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Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with

motor impairment in Parkinson’s disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the

hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia

networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson’s disease

as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the

limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning

using the naı̈ve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate

prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of

0.80 � 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field

potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb

to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia

system to encode physiologically relevant information about intended actions. The current findings are also important as they

suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in

restorative brain-machine interface applications.
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Introduction
Beta activity is a prominent feature recorded in the basal

ganglia of patients with Parkinson’s disease and in animal

models of the condition (Brown et al., 2001; Mallet et al.,

2008; Deffains et al., 2016). It reflects excessive synchron-

ization within basal ganglia circuits (Levy et al., 2002a, b;

Kühn et al., 2005; Weinberger et al., 2006; Cagnan et al.,

2019) and its central role in parkinsonism is recognized in

many computational models of the disease (van Albada

et al., 2009; Moran et al., 2011; Marreiros et al., 2013;

Pavlides et al., 2015; Müller and Robinson, 2018). Beta

activity is attenuated by the dopamine prodrug, levodopa,

and by deep brain stimulation (DBS) of the subthalamic

nucleus (STN), a key surgical target in the basal ganglia

(Brown et al., 2001; Priori et al., 2004; Kühn et al., 2008).

The degree of beta activity correlates with motoric impair-

ment, and the degree of suppression of beta activity by

drugs or DBS correlates with the level of improvement in

motoric impairment (Kühn et al., 2006, 2008; Ray et al.,

2008; Neumann et al., 2016; Oswal et al., 2016; Steiner

et al., 2017). Recently, it has become evident that beta ac-

tivity in Parkinson’s disease comes in bursts of over 100 ms

in duration (Tinkhauser et al., 2017a, b; Deffains et al.,

2018) and that the aforesaid clinical correlations may be

even stronger when considering the propensity for such

bursts (Torrecillos et al., 2018; Lofredi et al., 2019). That

beta bursts may be causally important is suggested by the

therapeutic efficacy of using high frequency stimulation to

selectively target such bursts (Little et al., 2013; Tinkhauser

et al., 2017a).

However, the link between synchronization in the beta

band and motoric impairment is somewhat paradoxical

given current and well-established theories that ascribe im-

proved communication and more efficient neural processing

to oscillatory synchrony (Engel et al., 2001; Salinas and

Sejnowski, 2001; Varela et al., 2001; Buzsáki and Draguhn,

2004; Fries, 2005, 2015). One solution to this paradox may

be that the performance of a neuronal circuit may deteriorate

with too much synchronization, as the restriction in informa-

tion coding capacity outstrips the improvements in signal-to-

noise ratio engendered by synchronization (Brittain and

Brown, 2014). Support for this hypothesis comes from studies

showing an increase in mutual information between different

channels in the STN in animal models of parkinsonism com-

pared to the healthy state (Mallet et al., 2008). However,

mutual information is an information theoretic measure that

only helps dictate the upper bound of the possible informa-

tion that can be held by a system; the greater the mutual

information across its components the less the information

coding capacity of the system. However, mutual information

does not necessarily capture those aspects of circuit activity

that reflect genuine neural processing as suggested by their

association with forthcoming actions.

Here we test the hypothesis that periods of elevated os-

cillatory synchrony, as marked by bursts in the local field

potential (LFP) activity of the STN, impair the local repre-

sentation of task-related information in the STN. To this

end we use directional electrodes allowing a high resolution

read-out of changing features in the STN LFP (Zhang et al.,
2018), and machine learning to identify the aspects of

wide-band STN LFP activity that predict whether a volun-

tary upper or lower limb movement will subsequently be

performed, either because the identified features are directly

important in neural processing or because they are inform-

ative surrogates of such processing. Our findings help pro-

vide a mechanistic explanation for the correlative findings

linking bursts of low frequency activity to parkinsonian

motor impairment, while also focusing attention on the

STN as a potential alternative or complementary signal

source for restorative brain-machine interfaces.

