes.

Keywords: titanium(IV) oxo-clusters; photoactivity; band gap modification; photoluminescence;
DFT calculations; composite materials

1. Introduction

The unique physicochemical and biological properties of titanium dioxide favor its wide
application in a variety of fields in our lives. The optical properties and photocatalytic activity
of materials based of TiO2 have especially been intensively studied in recent times [1–3]. Titania
photoactivity is utilized in water splitting, purification of air and water, reduction of environmental
pollutants, and in antimicrobial applications [4,5]. Recently, much attention has been devoted to the use
of titanium oxo-clusters (TOCs) as compounds exhibiting similar properties to TiO2 but characterized
by a discrete molecular structure [6–10]. An analysis of the literature indicates the significance of
TOCs in synthesis of inorganic–organic hybrid materials that are produced through introduction of
metal oxo-clusters into the polymer matrix [11]. The possible interactions between inorganic and
organic components may result in an improvement of structural properties of the polymer as well as
its thermal, mechanical, and barrier properties due to cross-linking and filling. The unique properties
of oxo-clusters, e.g., photochromicity, catalytic/biological or magnetic activity, can give entirely new
properties to the composite material compared to the base polymer [11–22]. Therefore, studies on
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TOC synthesis of the titanium oxide core with the desirable architecture, size, and physicochemical
properties are important for the production of novel inorganic–organic composite materials [17].

A good example of the above is the studies on TOCs, which are stabilized by phosphonate and
different carboxylic acids used as photocatalysts in the process of water splitting and photodegradation
of organic dyes [22]. According to these investigations, the structural functionalization of carboxylate
ligands associated with the size modification of the band gap had a direct impact on the photocatalytic
activity of oxo-clusters. In addition, the use of (Ti6O6(OiPr)6(O2CR’)6) (R’ = C6H4NH2, C6H4NHMe,
C6H4NMe2, C6H3(F)NH2, C6H3(Cl)NH2) complexes in the photocatalytical degradation of methylene
blue (MB) and rhodamine B (RB) revealed a clear influence of the functionalization method of carboxyl
groups on the energy band gap size and photocatalytic activity of these compounds [23]. Lin et al.
described three TOCs with {Ti6O4} core consisting of pivalic and benzoate ligands as photocatalysts
bearing better water splitting properties than pure TiO2 nanowires, nanotubes, and nanosheets
phases [24]. Application of phthalic acid in synthesis of TOCs led to the formation of the oxo-complex,
which contain {Ti6O3} cores, which was used in the degradation of methyl orange in the presence
of H2O2 [25]. In addition, {Ti6O3} clusters with malonate and succinate ligands were studied for
photodegradation of methyl orange [26].

In our previous works, we have focused on synthesis, structure determination, and photocatalytic
activity studies of tetranuclear oxo-complexes [19,27]. The results of earlier studies revealed that
three different types of (Ti4Ob(OR)c(O2CR’)16−2b−c) complexes are usually formed in a direct
reaction of Ti(OR)4 and organic acid in the different alkoxide/acid molar ratio, i.e., (a) {Ti4O4} of
C.r. = 1 (C.r.—complexation ratio, e.g., (Ti4O4(OR)4(O2CR’)4), R = iPr, tBu, R’ = H, iPr, C(Me)2Et,
Co3C(CO)9 [19,21]); (b) {Ti4O2} of C.r. = 1.5 (e.g., (Ti4O2(OR)6(O2CR’)6), R = iPr, R’ = C2H3, C(Me)
= CH2, C5H4FeCp [21]); and (c) {Ti4O2} of C.r. = 0.5 (e.g., (Ti4O2(OR)10(O2CR’)2), R = iPr, iBu, R’ =
H, C6H4NH2 [20,21,27]). Moreover, Liu et al. proved the formation of (Ti4O3(OiPr)6(fdc)2) complex,
which consists of square-planar {Ti4(µ4-O)(µ-O)2} cores (C.r. = 0.75) in the hydrothermal conditions
(the reaction of Ti(OiPr)4 with 1,1-ferrocenedicarboxylate acid (fdcH2) in DMF) [28]. The structures of
Ti(IV) oxo-complexes containing {Ti4O)} cores (C.r. = 0.25) were also found, e.g., (Ti4O(OEt)12(R’)) (C.r.
= 0.25, R’ = O3P-Phen, iBuPO3), (Ti4(µ3-O)(OiPr)8(O3P-tBu)3(DMSO)) [20].

From the abovementioned tetranuclear systems, the (Ti4O2(OiBu)10(OOCC6H4NH2)2) was
especially interesting for us. This complex was synthesized with a good yield in a direct reaction
of Ti(OiBu)4 with 4-aminobenzoic acid in molar ratio 4:1 at room temperature [27]. The isolated
crystals revealed hydrophobic properties and significantly lower sensitivity to moisture in comparison
to compounds such as (Ti4O4(OR)4(O2CC(Me)2Et)4) or (Ti6O6(OR)6(O2CC(Me)2Et)6) (R = iBu,
tBu) [19]. Moreover, the (Ti4O2(OiBu)10(O2CC6H4NH2)2) compound revealed a promising activity in
photocatalytic MB degradation under UV light irradiation. Having considered previous reports
on the influence of the type of carboxylate ligand on the optical properties and photocatalytic
activity of oxo-clusters, we decided on the synthesis of new (Ti4O2(OiBu)10(O2CR’)2) complexes with
different carboxylate ligands, i.e., fluorene-9-carboxylate (O2CC13H9), 3-chlorobenzoic carboxylate
(O2CC6H4Cl), and 3-nitrobenzoic carboxylate (O2CC6H4NO2). Besides synthesis of new tetranuclear
Ti(IV) oxo-complexes and their structural and spectral characteristic, it was interesting to determine
the impact of carboxylate ligands on the {Ti4O2} core structure, band gap, optic properties,
and photocatalytic activity.

