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Abstract

Background: Optimal glycaemic targets in traumatic brain injury (TBI) remain unclear. We performed a systematic
review and meta-analysis of randomised controlled trials (RCTs) comparing intensive with conventional glycaemic
control in TBI requiring admission to an intensive care unit (ICU).

Methods: We systematically searched MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials to
November 2016. Outcomes of interest included ICU and in-hospital mortality, poor neurological outcome, the
incidence of hypoglycaemia and infective complications. Data were analysed by pairwise random effects models
with secondary analysis of differing levels of conventional glycaemic control.

Results: Ten RCTs, involving 1066 TBI patients were included. Three studies were conducted exclusively in a TBI
population, whereas in seven trials, the TBI population was a sub-cohort of a mixed neurocritical or general ICU
population. Glycaemic targets with intensive control ranged from 4.4 to 6.7 mmol/L, while conventional targets
aimed to keep glucose levels below thresholds of 8.4–12 mmol/L. Conventional versus intensive control showed
no association with ICU or hospital mortality (relative risk (RR) (95% CI) 0.93 (0.68–1.27), P = 0.64 and 1.07 (0.84–1.36),
P = 0.62, respectively). The risk of a poor neurological outcome was higher with conventional control (RR (95% CI) = 1.10
(1.001–1.24), P = 0.047). However, severe hypoglycaemia occurred less frequently with conventional control
(RR (95% CI) = 0.22 (0.09–0.52), P = 0.001).

Conclusions: This meta-analysis of intensive glycaemic control shows no association with reduced mortality in TBI.
Intensive glucose control showed a borderline significant reduction in the risk of poor neurological outcome, but
markedly increased the risk of hypoglycaemia. These contradictory findings should motivate further research.
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Background
Hyperglycaemia occurs frequently in the early phase fol-
lowing traumatic brain injury (TBI) and is associated with
poor outcomes [1–3]. While marked acute hypergly-
caemia appears to be toxic, the magnitude of the elevation

in blood glucose required to cause harm remains uncer-
tain. The pathogenesis of “stress hyperglycaemia” is
broadly thought to represent a complex interplay between
endogenous catecholamines, cytokines and activation of
the hypothalamic-pituitary-adrenal axis resulting in exces-
sive cortisol secretion and induction of gluconeogenesis
[4]. This is further exacerbated by therapeutic interven-
tions such as the administration of exogenous catechol-
amines and steroids, and any underlying insulin resistance
or impaired insulin secretion [4]. Putative pathophysio-
logical mechanisms by which hyperglycaemia may worsen
TBI outcome include promotion of oxidative stress
pathways and induction of neuroinflammation [5].
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Current management of hyperglycaemia in TBI in-
volves the use of short-acting insulin administered as a
continuous intravenous infusion, titrated to maintain
systemic blood glucose within target ranges that have
been derived from randomised controlled trials in gen-
eral medical or surgical intensive care unit (ICU) popu-
lations. The seminal single-centre study by Van den
Berghe et al. resulted in a paradigm shift in the approach
to blood glucose management in the critically ill, based
on their finding that targeting intensive glycaemic con-
trol (4.4–6.1 mmol/L) reduced mortality in a surgical
ICU population, even though there was an increased in-
cidence of hypoglycaemia [6]. While there was consider-
able uptake of this regimen, subsequent multi-centre
randomised controlled trials confirmed a higher inci-
dence of severe hypoglycaemia with intensive glycaemic
control [7–9] and refuted the initial observations by
identifying a substantial increase in mortality with inten-
sive blood glucose control [10].
It has been suggested that patients with TBI repre-

sent a unique subgroup of critically ill patients who
have heightened susceptibility to both hyperglycaemia
and hypoglycaemia [11, 12]. Accordingly, the results
of randomised controlled trials in heterogeneous co-
horts of critically ill patients may not be applicable to
this population. The importance of considering pa-
tients with TBI as a distinct population is emphasized
by the publication of subgroup analyses of patients
with TBI from the aforementioned large randomised
controlled trials [13, 14]. A comprehensive overview
of blood glucose control focussed on the TBI population
has never been performed and there are no contemporary
guidelines for the optimal glycaemic range in this popula-
tion [15]. Accordingly, we performed a systematic review
and meta-analysis to determine whether intensive insulin
therapy is associated with improved neurological
outcomes and reduced mortality in TBI.