Materials and methods

Patients and surgery

We studied the task-related modulation of STN LFPs before
and during voluntary upper and lower limb movements in 18
consecutive Parkinson’s disease patients undergoing STN DBS
surgery to improve motor symptoms (clinical details are pro-
vided in Supplementary Table 1). Recordings were made
intraoperatively from both hemispheres, except in seven sub-
jects (Cases 5, 6, 9, 11, 15, 16 and 18) in whom LFPs were
recorded in one hemisphere only, due to fatigue and operative
constraints. Thus, a total of 29 hemispheres were studied.
Patients were recorded OFF dopaminergic medication. All pa-
tients were operated at the University Hospital Bern and the
local ethics committee approved the use of the data for scien-
tific purposes (2017-00551). Patients were implanted with
Boston Vercise Cartesia directional electrodes (Boston
Scientific). The contacts of these electrodes are distributed
along four vertical levels as shown in Fig. 1B. The middle
two levels each contain three segmented (non-circular) con-
tacts, allowing stimulation and recording focussed in three dif-
ferent directions (each at 120� angles). The top and bottom
levels consist of a single ring/omnidirectional contact each.
Localization of the STN was performed using the T2-sequence
of the preoperative 3 T MRI and preoperative stereotactic CT
scan (with Leksell G frame) assisted by Brainlab iPlan 3.0
Stereotaxy software (Brainlab AG, Germany). Intraoperative
targeting was optimized by microelectrode recordings and se-
lective test stimulation.

Postoperative localization of
directional contacts

To visualize the distribution of the directional contacts in the
STN we used the Lead-DBS MATLAB toolbox (version 2.1.6)
(Horn et al., 2019). Preoperative MRI and postoperative CT
scans were co-registered using Advanced Normalization Tools
(Avants et al., 2008) and SPM12 (Statistical Parametric
Mapping 12; Wellcome Trust Centre for Neuroimaging,
UCL, London, UK) and normalized into the MNI 152
2009b space (Montreal Neurological Institute) (Avants et al.,
2008). Using the Precise and Convenient Electrode
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Reconstruction for DBS (PaCER) toolbox, the DBS lead was
pre-localized and eventually manually adjusted (Husch et al.,
2018). Finally, the x, y, z coordinates of all directional con-
tacts, from the left and right STN, were projected on to the
right STN of the DISTAL Atlas (Ewert et al., 2018) using a
non-linear flip function (Lead-DBS MATLAB toolbox) as
shown in Fig. 2.

Local field potential recordings and
limb assessments

The general experimental set-up has been previously published
(Tinkhauser et al., 2019) and is summarized below and in
Fig. 1A–D. After the first electrode was implanted, LFPs
were recorded simultaneously from the six directional con-
tacts (contacts 2 to 7, Fig. 1B) at rest and during movement
of the contralateral or ipsilateral limbs. Where time allowed,
this procedure was then repeated when the second electrode
was implanted. A TMSi-Porti amplifier (Twente Medical
Systems International) was used for recordings and these
were made with a common average reference, low-pass filter
of 550 Hz and a sampling frequency of 2048 Hz. Surface
EMG electrodes were taped over the forearm flexor muscles
of the upper limb and tibialis anterior of the lower limb.
Accelerometers were additionally placed on the dorsum of
the hand and foot to further enhance detection of movement
onset in each task. Finally, the auditory (verbal) cues were
captured by a microphone synchronized with the recording
system.

After a brief recording at rest (mean duration: 100.8 � 36.5 s),
patients performed one of two tasks. In the first one (fixed-limb
blocks, n = 12 subjects), patients were instructed to perform sep-
arate blocks of upper and lower limb movements. Patients were
informed of the desired response at the beginning of each block
and instructed that only this movement should be made in re-
sponse to imperative auditory cues during that block (Fig. 1C).
Upper and lower limb blocks were performed in counterbalanced
order. In the second task, patients (random-limb blocks, n = 4
subjects) were instructed to perform upper and lower limb move-
ments that were randomly intermixed. Here, patients were in-
formed of the desired response at every auditory cue (Fig. 1D),
which then acted as a combined instruction and imperative cue.
Prior to recording in the two tasks, patients were asked to re-
spond ‘promptly and accurately’.