2. Materials and Methods

2.1. General Information

Titanium(IV) isobutoxide (Aldrich, St. Louis, MO, USA), 3-chlorobenzoic acid (Aldrich),
3-nitrobenzoic acid (Aldrich), 4-aminobenzoic acid (Aldrich), and fluorine-9-coarboxylic acid (Organic
Acros, Geel, Belgium) were purchased commercially and were used without purification. The solvents
applied—toluene, tetrahydrofuran, and acetone—were distilled before their use. All operations were
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performed in an argon atmosphere using standard Schlenk techniques. The vibrational spectra of
synthesized compounds were registered using the Perkin Elmer Spectrum 2000 FT-IR spectrometer
(400–4000 cm−1 range, KBr pellets) and the RamanMicro 200 spectrometer (PerkinElmer, Waltham,
MA, USA). 13C NMR spectra were carried out on Bruker Advance 700 (Madison, WI, USA). Elemental
analyses were performed on Elemental Analyzer vario Macro CHN Elementar Analysensysteme GmbH
(Langenselbold, Germany). The solid state optical diffuse reflection experiment was carried out on the
Jasco V-750 Spectrophotometer (JASCO Deutschland GmbH, Pfungstadt, Germany) equipped with
an integrating sphere for diffuse reflectance spectroscopy. The recorded spectra were analyzed using
Spectra ManagerTM CFR software (JASCO Deutschland GmbH, Pfungstadt, Germany). The solid-state
luminescence spectra were recorded on Gilden λ Photonics (Glasgow, UK). All ESR spectra were
recorded at room temperature using a Bruker Elexsys E500 spectrometer (Rheinstetten, Germany) at a
microwave power of 20 mW and modulation amplitude of 0.5 G. In the case of low intensity signals,
five scans were accumulated. The measurements were performed for powdered samples immobilized
on poly(methyl methacrylate) (PMMA) foils. Samples on foils were studied using special EPR Tissue
Sample Cells (Wilmad-Labglass, WG-807 type, Vineland, NJ, USA). All samples were irradiated in
situ using the 100 W mercury lamp (Bruker ER 203UV Irradiation System, Rheinstetten, Germany).
To determine the diagonal components of g-tensor programs, SimFonia 1.26 developed by Bruker
was employed.

2.2. Syntheses

The synthesis of (Ti4O2(OiBu)10(O2CC13H9)2) (1): 0.184 g of 9-fluorenecarboxylic acid (0.875 mmol)
was added to the solution of 1.19 g titanium(IV) isobutoxide (3.5 mmol) in 2 mL of acetone. Reactants
underwent rapid reaction, leading to clear brownish solution. The solution was left for crystallization.
Slow evaporation under an inert gas atmosphere led to crystals suitable for X-ray diffraction experiment.
The yield basing on acid: 77% (0.46 g). Anal. Calcd. for C68H108O16Ti4: C, 59.28; H, 7.93; Ti, 13.94.
Found: C, 58.92; H, 7.81; Ti, 13.79.

The synthesis of (Ti4O2(OiBu)10(O2CC6H4Cl)2) (2): 0.137 g of 3-chlorobenzoic acid (0.875 mmol)
was added to the solution of 1.19 g titanium(IV) isobutoxide (3.5 mmol) in 2 mL of toluene, leading
to a colorless solution. The solution was left for crystallization. Slow evaporation under an inert
gas atmosphere led to crystals suitable for X-ray diffraction experiment. The yield basing on acid:
88% (0.49 g). Anal. Calcd. for C54H98O16Cl2Ti4: C, 51.24; H, 7.80; Ti, 15.13. Found: C, 50.89; H, 7.98;
Ti, 14.95.

The synthesis of (Ti4O2(OiBu)10(O2CC6H4NO2)2) (3): 0.146 g of 3-nitrobenzoic acid (0.875 mmol)
was added to the solution of 1.19 g titanium(IV) isobutoxide (3.5 mmol) in 2 mL of THF, leading to a
weak yellow solution. The solution was left for crystallization. Slow evaporation under an inert gas
atmosphere led to crystals suitable for X-ray diffraction experiment. The yield basing on acid: 94%
(0.53 g). Anal. Calcd. for C54H98O20N2Ti4: C, 50.40; H, 7.68; N, 2.18; Ti, 14.88. Found: 50.94; H, 7.74; N,
2.22; Ti, 14.71.

The synthesis of (Ti4O2(OiBu)10(O2CC6H4NH2)2) (4): Complex of a given formula was synthesized,
as reported [27].

2.3. X-ray Crystalography Study

For single crystals, the diffraction data of (1) and (2) were collected using BL14.3 beamline
(Helmholtz Zentrum Berlin, Germany, Bessy II), radiation λ = 0.89429 Å, at liquid nitrogen temperature,
whereas for (3), the diffraction experiment was performed at room temperature using Oxford Sapphire
CCD diffractometer, MoKα radiation λ = 0.71073 Å. The data were processed using CrysAlis [29],
xdsapp [30], and XDS [31], and the numerical absorption correction was applied for all crystals.
The structures of all complexes were solved by direct methods and refined with full-matrix least-squares
procedure on F2 (SHELX-97 [32]). All heavy atoms were refined with anisotropic displacement
parameters. The positions of hydrogen atoms were assigned at calculated positions with thermal
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displacement parameters fixed to a value of 20% or 50% higher than those of the corresponding carbon
atoms. For (2) and (3), some constraints (DFIX, DANG and ISOR) were applied for C–Cl, C–O, and C–C
bonds. In (1) the alternate positions were found only for one –OiBu (O61), whereas for (2) a positional
disorder was detected for chlorine atoms in O201, O211, and O221 carboxylate anions and in O81, O131
and O171 –OiBu ligands. In (3), we observed a significant disorder of O71, O91, O101, O121, O131,
O141 and O191 –OiBu. In the final model of (3), O141 isobutanolate was incomplete—there was lack of
carbon and hydrogen atoms from minor orientation. All figures were prepared in DIAMOND [33]
and ORTEP-3 [34]. The results of the data collections and refinement are summarized in Table 1.
The crystallographic data of the complex (4) were presented in our earlier paper [27].