Methods
Protocol and registration
The protocol was written according to the preferred
reporting items for systematic reviews and meta-analysis
protocols (PRISMA)-P statement and was registered in
the PROSPERO database (registration number
CRD42016044071) [16–18]. The PRISMA-P and PRISMA
checklists were used.

Study eligibility criteria
Eligible studies were randomised controlled trials com-
paring intensive with conventional glycaemic control in
adult patients (age > 16 years) with TBI requiring admis-
sion to a critical care unit. The cut-off for intensive
glycaemic control was defined as those studies aiming
for “normal values” (< 7.0 mmol/L) [19]. Conventional

glucose control was defined as either moderate (upper
limit of target range < 10 mmol/L) or liberal (upper limit
of target range ≥ 10 mmol/L) in line with the “Normo-
glycemia in intensive care evaluation and surviving using
glucose algorithm regulation” (NICE-SUGAR) trial [20].
Studies reported in any language were considered
without publication date restriction. Paediatric studies,
animal studies and observational, quasi-randomised or
cross-over studies were excluded.

Search strategy
We performed an unrestricted electronic database
search in Medline (via Ovid®), Embase (via Ovid®) and
the Cochrane Central Register of Controlled Trials
(CENTRAL) from their inception date until 15 Novem-
ber 2016. Search details are provided in Additional file 1.
After merging the searches in EndNote® (X7) and re-
moving any duplicates, JH and MPP independently
screened the titles and abstracts of all identified studies.
Full texts of relevant studies were then evaluated for eli-
gibility. Reference lists of retrieved papers were also
reviewed to identify potentially eligible studies not cap-
tured in the primary search. If a sub-analysis was re-
ported, the original paper from the main study was
retrieved. Discrepancies between the investigators were
discussed and, if unresolved, JPC and DKM were con-
sulted. A translator was consulted to assist with papers
published in a foreign language.

Data collection
Extracted data included study characteristics (author,
publication year, country, design, funding source and
sample size), patient characteristics (demographics, dia-
betes mellitus status), intervention and comparator pa-
rameters (target range, duration of intervention,
additional treatment), outcomes and results (definition
of hypoglycaemia, definition of poor neurological out-
come, definition of infective complications, follow-up
time). If relevant data were not reported, the corre-
sponding author was contacted and a response awaited
for 2 weeks. Thereafter a reminder was sent and a reply
awaited for a further 4 weeks.

Bias assessment
Two reviewers (JH and MPP) independently and in du-
plicate assessed risk of bias among included studies
using the Cochrane risk-of-bias tool [21]. The following
domains were assessed: selection bias, performance bias,
detection bias, attrition bias, reporting bias and other
bias. A funnel plot was planned to assess bias if includ-
ing > 10 studies.

Outcome measures
Primary outcomes included:
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1. ICU, in-hospital, 30-day and 90-day mortality
(dichotomous)

2. 2, Poor neurological outcome as defined by the
author (dichotomous)

3. Mild and severe hypoglycaemia as defined by the
author (dichotomous)

4. Infective complications (dichotomous, i.e. wound
infection, central nervous system (CNS) infection,
pneumonia, sepsis/bacteraemia, cystitis/urine tract
infection; defined using criteria used by the authors).

At least one of these outcomes had to be reported for
inclusion in the final analysis.

Data analysis
Primary analysis for the listed outcomes was performed
as pairwise meta-analyses using the intensive and con-
ventional groups as defined in the respective studies.
Given the intrinsic differences in study design, outcome
definitions and target glycaemic ranges employed, data
were pooled and meta-analyses performed using ran-
dom effects models, with effect estimates presented as
relative risk (RR) and 95% confidence interval (95% CI).
Heterogeneity was estimated by the I2-statistic. A sec-
ondary network meta-analysis was performed, based
upon the target ranges intensive (< 7.0 mmol/L), mod-
erate (< 10 mmol/L) and liberal (≥ 10 mmol/L); with
the moderate and liberal groups compared by an ad-
justed indirect treatment comparison (AITC) method
[22]. For consistency in direction of relative effects, the
primary meta-analyses were performed with intensive
control as the reference group. All analyses were
performed in Stata MP 14.2.