The upper limb movement consisted of closing and opening
of the hand, while the lower limb movement involved ankle
dorsi-extension and then plantar flexion (Fig. 1C and D). For
the first experiment, each single movement was prompted by a
verbal ‘go’ command recorded with the microphone and the
intertrial time was 7.7 � 1.6 s (range: 6.0–11.9 s). This inter-
trial duration was selected to avoid compromising the baseline
period of the next movement with the beta rebound following
the last movement (Pfurtscheller and Da Silva, 1999). For the
second experiment, each movement was prompted by verbal
‘upper’ and ‘lower’ commands directing movement of the hand
or ankle and recorded with the microphone, and the intertrial
time was 7 � 2.1 s (range: 5.5–14.7 s). Our goal was to record
20 trials per STN contralateral to each moved limb per experi-
ment in each subject. However, the exact number of blocks
and trials varied due to the intraoperative setting and

Figure 1 Experimental setup and analysis pipeline.

(A) Deep brain electrode schematic. (B) The directional DBS lead

(Boston Scientific). Contacts are distributed along four levels. On

levels two and three, there are three segmented contacts (level two:

contacts 2/3/4; level three: contacts 5/6/7). (C) The fixed-limb vol-

untary movement task; upper and lower limb movements per-

formed in separate blocks, with each block preceded with an

instruction describing the limb to be moved after hearing the im-

perative auditory cue. (D) Random-limb voluntary movement task;

upper and lower limb movements randomly instructed within the

same experimental block. Here the auditory cue prior to each trial

also describes the limb to be moved. (E) Flow chart summarizing

analysis pipeline. LFP signals are used to predict the limb moved

using the naı̈ve Bayes technique. Acc. = acceleration; Ant = anterior;

au = arbitrary units; Lat = lateral; Med = medial; Post = posterior.

584 | BRAIN 2020: 143; 582–596 S. Khawaldeh et al.



associated constraints [fixed-limb blocks, 16.54 � 3.28 trials

(range: 10–25 trials); random-limb blocks, 21 � 11.37 trials
(range: 9–40 trials)]. In addition, we were able to record

STN activity ipsilateral to upper and lower limb movements

in fixed-limb and randomized-limb blocks in 13 and two hemi-
spheres, respectively.

Figure 2 Localization of all the directional contacts in all 18 subjects included in the study. Distribution of the contacts (blue dots)

and the mean coordinate of these contacts (black dots) are shown relative to the STN (grey mesh) in three different planes. In addition, a blue-

shaded sphere is shown where the diameter is separately defined for the x, y, and z coordinates and corresponds to a range of 2.5 standard

deviations.
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Signal processing

Spike2 software (CED, Cambridge, UK) was used to manu-
ally label the onset of the audio cue, and the onset and end of
movements based on the microphone, EMG and accelerom-
eter signals. MATLAB (2018, Mathworks, Natick, MA, USA)
was used for segmenting trials, preprocessing and further
analyses including training and testing for movement classifi-
cation. These were performed independently in each subject.
OSL [OHBA Software Library; Oxford Centre for Human
Brain Activity (OHBA), University of Oxford, Oxford, UK]
was used for artefact detection and rejection. EMG signals of
upper and lower limbs were extracted, z-scored, rectified, and
high-pass filtered at 15 Hz. A general overview of the LFP
processing and analysis pipeline is shown in Fig. 1E. The raw
signal from each of the six directional electrode contacts was
high-pass filtered at 2 Hz, then detrended and z-scored to
normalize each channel’s data before any trial segmentation
or task separation. Frequency decomposition was performed
with 1 Hz resolution using the Complex Morlet Wavelet
method (Cohen, 2014). A baseline normalization was per-
formed on each segmented trial, where each 1 Hz frequency
component in each trial in the time-frequency domain was
normalized by a baseline of 500 ms of the same component
taken from the beginning of each trial (2 s before auditory
cue). Thus, LFPs were expressed as relative change with re-
spect to baseline. This helps normalize changes across hemi-
spheres and subjects, where absolute amplitudes might vary
due to targeting variance, differing stun effects and patient’s
Parkinson’s disease symptomatology. In two hemispheres (1
and 13), one directional contact had to be excluded from the
analysis because of saturation during the recording.