Table 1. The selected crystal data and structure refinements for (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9

(1), PhCl (2), PhNO2 (3); the complete crystallographic data are given in Table S1).

Parameters (1) (2) (3)

Empirical formula C68H108O16Ti4 C54H98Cl2O16Ti4 C54H98N2O20Ti4
Formula weight (g/mol) 1373.14 1265.82 1286.94

Temperature (K) 100(2) 100(2) 293(2)
Wavelength (Å) 0.89429 0.89429 0.71073

Space group Monoclinic, P 1 21 1 Tetragonal, P 4 1 Triclinic, P 1

Unit cell dimensions (Å) and
angles (◦)

a = 12.447(3)
b = 21.693(4)
c = 14.071(3)
α = γ = 90

β = 105.19(3)

a = 17.827(3)
c = 41.475(8)
α = β = γ = 90

a = 17.9713(9)
b = 18.0686(7)
c = 22.7006(9)
α = 105.742(4)
β = 98.362(4)
γ = 92.631(4)

Volume (Å3) 3666.61(140) 13180.83(500) 6991.1(5)
Z, Calculated density (Mg/m3) 2, 1.244 8, 1.276 4, 1.223

Final R indices (I > 2sigma(I)) R1
a = 0.0444,

wR2
b = 0.1182

R1
a = 0.0680,

wR2
b = 0.1851

R1
a = 0.0860,

wR2
b = 0.2304

Absolute structure parameter 0.041(3) 0.387(19) N/A
a R1 = Σ||F0| − |Fc||/Σ|F0|; b wR2 = (Σw(F0

2 − Fc
2)2/Σ(w(F0

2)2) )1/2. CCDC 1826273, 1826276, and 1826277
contain the supplementary crystallographic data for (1), (2), and (3), respectively. These data can be obtained free
of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

2.4. Preparation and Photoactivity Study of Composites

Hybrid PMMA + {TOCs} composite foils containing 20 wt % of synthesized oxo-clusters were
prepared by dissolving 1.0 g of polymer in 5 mL of THF and adding a solution of 0.25 g of TOCs—(1),
(2), (3), and (4)—in 1 cm3 of THF to this solution. The resulting mixtures were stirred, poured into
a glass Petri dish and left for evaporation of the solvent. Then, the prepared polymer foils were
characterized by Raman and NMR spectroscopy and scanning electron microscopy.

The photoactivity properties of polymer composite foils were studied through MB degradation.
Foil samples of size 8 mm × 8 mm were placed in quartz cuvettes, and MB solution (V = 3 cm3, initial
concentration C0 = 1.0 × 10−5 M) was poured on films. The prepared samples were exposed to UV
irradiation (18 W, range of 340 nm–410 nm with maximum at 365 nm). MB absorbance at 660 nm
was registered after 0, 24, 48, 72, 94, 168, and 192 h of irradiation. For the purpose of determination
of photoactivity, the methodology of chemical kinetics assuming a Langmuir–Hinshelwood (L–H)
reaction mechanism was used. However, the linear dependencies of A = f (t) suggested that Kc << 1 in
the L–H equation and it could be simplified. Thus, the rate of reaction can be expressed as:

r = −dc/dt = kdegKc/(1 + Kc) ≈ kdegKc = kobsc (1)

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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where c is a reactant (MB) concentration, t is time of the concentration measurement, kdeg is the rate
constant of MB degradation on the surface, kobs is a first order observed rate constant, and K describes
the reactant adsorption process.

2.5. The Computational Details

The density functional theory (DFT) calculations were performed with Gaussian09 packages [35].
The HSE06 functional was used with 6-31G(d,p) basis set. The crystal structures were used as an
optimization starting geometry. In order to reduce the complexity of calculations, isobutyl moieties
were substituted with methyl groups. The criterion of no imaginary frequencies was used to confirm
the result as an actual minimum. Density-of states (DOS) plots were visualized with GaussSum 3.0 [36].

3. Results

3.1. Structures of (Ti4O2(OiBu)10(O2CR’)2) Clusters

Structural studies of (1)–(3) complexes proved that their central part was formed by {Ti4O2} core
that consisted of two µ-oxo bridges, i.e., µ4–O connecting all four Ti(IV) atoms in distorted tetrahedral
environment and µ–O bridging two of the closest titanium atoms (Figure 1) similar to the structure
of (4) [27].
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Figure 1. The structure of {Ti4O2} core, which was found in (Ti4O2(OR)10(O2CR’)2) (R = iBu, R’ =
C13H9 (1), PhCl (2), PhNO2 (3)) complexes (crystallographic ball-stick scheme). For clarity, the terminal
alkoxide groups are omitted.

Simultaneously, the {Ti4O2} skeleton was stabilized by four µ2-OiBu bridges and two syn–syn
carboxylate ligands (–O2CR’, R’ = C13H9 (1), PhCl (2), PhNO2 (3)). The selected bond lengths and
angles, which were found in structures of (1)–(3) compounds, are listed in Table 2. Comparison of the
structural data of these complexes and (4) [27] made it possible to trace the influence of carboxylate
groups on the geometry of the {Ti4O2} core, which may have a direct impact on their photocatalytic
activity. According to earlier reports concerning photoactivity of Ti(IV) oxo-clusters, the possible
changes of {Ti2(µ2–O)} bridges angle, which can be responsible for the facilitation of the photocatalytic
process, should be noted [26]. In the group of synthesized compounds, the values of these angles
changed in the row: 105.7(2) (4) [27] < 106.09(15) (1) < 106.5(2) (2) < 107.36(15) (3) (Table 2). It suggests
that photoactivity of oxo-clusters should also change according to the above dependence. Changes
of {Ti2(µ2–O)} bridges angle were associated with the differences in Ti1–Ti2 distances ((1) < (2) < (3) <
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(4) (2.9521(13) [27]). At the same time, the geometry of {Ti2(µ4–O)} bridges also changed, which was
reflected by differences in Ti3–Ti4 distances and Ti1–O2–Ti2 and Ti3–O2–Ti4 angles (Table 2).