Results
Study selection
After removing duplicates, 1506 studies were evaluated
for inclusion (Fig. 1). Following abstract and summary
screening, 35 studies met the inclusion criteria for full-
text extraction. A further 21 studies were excluded for
not meeting the inclusion criteria or due to duplication
(n = 3). In five of the included studies, it was clear after
review of the full text that patients with TBI were in-
cluded in the study population [7, 8, 14, 23, 24]. These
authors were contacted and kindly provided data on the
outcome variables of interest for the TBI sub-population
(i.e. Arabi 2008 and 2011, Cinotti 2014, de la Rosa 2008,
van den Berghe 2005). In total, ten studies were included
in the final analysis (Table 1).

Study characteristics
All selected studies used a randomised trial to compare
intensive with conventional glycaemic control in patients
with TBI admitted to a (neuro) ICU (Table 1). Only the
studies from Bilotta 2008, Coester 2010 and Yang 2009
were performed exclusively in patients with TBI [25–27].
In the study by Green 2010, data on patients with TBI
were published as a subset of neurological patients ad-
mitted to an ICU [28]. The NICE-SUGAR investigators
(NICE-SUGAR 2015) published a subgroup analysis of
patients with TBI [10] and the study from van den
Berghe 2005 is an analysis of neurological patients from
the 2001 Leuven trial [6]. Cinotti 2014 is a subgroup
analysis of patients with TBI from two centres included
in the CGAO-REA study [29]. Arabi 2008 and 2011 and
de la Rosa 2008, were performed in single-centre mixed
medical/surgical ICUs [7, 8, 24]. Nine out of 10 studies

Fig. 1 Flow chart of study selection
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had an intensive target range of 4.4–6.0 (or 6.1)
mmol/L [7, 8, 13, 14, 23, 24, 26–28]. Only the study
by Bilotta 2008 aimed for 4.4–6.7 mmol/L in the in-
tensive arm [25]. The target range for conventional
glycaemic control was more variable, with one study
aiming for < 12 mmol/L [25], five studies for 10–11.1
mmol/L [7, 8, 14, 24, 27], two studies for < 10 mmol/L
[13, 26], one for 5.5–9.0 mmol/L [23] and one study aim-
ing for < 8.4 mmol/L [28]. The summary of the assessment
of risk of bias is displayed in Fig. 2. Inherent to studies on
intensive glycaemic control, none are double-blinded.
Three studies did not provide details on allocation con-
cealment. Blinding of outcome assessment was only con-
sidered relevant when neurological outcome was assessed.
For two studies it was unclear whether this was performed
in a blinded fashion [26, 30]. One study used a factorial
design but there was no suggestion of interaction and

hence the outcomes were included in the final analysis
[24]. Subgroup analyses for patients with and without dia-
betes mellitus were not available. Most studies did not ex-
clusively study patients with TBI, and we scored other bias
as “unclear” because the subgroup analyses may bring
about bias.

Mortality
ICU and hospital mortality data were available in
seven studies. There was no difference in mortality
between conventional and intensive glycaemic con-
trol, with the relative risk (RR) (95% CI) being 0.93
(0.68 − 1.27), P = 0.64 and 1.07 (0.84–1.355), P = 0.62
for ICU and hospital mortality respectively. Hetero-
geneity was non-significant. Both 30-day and 90-day
mortality were reported in three studies each, with
the RR (95% CI) being 0.78 (0.47 − 1.30) and 0.90
(0.50–1.65) respectively. The forest plot for ICU
mortality is shown in Fig. 3.
Secondary network meta-analysis showed a non-

significant lower risk for both liberal and conventional
control compared with tight control, with RR (95% CI)
0.90 (0.55–1.46) and 0.91 (0.55–1.48), respectively, for
ICU mortality and with 0.99 (0.74–1.33) and 1.24 (0.83
− 1.86) for hospital mortality. The indirect estimates for
liberal versus moderate control were 0.99 (0.49–1.98)
and 0.80 (0.49–1.32) for ICU and hospital mortality,
respectively.

Neurological outcome
Seven studies provided data on neurological outcome
albeit at different time points. Cinotti 2014 had the
earliest measurement at 28 days, which was repeated
at three months [23]. For the analysis we used an
outcome of ≥90 days, as all other studies used a simi-
lar or later time point. Thus the analysed time range
is 3–24 months. Most studies used the Glasgow Out-
come Scale (GOS) [23, 26, 27], or the extended Glas-
gow Outcome Scale (GOSE) [13]. The general
definition of poor neurological outcome was a GOS
of 1–3 or GOSE of 1–4 (ranging from severe disabil-
ity to death) [31]. Only Cinotti 2014 defined poor
neurological outcome as vegetative state or death
[23]. When the authors provided data for all GOS
scores, we used GOS 1–3 as the definition of poor
neurological outcome. Green 2010 used the modified
Rankin scale (mRS) and defined poor outcome as a
score > 2 (moderate disability-death) [28]. Finally, Van
den Berghe 2006 used the Karnofsky score, defining
poor neurological outcome as < 60 (> 60 indicates one
is able to care for most needs) [14]. All of the poor
neurological outcome scores include death. The
pooled RR (95% CI) for poor neurological outcome
for conventional versus intensive control was 1.11