Feature extraction and selection

A set of 100-ms long non-overlapping windows were used to
extract frequency-domain features from the six directional LFP
contacts. Normalized LFP powers in nine different frequency
bands ranging from 8 to 500 Hz were identified as potential
frequency domain features (Shah et al., 2017). These distinct
frequency bands were: 8–12 Hz, 13–20 Hz, 21–30 Hz, 31–45
Hz, 56–95 Hz, 106–200 Hz, 201–300 Hz, 301–349 Hz, and
350–500 Hz. After extracting the features, they were standar-
dized to have a zero-mean (by subtracting the mean), and a
unit-variance (by dividing by the standard deviation). Low fre-
quency activity (below 7 Hz) was excluded as the 100-ms
window used for extracting features was insufficient for reli-
able estimation. We did, however, explore the additional use
of various higher order statistical measures as potential fea-
tures (entropy, kurtosis, activity, mobility, complexity, skew-
ness, maximum, minimum, mean, and standard deviation; as
per Shah et al., 2017) in the classification of the training sub-
sets, but these were seldom prioritized by the feature selection
algorithm, and had very low weights compared to the spectral
features. As a result, they were excluded from the main
analyses.

K-fold cross validation (k: number of groups into which
dataset was randomly split) was used to ensure that all trials
in the original training dataset were used for both training and
validation, and the same subset of data used for training was
not used for validation; each trial being used for validation
only once. Specifically, we used 4-fold cross-validation,

where at each rotation, three folds were used for training,
and the remaining one was used for testing. The ReliefF fea-
ture selection algorithm was used to determine important fea-
tures and eliminate non-important ones (Robnik-Šikonja and
Kononenko, 2003). ReliefF first sets all feature weights to 0,
then iteratively selects a random trial and finds the nearest
trials to it from each class, and finally it calculates the weights
of features through penalizing weights that give different
values to neighbours of the same class, and rewarding those
that give different values to neighbours of different classes.
This was applied on the training subset containing the three
folds, and the top six ranked features used for testing the
fourth fold. The weight of each feature was estimated by
counting how many times it was selected across the four
folds as among the top six features, this was then divided by
the number of folds (k = 4) to get the final measure of feature
importance. These weights were then used as a measure of the
contribution of a given feature to the classification.

Burst detection

Power spectral densities in the alpha (8–12 Hz), beta (13–30
Hz) and low gamma (35–45 Hz) bands were calculated. The
75th percentile thresholding method was used to find bursts
which lasted longer than 100 ms (Tinkhauser et al., 2017b).
Because of their higher frequency, gamma bursts are too
short-lived to be captured in sufficient quantity by these
criteria and were therefore not considered further for ana-
lyses. The OFF medication state may have also served to
diminish and shorten gamma bursts, as LFP activity in this
frequency band and related bursting depends on dopamin-
ergic input (Brown et al., 2001; Androulidakis et al., 2007;
Lofredi et al., 2018). The temporal relationship between
alpha and beta bursts was screened and overlapping bursts
were removed (Fig. 3). Non-burst periods were defined as
periods without alpha, beta, or low gamma bursts. To per-
form further analysis, a 100 ms duration time window was
placed around the centre of every detected burst and non-
burst period; feature extraction, selection, and limb move-
ment classification was then performed on these 100-ms
periods.