Table 2. Selected bond lengths (Å) and angles (◦) of (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9 (1), PhCl (2),
PhNO2 (3)).

Parameter (1) (2) (3)

Distances (Å)
Ti–Ti Ti1–Ti3 3.1690(11) 3.2016(16) 3.2060(12)

Ti1–Ti2 2.9427(12) 2.9488(16) 2.9521(13)
Ti1–Ti4 3.1446(12) 3.1456(15) 3.1508(12)
Ti2–Ti3 3.1566(11) 3.1532(17) 3.1617(13)
Ti2–Ti4 3.1738(13) 2.1859(17) 3.2009(12)
Ti3–Ti4 4.0386(16) 3.9255(16) 3.9510(13)

Ti–(µ4–O) Ti1–O2 2.0457(30) 2.0599(39) 2.059(3)
Ti2–O2 2.0357(28) 2.0622(41) 2.052(3)
Ti3–O2 2.0820(27) 2.0603(38) 2.074(3)
Ti4–O2 2.0896(27) 2.0264(38) 2.042(3)

Ti–(µ2–O) Ti1–O3 1.8326(37) 1.8643(40) 1.839(3)
Ti3–O3 1.8499(41) 1.8182(39) 1.826(3)

Ti–(µ2–OR) Ti1–O11 1.9609(27) 1.9515(37) 1.944(3)
Ti1–O1 2.0042(28) 2.0133(38) 2.017(3)

Ti2–O21 1.9979(27) 2.0095(38) 2.020(3)
Ti2–O31 1.9633(28) 1.9858(38) 1.969(3)
Ti3–O1 1.9896(36) 2.0041(39) 1.993(3)

Ti3–O31 2.0981(29) 2.0698(45) 2.089(3)
Ti4–O11 2.0944(32) 2.1355(43) 2.114(3)
Ti4–O21 1.9985(30) 2.0182(44) 2.004(3)

Ti–O (carb) Ti4–O111 2.027(3) 2.051(4) 2.068(4)
Ti1–O112 2.195(3) 2.135(4) 2.145(3)
Ti2–O131 2.190(3) 2.127(5) 2.142(4)
Ti3–O132 2.028(3) 2.073(5) 2.056(4)

O–C (carb) O111–C112 1.270(5) 1.272(8) 1.267(6)
O112–C112 1.245(5) 1.244(8) 1.240(6)
O131–C132 1.245(6) 1.259(9) 1.260(7)
O132–C132 1.257(6) 1.255(9) 1.245(6)

Angles (◦)
Ti–(µ4–O)–Ti Ti3–O2–Ti2 100.10(12) 99.80(17) 100.05(12)

Ti3–O2–Ti1 100.31(13) 102.02(17) 101.76(13)
Ti2–O2–Ti1 92.28(12) 91.36(17) 91.79(12)
Ti3–O2–Ti4 150.98(16) 147.7(2) 147.43(15)
Ti2–O2–Ti4 100.58(13) 102.34(18) 102.83(14)
Ti1–O2–Ti4 98.99(12) 100.66(18) 100.39(12)

Ti–(µ2–O)–Ti Ti1–O3–Ti2 106.09(15) 106.5(2) 107.36(16)
Ti–(µ2–OR)–Ti Ti1–O1–Ti3 105.04(15) 105.72(18) 106.16(14)

Ti1–O11–Ti4 101.65(13) 100.52(19) 101.79(13)
Ti2–O31–Ti3 101.97(14) 102.04(18) 102.35(13)
Ti2–O21–Ti4 105.16(14) 104.55(19) 105.38(15)

O–C–O (carb) O111–C112–O112 126.0(4) 125.5(6) 125.5(5)
O131–C132–O132 126.6(4) 126.1(6) 125.8(5)

3.2. Analysis of Vibrational Spectra

The possible influence of the carboxylic groups on the structure of (Ti4O2(OiBu)10(O2CR’)2)
clusters were studied using IR and Raman spectroscopy. The position of the bands derived from the
vibrations of carboxylate ligands (νas(COO) and νs(COO) at ~1600 and ~1400 cm−1) and {Ti4O2} cores
(specific bridges: Ti(µ–O), Ti(µ4–O) at 400–700 cm−1) were especially important for us (Table 3).
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Table 3. Results of vibrational spectra studies of (1)–(3) complexes.

Modes
(1) (2) (3)

IR R IR R IR R

νas(COO) 1566 (s) 1611 (s)
1581 (w)

1590 (s)
1551 (m)

1595 (s)
1552 (m)

1595 (m)
1559 (s)

1614 (w)
1599 (vw)
1561 (m)

νs(COO) 1448 (m) 1450 (m) 1442 (m) 1459 (m) 1434 (m) 1456 (s)
νas(NO2) - - - - 1530 (m) 1534 (m)
νs(NO2) - - - - 1347 (s) 1349 (m)

νa(Ti–µ–O–Ti)
νs(Ti–µ–O–Ti) 712 (w) 700 (m)

666 (m) - 699 (m)
661 (m) - 697 (m)

653 (m)
νa(Ti–µ4–O–Ti)
νs(Ti–µ4–O–Ti)

636 (m)
546 (s)

543 (vw)
414 (m)

635 (m)
547 (m)

548 (vw)
415 (m)

643 (m)
546 (s)

536 (vw)
412 (m)