Fig. 2 Risk of bias summary
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(1.001–1.239), P = 0.047. The forest plot for poor
neurological outcome is shown in Fig. 4.
Network meta-analysis showed a non-significant

increase in risk of an unfavourable outcome for both
liberal and moderate control compared with tight
control, with RR (95% CI) = 1.10 (0.96–1.26) and 1.14
(0.96–1.34), respectively and with the indirect estimate
for liberal versus moderate control = 0.97 (0.78–1.20),
which was also non-significant.

Hypoglycaemia
Nine studies defined severe hypoglycaemia as blood glu-
cose < 2.2 or ≤ 2.2 mmol/L except for Bilotta, who did
not report severe hypoglycaemia [25]. Five studies re-
ported moderate hypoglycaemia which was variably

defined as blood glucose of 2.2–3.2 to < 4.44 mmol/L
[13, 14, 25, 26, 28]. We included patients with one or
more episodes of hypoglycaemia.
There was a clear association between intensive gly-

caemic control and severe hypoglycaemia with the RR
(95% CI) for conventional control of 0.22 (0.09–0.52),
P = 0.001. For moderate hypoglycaemia there was
marked heterogeneity between studies, with I2 > 95%,
and RR = 0.26 (0.00–27.8) being non-significant. Forest
plots are shown in Figs. 5 and 6.
Network meta-analysis also showed a lower risk of

hypoglycaemia for both the liberal and moderate control
compared with tight control. For severe hypoglycaemia
the liberal RR (95% CI) was 0.30 (0.10–0.87), P = 0.03
and moderate 0.13 (0.03–0.57), P = 0.007, respectively,

Fig. 3 ICU mortality. RR, relative risk

Fig. 4 Poor neurological outcome. RR, relative risk
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with the indirect estimate for liberal versus moderate
control being 2.28 (0.37–14.2), P = 0.38. For moderate
hypoglycaemia the RR for liberal control was 0.92
(0.49–1.71), P = 0.78 and for moderate control it was
0.16 (0.10–0.26), P < 0.001, with an indirect estimate
for liberal versus moderate control of 5.7 (2.57–12.6),
P < 0.001.

Infective complications
The definitions of infective complications are depicted
in Table 1. The marked heterogeneity in defining infect-
ive complications precluded formal meta-analysis. Most
studies did not find a significant difference in infective
complications. The two exceptions were the study by de
la Rosa 2008 in which there was a reduction in thea

combined endpoint of ICU-acquired ventilator-
associated pneumonia, bloodstream infections and urin-
ary tract infections in the intensive-glycaemic-control
group (RR 0.24, 95% CI 0.08–0.68) [8] and the study by
Yang 2009 who reported a reduction in infective compli-
cations (pneumonia, sepsis, urinary tract and wound in-
fections) by 14.8% in the intensive-glycaemic-control
group, P < 0.05 [27].

Discussion
We undertook the first meta-analysis of randomised
controlled trials comparing conventional with intensive
glycaemic control in critically ill patients with TBI. Pre-
vious systematic reviews in a neurocritical care setting
have been published; however, these have failed to

Fig. 5 Severe hypoglycaemic events. RR, relative risk

Fig. 6 Moderate hypoglycaemic events. RR, relative risk

Hermanides et al. Critical Care  (2018) 22:11 Page 7 of 11



distinguish patients with TBI from those with non-
traumatic brain injury (stroke, encephalitis and central
nervous system (CNS) infections) [32, 33] and did not
include relevant recent publications [13, 23]. In addition,
we were able to include unpublished data from relevant
trials that had previously not been included in systematic
reviews in this setting [7, 8, 14, 23, 24].
We report that intensive glycaemic control shows no