Earlier studies of coordination compounds with {Ti4O2} moiety revealed that the M–O stretches
region of this type of compound is represented by many broad bands derived of different M–O
modes between 400 cm−1 and 800 cm−1 [27,37]. The same pattern is shown for compounds bearing
{Ti4(µ4–O)} core [38,39]. Our earlier investigations involving comparison of experimental spectra and
DFT calculations of (Ti4O2(OiBu)10(ABZ)2) cluster (4) have revealed that asymmetric and symmetric
Ti(µ–O) bridge bands are located between 700 cm−1 and 680 cm−1 and Ti(µ4–O) in ~630 cm−1 and
~535 cm−1 [27]. Bands in 700–690 cm−1 come from symmetric νs(Ti–O–Ti) modes; ones at ~630 cm−1,
~535 cm−1 and 430–420 cm−1, which were found in IR and Raman spectra of this compound, can be
assigned as well as νs(Ti–O–Ti) modes. DFT calculations (HSE06/6-31G(d,p) level of theory) were
also carried out for the studied systems consisting of {Ti4O2} core linked with two carboxylate
ligands—(1)–(3)—and stabilized by ten alkoxide groups (experimental and calculated structural
data of {Ti4O2} cores are compared in Table S1). Results of these studies are summarized in Table 4.
According to these data, the frequency of symmetric (s) and asymmetric (a) stretching modes of
Ti–O–Ti bridges should be 699–706 cm−1 for µ–O bridges and 439–622 cm−1 for µ4–O ones. The bands,
which can be attributed to abovementioned modes, were also found in IR and Raman spectra of (1)–(3)
complexes (Table 3, Figure S1). Analysis of spectral data exhibited that a significant effect of carboxylic
groups on the vibration frequency of Ti–O–Ti bridges was not observed.

Table 4. The calculated frequencies of the (Ti–O–Ti) modes of {Ti2-(µ2-O)} and {Ti4-(µ4-O)} bridges.
In DFT calculations of (1)–(3) complexes the OiBu ligands were exchanged on the OMe one.

Complex Mode Frequency (cm−1)

(Ti4O2(OMe)10(O2CC13H9)2) (1)

νa(Ti–µ–O–Ti)
νs(Ti–µ–O–Ti)
νa(Ti–µ4–O–Ti)
νs(Ti–µ4–O–Ti)

703
700
623

570,439

(Ti4O2(OMe)10(O2CC6H4Cl)2) (2)

νa(Ti–µ–O–Ti)
νs(Ti–µ–O–Ti)
νa(Ti–µ4–O–Ti)
νs(Ti–µ4–O–Ti)

705
700
622

560,448

(Ti4O2(OMe)10(O2CC6H4NO2)2) (3)

νa(Ti–µ–O–Ti)
νs(Ti–µ–O–Ti)
νa(Ti–µ4–O–Ti)
νs(Ti–µ4–O–Ti)

706
699
622

567,444

3.3. UV-Vis Absorption Spectra, Band Gap Determination and DOS

The solid state UV-Vis absorption spectra of studied compounds were recorded with an integrating
sphere fitted spectrophotometer at room temperature (Figure 2a). MgO was used as a standard
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reference. Figure 2b shows the plot of Kubelka–Munk (K–M) function versus light energy, i.e., K = f(hν)
where K = (1− R)2/2R and R is reflectance that was used for the optical band gap determination [40,41].
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Figure 2. (a) Solid-state UV-Vis absorption spectra of (1)–(3) micrograins; (b) Kubelka–Munk
function versus light energy plot used for band gap determination; (c) density-of states (DOS)
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(Ti4O2(OMe)10(OOC-C6H4-Cl)2) (2), and (Ti4O2(OMe)10(OOC-C6H4-NO2)2) (3).

Compound (3) absorbed exclusively in UV region of the spectrum, which corresponded to
band gap of 3.59 eV. According to theoretical calculations, the chloro-functionalized derivative (2)
introduced additional band as HOMO, but it didn’t change the value of resulting band gap by a big
margin (Figure 2c, Figure S2). By contrast, DOS plots of nitro- and fluorene-derivative showed deep
penetration of the gap by functionalities, and reduction of the band gap was therefore evidenced. It is
noteworthy that 3-nitrobenzoic derivative (3) introduced new states as LUMO, while compound with
fluorene (1) changed HOMO of the corresponding compound (Figure S3).

Theoretically calculated band gaps were qualitatively reflected in absorption spectra of (1) and
(3), where the bands penetrated into visible region of spectrum (Table 5). The band gaps of (1)
and (3) were estimated by K–M function onset to be 2.98 eV and 2.55 eV, respectively. Calculated
and experimentally determined values of band gaps are presented in Table 5. There was a clear
overestimation of the energy gap between the values determined experimentally and theoretically;
however, this agrees with the tendency of hybrid density functionals to overestimate predicted band
gaps [42]. Additionally, the comparison of experimental vs. theoretical values showed that they follow
a linear trend (R2 = 0.9968), indicating correlation between them. The band gap of (4) was determined
in previous research to be 2.57 eV [27].
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Table 5. Comparison of experimentally determined band gap values (using diffuse reflectance spectra),
and theoretically calculated (HSE06/6-31(d,p) level of theory in calculations of (1)–(3) complexes the
OiBu ligands were exchanged on the OMe one).

Complex Calculated Band Gap (eV) Experimental Band Gap (eV)

(Ti4O2(OMe)10(O2CC13H9)2) (1) 3.93 2.55
(Ti4O2(OMe)10(O2CC6H4Cl)2) (2) 4.73 3.59

(Ti4O2(OMe)10(O2CC6H4NO2)2) (3) 4.30 2.98

3.4. Photoluminescent Properties

Solid-state photoluminescence spectra of (1)–(4) were recorded with samples excited by
wavelength of 330 nm (3.76 eV), i.e., energy higher than determined for band gaps (Figure 3). Resulting
spectra were compared with the data of corresponding acids. Results showed how coordination
to oxo-titanium cluster influenced ligands PL spectra. In the case of (1) and (2), the coordination
to oxo-titanium core causes the decay of higher energy part of the corresponding acid spectrum,
indicating interactions of the frontier orbitals of carboxylate with oxo-titanium core. The change in
band location was seen in case of fluorene derivative (2) where the emission of fluorine-9-carboxylic
acid at 540 nm shifted toward 560 nm when coordinated. This type of conversion was not witnessed for
other ligands. Interestingly, photoluminescent spectra of (3) and (4) didn’t show any distinct changes
when compared to spectra of acids.