association with reduced mortality in patients with TBI.
This observation is consistent with results from the
broader neurocritical care population [32, 33] and multi-
centre studies of heterogeneous mixed medical/surgical
populations [9, 10, 29, 34]. The observed signal, that in-
tensive glycaemic control may be associated with a lower
risk of poor neurological outcome, is consistent with the
findings by Kramer et al. in their meta-analysis of gly-
caemic control among all neurocritical care admissions
[32]. In contrast, severe hypoglycaemia was markedly in-
creased with intensive glycaemic control. Due to hetero-
geneity in classification, there was insufficient evidence
to determine the effect of glycaemic control strategies
on the incidence of infective complications.
The lower risk of poor neurological outcome with in-

tensive glycaemic control was remarkably consistent
across all included studies, as shown in Fig. 4. This
consistency is surprising, especially given the different
study populations and different outcome metrics
employed, i.e. neurological outcome being analysed as a
composite of multiple scoring systems across a broad
range of follow-up periods from 3 to 24 months. Ac-
cordingly, we believe this finding should be interpreted
with some caution; however, it should certainly be
viewed as hypothesis-generating. Potential mechanisms
for the harmful effect of conventional glucose targets or
a beneficial effect of intensive control include, amongst
others, hyperglycaemia-induced mitochondrial dysfunc-
tion [35] and oxidative stress [4, 36]. In the Van den
Berghe 2005 study, intensive glucose control was associ-
ated with lower intracranial pressure, fewer seizures and
a lesser incidence of diabetes insipidus [14]. There were
only eleven patients with TBI in this sub-study and no
other studies in this analysis reported these outcome
measures. Subsequent meta-analyses would benefit from
future trials in this area reporting a core set of neuro-
logical outcome measures [37].
We report a strong association between intensive gly-

caemic control and hypoglycaemia and there is mechan-
istic plausibility that hypoglycaemia causes harm.
Hypoglycaemia has a strong dose-dependent association
with mortality in critically ill patients [38, 39] and aggra-
vates critical illness neurocognitive dysfunction [40]. The
brain is unique in that it has high demands for energy
and, due to a limited capacity to store glycogen, is vul-
nerable to periods of reduced substrate provision [12].

Moreover, cerebral glucose metabolism is altered in a
non-uniform way following TBI [41]. Although global
glucose metabolism is decreased, areas of increased ac-
tivity are also observed [42]. Accordingly, lowering glu-
cose in patients with TBI might predispose areas of
hyper-metabolism to glucose deprivation. This hypoth-
esis is supported by microdialysis studies of cerebral glu-
cose metabolism demonstrating that intensive glycaemic
control is associated with neuroglycopenia and surrogate
markers of brain energy crisis in the absence of systemic
hypoglycaemia [43, 44]. The finding from the network
meta-analysis that there is an increased risk of
hypoglycaemia with liberal control as compared to the
moderate control is unexpected and should be inter-
preted with caution as this may relate to differences in
the underlying studies, and is in contradistinction to the
recent comprehensive network meta-analysis of glucose
control in adult critically ill patients from Yamada et al.
[45]. This systematic review and network meta-analysis
of 36 randomised controlled trials included all nine
studies reporting hypoglycaemia in TBI population
from the present analysis, and demonstrated a stepwise
increase in hypoglycaemia with tight control (glucose
4.4 to < 6.1 mmol/L) compared to mild control (7.8 to
< 10.0 mmol/L) and very mild control (10.0 to 12.2
mmol/L) [45].
Strengths of our meta-analysis include the structured

search; the specificity of the population studied; the in-
clusion of publications in any language and unpub-
lished data; the validated methods in accordance with
the PRISMA-P statement and the secondary network
analysis for indirect between-group effects. However,
our study has several important limitations. The het-
erogeneity in glycaemic targets may potentially obscure
any between-group outcome effects. In order to address
this concern we undertook a secondary network analysis
to identify differences between levels of conventional con-
trol (Additional file 1: Figure S1); unfortunately, given
small patient numbers this analysis was likely underpow-
ered for the listed outcomes, increasing the risk of the in-
fluence of random error on bias estimates, which may
explain the differing results from the Yamada review. The
aforementioned heterogeneity in the timing and classifica-
tion of “poor neurological outcome” weakens any infer-
ence that might otherwise be made, despite the lack of
statistical heterogeneity observed. Severe hypoglycaemic
events occurred with zero count in the conventional arm
in eight of the nine studies included; the standard software
application of a continuity correction of 0.5 to each cell in
such a large proportion of studies may bias the effect esti-
mate [46]; however, the direction and significance of this
effect persisted when analysing the studies as rate differ-
ences, with the continuity correction set to zero – see
Additional file 1: Figure S2.
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Inherent to randomised controlled trials of glucose
control in the critically ill, there was no blinding of pa-
tient or physician to treatment arm, such that all studies
carried a high risk of bias in this domain. Furthermore,
between-trial differences in monitoring of blood glucose
with regard to sampling frequency and measurement
method are a source of heterogeneity [47]. In addition,
the neurological outcome was assessed after 3–24
months, whereas one could argue that assessment within
1 year after TBI may be too early [48]. Finally, only three
of the trials exclusively studied TBI; in the other trials
this was addressed in a subgroup analysis. Although
some studies used stratification for admission diagnosis
or medical speciality, this brings about an unclear risk of
bias. If one would design an adequately powered trial
based on neurological outcome, the sample size would
be > 775 patients, at least, per group.
We did not achieve complete retrieval of all identified

studies. The GLUCONTROL trial authors kindly pro-
vided available data; however, patients with TBI were not
a defined subgroup within the neurological diagnostic
category (n = 148) [9] such that these data were ex-
cluded. There were incomplete data on the outcomes of
interest, with mortality and neurological outcome data
only available for 7 of the 10 included studies increasing
the risk of random error influencing bias estimates and
decreasing the strength of the inferences that can be
made. Finally, while nine of the studies identified pa-
tients with diabetes mellitus, data on the outcomes for
this subgroup were not available. The incidence of dia-
betes among patients with TBI is estimated at 3% [49].
This is likely to be important, as evidence from the gen-
eral intensive care population suggests that chronic
blood glucose control modifies the associations between
acute glycaemia and outcome in critical illness [50–53].
Future prospective studies in this area would benefit
from the presentation of diabetic performance as a pre-
defined subgroup of interest.

Recommendations and future directions
Both hypoglycaemia and hyperglycaemia may be harmful
in patients with TBI. These data show that regimens of
glucose control aiming for intensive glycaemic targets
(plasma glucose < 7.0 mmol/L) with short-acting intraven-
ous insulin infusions, adjusted according to paper-based
or computer algorithms, targeting population-based blood
sugar targets, may improve neurological outcome, but at
the risk of a relatively high incidence of severe
hypoglycaemia. Given the limitations of this meta-analysis
and these contradictory findings, we believe there is insuf-
ficient evidence to treat patients with TBI differently from
other critically ill patients and we advocate a more moder-
ate approach with a target < 10 mmol/L as recommended
by NICE-SUGAR [13]. With the advent of reliable

“closed-loop” insulin administration and adjunct glucose-
lowering agents with a low risk of hypoglycaemia, such as
glucagon-like peptide-1 (GLP-1)-based therapies [54], the
risk of hypoglycaemia may decrease and the benefits of
strict control may need to be reassessed, particularly given
the signal for improved neurological outcomes with this
strategy.
We also need to consider emerging data suggesting that

the relationship between brain and blood glucose levels
varies substantially between patients (and perhaps at dif-
ferent time points following injury) [41, 55]. A single “one
size fits all” blood glucose target may be suboptimal in
such a heterogeneous patient population, but titration to
the needs of individual patients will only be possible if we
can monitor brain glucose, possibly using microdialysis.
While this monitoring modality is still not widely avail-
able, current large studies are accumulating data in this re-
gard [56], and may be able to define subsets of patients
with TBI for stratified blood glucose targets using
comparative effectiveness research (CER) approaches.
We suggest therefore, that further investigation of this

issue adopts a phased approach. Initial studies will need
to refine safer approaches to intensive blood sugar con-
trol (with closed loop and GLP-1-based approaches),
while the identification of patient groups for stratified
blood glucose targets evolves from CER analyses of on-
going studies. Eventually, the combination of safer inten-
sive glycaemic control and patient-specific blood glucose
targets could then be evaluated in a definitive random-
ized controlled trial (RCT) with adequate power and
sufficient sample size.

Conclusions
Intensive glycaemic control does not reduce mortality in
patients with TBI but greatly increases the risk of
hypoglycaemia. A signal toward improved neurological
outcome with intensive glycaemic control in patients
post TBI warrants investigation. This may be best under-
taken using safer approaches to glycaemic control that
reduce the risk of hypoglycaemia, using stratified blood
sugar targets that take account of physiological hetero-
geneity in patients with TBI.
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