Materials 2018, 11, x FOR PEER REVIEW  9 of 18 

 

Table 5. Comparison of experimentally determined band gap values (using diffuse reflectance 
spectra), and theoretically calculated (HSE06/6-31(d,p) level of theory in calculations of (1)–(3) 
complexes the OiBu ligands were exchanged on the OMe one). 

Complex Calculated Band Gap (eV) Experimental Band Gap (eV) 
(Ti4O2(OMe)10(O2CC13H9)2) (1) 3.93 2.55 

(Ti4O2(OMe)10(O2CC6H4Cl)2) (2) 4.73 3.59 
(Ti4O2(OMe)10(O2CC6H4NO2)2) (3) 4.30 2.98 

3.4. Photoluminescent Properties 

Solid-state photoluminescence spectra of (1)–(4) were recorded with samples excited by 
wavelength of 330 nm (3.76 eV), i.e., energy higher than determined for band gaps (Figure 3). 
Resulting spectra were compared with the data of corresponding acids. Results showed how 
coordination to oxo-titanium cluster influenced ligands PL spectra. In the case of (1) and (2), the 
coordination to oxo-titanium core causes the decay of higher energy part of the corresponding acid 
spectrum, indicating interactions of the frontier orbitals of carboxylate with oxo-titanium core. The 
change in band location was seen in case of fluorene derivative (2) where the emission of 
fluorine-9-carboxylic acid at 540 nm shifted toward 560 nm when coordinated. This type of 
conversion was not witnessed for other ligands. Interestingly, photoluminescent spectra of (3) and 
(4) didn’t show any distinct changes when compared to spectra of acids. 

 

Figure 3. Solid state photoluminescence spectra (1–4) of (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9 (1), PhCl 
(2), PhNO2 (3), PhNH2 (4)) respectively (black plots) collected by 330 nm excitation at room 
temperature compared to spectra of corresponding acids (grey plots). 

3.5. Preparation and Characteristic of Polymer Composites (PMMA + TOCs) 

I In order to confirm the presence of the structurally stable Ti(IV) oxo-complexes in polymer, 
Raman spectra of composites were registered (Figure 4). Analysis of these data clearly indicates the 
presence of (1)-(4) complexes in the produced composite (PMMA + TOCs), which is evidenced by 
the appearance of bands attributed to the carboxylate ligands. Analysis of the region between 600 
cm-1 and 750 cm-1, in which appears the bands coming from the modes of oxo-titanium bridges, is 
difficult due to overlapping of ν(Ti–O–Ti) bands and poly(methyl methacrylate) ones. The presence 
of micrograins and nanograins of complexes in polymer matrices were also seen in SEM images of 
PMMA + TOCs foils (Figure 5). 

Figure 3. Solid state photoluminescence spectra (1–4) of (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9 (1),
PhCl (2), PhNO2 (3), PhNH2 (4)) respectively (black plots) collected by 330 nm excitation at room
temperature compared to spectra of corresponding acids (grey plots).

3.5. Preparation and Characteristic of Polymer Composites (PMMA + TOCs)

I In order to confirm the presence of the structurally stable Ti(IV) oxo-complexes in polymer,
Raman spectra of composites were registered (Figure 4). Analysis of these data clearly indicates
the presence of (1)–(4) complexes in the produced composite (PMMA + TOCs), which is evidenced
by the appearance of bands attributed to the carboxylate ligands. Analysis of the region between
600 cm−1 and 750 cm−1, in which appears the bands coming from the modes of oxo-titanium bridges,
is difficult due to overlapping of ν(Ti–O–Ti) bands and poly(methyl methacrylate) ones. The presence
of micrograins and nanograins of complexes in polymer matrices were also seen in SEM images of
PMMA + TOCs foils (Figure 5).
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3.6. Photocatalytic Degradation of Methylene Blue (MB)

To evaluate the influence of the different functionalities on photoinduced behavior, the photocalatytic
degradation of MB were executed. The degradation of MB on polymer composites was followed by
UV-Vis spectrophotometry by monitoring changes in the absorbance peak at 660 nm. Kinetic tests
involved behavior of the studied complexes as well as blind tests (unmodified PMMA foil and sole
MB solution). The changes in absorbance were roughly linear (Figure 6) which can be resulted the
relatively small PMMA foil surfaces.
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Figure 6. Changes in absorbance of methylene blue (MB) solution with time after addition of PMMA
foil with a selected complex. MB = 1 × 10−5 M, PMMA foil surface = 0.64 cm2, T = r.t., l = 1 cm.
Presented values are after blind test correction (R2 = 0.9701 (1), 0.9876 (2), 0.9896 (3), 0.9769 (4)).

Thus, the rate of MB degradation was constant as long as the MB concentration was relatively
high. Such behavior meant the negative values of slopes of the A = f (t) dependencies could be treated
as the rate constants of MB photodegradation (Table 6).

Table 6. Rate constants of MB degradation for sole MB, pure PMMA, and PMMA with addition of the
studied materials.

Sample 103 Rate
Constant, h−1 Sample 103 Rate

Constant, h−1
103 Rate Constant in

Reference to PMMA, h−1

sole MB in darkness 0.35 ± 0.15 (1) in light 4.03 ± 0.32 1.51 ± 0.36
sole MB in light 1.52 ± 0.09 (2) in light 2.95 ± 0.15 0.43 ± 0.22

PMMA in darkness 0.26 ± 0.04 (3) in light 2.53 ± 0.12 0.01 ± 0.20
PMMA in light 2.52 ± 0.16 (4) in light 3.19 ± 0.22 0.67 ± 0.27

Table 6 shows that the rate of MB degradation in darkness in case of sole MB and pure PMMA
was very low and were similar. Under UV light, MB degraded more than 4 times faster. The PMMA
foil accelerated its degradation by an additional 1.5 times (from 1.52 × 10−3 h−1 to 2.52 × 10−3 h−1).
A correct comparison of the rate constants for PMMA foil with addition of titanium complexes should
be referenced to the rate constant for pure PMMA foil “in darkness” (the last column in Table 6).
The values of the corrected rate constants, presented in Table 6, indicated a trace photocatalytic activity
of (3) in the MB degradation process. Complexes (2) and (4) were slightly more active and the para
derivative was the best among those three complexes. The complex with fluorene (1) was clearly the
most active in studied conditions.
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3.7. ESR Evidence of Paramagnetic Species

To investigate the mechanism of photocatalytic process, the ESR analysis of powdered compounds
and prepared materials was performed. Three types of paramagnetic species were observed for studied
compounds (Table 7). Spectra of sample (1) (powder and PMMA foil) exhibited very weak radical
signal (gexp = 2.0031 and 2.0036, respectively) before UV-Vis irradiation. Due to unresolved g-tensor
components, it was difficult to state with certainty what the structure of this radical was, but the
value of the parameter indicated that it was O2

− rather than O− [43]. Surprisingly, compound (4),
before irradiation, exhibited signals of both types of oxygen radical (in case of powdered sample)
and strong signal of O− in case of the PMMA foil. For the other two samples, paramagnetic species
before irradiation were not found. The most interesting ESR spectrum was observed for irradiated
foil with sample (1) (with fluorene) (Figure 7). Spectrum—represented by signals originated in Ti(III)
(centered in a distorted octahedral coordination field [44]), O2

−, and O− parameters—are given in
Table 7. Similar spectrum was observed for the same but powdered sample, although the signals were
much weaker, and Ti(III) signal was observed only as a trace. Irradiated sample (2) (foil and powder)
exhibited spectra for which simulated g-parameter tensor components are typical of orthorhombic
superoxide diatomic oxygen O2

− adsorbed on metal oxide surfaces [45]. However, the spectrum of foil
was much better resolved than the spectrum of powder; signals observed for both kinds of samples
and were characterized by the lowest intensity within the investigated samples. The signal is the result
of electron trapping on Ti(IV) surface [46]:

e−+ Ti4+OH −→ Ti3+OH (2)

Ti3+OH + O2 −→ Ti4+OH + •O2
− (3)
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Table 7. Results of EPR studies for UV-Vis irradiated complexes (PMMA foils) ((Ti4O2(OiBu)10(O2CR’)2)
(R’ = C13H9 (1), PhCl (2), PhNO2 (3), PhNH2 (4)).

Sample g Parameters Species
PMMA + g1 g2 g3

(1)
2.024 2.0095 2.0034 O2

−

1.967 1.957 1.938 Ti(III)
2.003 - 1.997 O−

(2) 2.024 2.0095 2.0034 O2
−

(3) 2.0185 2.0052 1.987 O−

(4) 2.0182 2.005 1.987 O−

The main paramagnetic species observed on the spectra of samples (3) and (4) was V-type hole
center [47]. Creation of this paramagnetic O− species could be the result of the electron removal and
radical being stabilized by reduction of Ti(IV) to Ti(III) [40]; the signal of Ti(III) might have been not
observed due its broadness and nonintense line.

4. Discussion

The reaction of Ti(OiBu)4 with fluorene-9-carboxylate acid, 3-chlorobenzoic acid, and 3-nitrobenzoic
acid in molar ratio 4:1 at room temperature led to the formation of (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9

(1), C6H4Cl (2), C6H4NO2 (3)) oxo-clusters. Structural characterization of these compounds (single
crystals X-ray diffraction and vibrational spectroscopy) and their comparison with the earlier studied
(Ti4O2(OiBu)10(O2CC6H4NH2)2) complex (4) [27] did not show a significant impact of the carboxylate
ligand type on the {Ti4(µ4–O)(µ–O)} core structure. However, the clear {Ti2(µ2–O)} angle changes
(which could be responsible for the facilitation of the photocatalytic process [26]) were observed, i.e.,
(4) < (1) < (2) < (3) (Table 2). The substantial difference in band structures based on used ligands
revealed the results of DFT calculations. The presence of such carboxylic ligands as –O2CC13H9,
–O2CC6H4Cl, and –O2CC6H4NH2 in structures of (1), (2), and (4), respectively, resulted in the n-doped
band structure, while –O2CC6H4NO2 (3) was p-doped. The comparison of photoluminescence spectra
of pure carboxylic ligands and synthesized compounds indicated the distinctive interactions between
central oxo-titanium core and external ligands. Those interactions influenced the band gap value of
produced materials, i.e., 3.59 eV for (2), 2.98 eV (3), 2.57 eV (4), and 2.55 eV (1) (the band gap of the
widely used TiO2 anatase is 3.20 eV [22]). The obtained results were comparable with the previously
studied Ti(IV) oxo-clusters containing functionalized carboxylate ligands [20]. The low value of the
band gap of (1) can be explained by the presence of fluorene groups, whose derivatives are known for
their photoluminescence properties [48].

Isolated crystals of all synthesized Ti(IV) oxo-complexes exhibited hydrophobic properties and
very low sensitivity to the moisture. Therefore, in order to estimate the photocatalytic activity of the
obtained compounds in the MB degradation process (UV irradiated), the composites produced by the
introduction of (1)–(4) crystalline powders into the polymer matrix were used. The choice of PMMA
as a polymer matrix was made on the basis of the spectroscopic criterion, i.e., the lack of PMMA
bands in the Raman spectrum ranges in which the characteristic bands of oxo-complexes appear. This
enabled the confirmation of the oxo-complex presence in the polymer matrix and the evaluation of
potential interactions between the complex particles and the polymer matrix. Analysis of SEM images
showed that PMMA + (3) foil contained dispersed large grains of complex (3) (Figure 5f), which was
confirmed by the Raman spectrum of this composite (low intense bands at 1614 cm−1, 1659 cm−1

(ν(COO)), 1534 cm−1 (ν(NO2), 1008 cm−1 (ν(C–O), and 697,653 cm−1 (ν(Ti–O–Ti), (Figure 4, Table 3).
Simultaneously, the lack of significant differences in the position and the shape of PMMA bands in
PMMA + (3) spectrum suggested that significant interactions between polymer matrix and dispersed
grains of (3) were not formed (Figure 4). The MB photodegradation studies (in UV) exhibited the trace
activity of the PMMA + (3) composite, which could be associated with the p-doped band structure of
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(3) (other synthesized oxo-complexes are n-doped), the high value of band gap (2.98 eV). It is probable
that the dispersion of large grains (micrograins/microcrystals) of the (3) complex in the PMMA matrix
also contributed to the poor activity of this composite. The results obtained for (3) were in good
agreement with earlier investigations of Liu et al. on the 3-nitrocarboxylate substituted compound
(Ti6O4(OiPr)10(O3P-Phen)2(O2CC6H4NO2)2) that also did not show any activity towards photocatalytic
hydrogen production [23]. A better photocatalytic activity was observed for the PMMA + (2) foil
(Figure 6 and Table 6). In addition, the spectral data analysis in that case did not indicate the formation
interactions between (2) and PMMA (Figure 4, Table 3). Considering earlier reports [21], it should be
noted that the presence of –O2CC6H4Cl ligands in the structure of (2) resulted in an increase in the
value of the band gap up to 3.59 eV, which might have contributed to the lower photocatalytic activity
of this material. Analysis of SEM images of PMMA + (2) showed that nanoparticles of (2)—whose
diameter (d) is lower than 25 nm—and grains of d = 50 nm–300 µm formed a filling of a polymer
matrix (Figure 5c,d). The substitution of the {Ti4O2} core by –O2CC6H4NH2 ligands promoted the
decrease of band gap value (2.57 eV [20,26]) which was noted for the complex (4). Simultaneously,
the SEM studies of PMMA + (4) foil proved that the filling of the polymer matrix was formed by islands
composed of nanoparticles of d = 30–60 nm (Figure 5h). Distinct differences in the intensity and width
of bands in Raman spectra of both oxo-cluster (4) and PMMA (Figure 4) suggested the formation of
hydrogen bonds between the particles of the complex and the polymer (the hydrogen bonds between
–NH2 groups of oxo-clusters and –C=O groups of the polymer are possible). In this case, low value of
the band gap and possible weak interactions between amine groups of the oxo-cluster and PMMA
had a direct influence on the increase of the photocatalytic activity of complex (4). A noticeable
high photocatalytic activity was observed for foils produced by introduction of complex (1) into the
PMMA matrix. Probable substitution of {Ti4O2} cores by fluorene-9-carboxylate ligands impacted the
decrease of the band gap value (2.88 eV). Analysis of SEM images revealed that the densely packed
nanoparticles of diameters d = 20–40 nm were the main filling of the PMMA + (1) foil (Figure 5b). The
bands that were found in the Raman spectrum of PMMA + (1) at 1611 (m), 1581 (w) cm−1, 1023 (w)
cm−1, and 660–700 (vw) cm−1 confirmed the presence of (1) in the polymer matrix (Figure 4, Table 3).
Moreover, the comparison of PMMA + (1) and PMMA Raman spectra indicated lack of interactions
between complex particles and the polymer matrix. It is interesting that ESR studies revealed the
appearance of Ti(III) states during its irradiation from only the PMMA + (1) foil among the produced
composite materials. According to works of Snoeberger et al. [49] and Negre et al. [50], the type of
doping influences the mechanism of photoinduced charge transfer, promoting either electron or hole
injection into functionalized oxo-titanium cluster [49,50]. Considering the result of the ESR and DFT
studies, we can conclude that n-doping of POTs (in the case of (3)) did not allow for the photocatalytic
activity due to absence of photogenerated Ti(III) states upon irradiation, while p-doping made it
possible to generate Ti(III) and induce the photocatalytic action. DFT results revealed that HOMO
orbitals of (1), (2), and (4) were located on ligands and LUMO on Ti atoms of the oxo-titanium core.
Thus, upon irradiation, the charge was transferred to the core, generating Ti(III) states. This was
confirmed by ESR experiment, which revealed Ti(III) states in PMMA–(1) composite foiled upon
irradiation. According to the theoretical approach, these states should be present in (2) and (4), but
the experiment did not confirm it. Possible explanation involves slower recombination of charges in
compound with fluorene (1) than in ones with benzoic acid derivatives (2) and (4), which allows the
detection of Ti(III).

5. Summary

The conducted works have led to an isolate and structural characterization of three new
tetranuclear Ti(IV) oxo-clusters (TOCs) of the general formula (Ti4O2(OiBu)10(OOCR’)2) from the 4:1
reaction mixture of Ti(OiBu)4 with organic acids such as fluorene-9-carboxylate acid (1), 3-chlorobenzoic
acid (2), and 3-nitrobenzoic acid (3). Analysis of structural and spectroscopic data exhibited that
substitution of the {Ti4O2} core by the different carboxylate ligands did not significantly affect its
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architecture (the clear changes were found only for the value of Ti–(µ–O)–Ti angles). However, the use
of different carboxylate ligands allowed control of the band gap value of produced oxo-clusters in
the range of 3.6–2.6 eV. The photocatalytic activity of (1)–(4) was estimated on the basis of MB
photodegradation processes (UV irradiated) that proceeded on the surface of a composite foils
produced by the introduction of TOCs (20 wt %) into the PMMA matrix (PMMA + TOCs). The trace
photocatalytic activity was noticed for (3), i.e., the p-doped (Ti4O2(OiBu)10(O2CC6H4NO2)2) complex
((1), (2), (4) were n-doped). The highest photocatalytic activity was evidenced for PMMA + (1)
foil, which contained (Ti4O2(OiBu)10(O2CC13H9)2) (1) complex. According to results of our works,
the following factors influence photoactivity of (3): n-dope character of the compound, relatively low
band gap (2.55 eV), the presence of Ti(III) states upon irradiation evidenced by ESR spectrometry,
and equal nanocrystals distribution in the PMMA matrix (confirmed by SEM imaging).
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