Decoding algorithm

The Gaussian Naı̈ve Bayes classifier MATLAB implementation
was used to differentiate between the upper and lower limb
movements (Friedman et al., 1997; Rish, 2001; Hand and Yu,
2011). In this algorithm, features are conditionally independ-
ent random variables, given the class. The estimated posterior
probability is equal to the prior probability multiplied by the
likelihood. Naı̈ve Bayes estimates the densities of the features
within each class, and then it models posterior probabilities
according to Bayes rule. That is, for all k ¼ 1; . . . ;K;

P̂ Y ¼ kjX1; :;XPð Þ ¼

� Y ¼ kð Þ:
QP

j¼1

PðXjjY ¼ kÞ

PK

k¼1

� Y ¼ kð Þ
QP

j¼1

PðXjjY ¼ kÞ

ð1Þ

Where Y is the random variable corresponding to the class
index of a trial (e.g. which limb is being moved), X1; :;XP

are the random features of a trial (e.g. the top six ranked
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features from The ReliefF feature selection algorithm),
�(Y = k) is the prior probability that a class index is k,
which was computed based on the relative frequency distri-
bution of each class. Finally, it classifies a trial by estimating
the posterior probability for each class, and then assigns the
observation to the class yielding the maximum posterior
probability.

Statistical analyses

The main measure of interest was the area under the receiver
operator characteristic curve (AUC) of the classifier based on
the different spectral features of the LFP signal. This was taken

as an indicator of task-related information. Statistical analyses
were performed using MATLAB (2018, Mathworks, Natick,
MA, USA) and SPSS (2017, IBM Corp., Armonk, NY, USA).
The AUC values, features weight values, and average power of
EMG signals were tested with MATLAB Lilliefors test to check
whether they were normally distributed or not. Prior to inclu-
sion in ANOVAs and subsequent post hoc tests, Box-Cox
transformation was applied to transform non-normally distrib-
uted data. Greenhouse-Geisser correction was applied where
Mauchly’s test of sphericity was significant. Post hoc tests
were paired t-tests. All data are presented as means � stand-
ard error of the mean (SEM), and all significance P-values in
this article are corrected for multiple comparisons using the
false discovery rate (FDR) method.

Data availability

Data are available upon reasonable request to the correspond-
ing author.

Results

Subthalamic activity contains
information predictive of
forthcoming movement

Patients were asked to make voluntary movements of one

side following an imperative cue. Prior to the onset of each

block patients were informed whether extension of the

wrist or dorsiflexion of the ankle would be instructed by

the go cue. Patients therefore knew the voluntary move-

ment to be made even before the onset of the first impera-

tive cue in the block. The order of the upper and lower

limb blocks was counterbalanced. The cue was the appear-

ance of a target on a PC screen and was the same irrespect-

ive of block type. Recordings were made simultaneously

from the six segmented contacts of the directional electrode

in the STN and these were analysed in non-overlapping

100-ms duration windows taken from different periods in

the task. Spectral features were extracted for each window

and the naı̈ve Bayes classifier was used to classify serial

100-ms duration windows according to whether the wrist

or ankle would eventually be moved.

The STN contralateral to the movement was considered

first. For each time point (100-ms window) AUC was aver-

aged across the six directional electrode contacts. This is

illustrated for an exemplar patient in Fig. 4A, and for

group data across 23 electrodes in Fig. 4E. The mean

AUC was 0.506 � 0.013 at rest (prediction at chance

levels). However, this increased to 0.798 � 0.0396,

0.792 � 0.0521 and 0.804 � 0.0421 during the pre-cue,

pre-movement onset and post-movement onset task peri-

ods, respectively (AUC averaged over windows and then

across electrodes). An ANOVA of transformed AUC with

main effect of period (rest, pre-cue, pre-movement onset

and post-movement onset) was significant [F(1,22) =

206.544, P5 0.001]. Post hoc paired significance tests

Figure 3 Burst detection process. (A) Raw LFP in a 2-s epoch

from one of the directional contacts. (B) LFP power in alpha band

and detected alpha bursts. Threshold shown by interrupted red line

is the 75th percentile power. Note that threshold crossings had to

exceed 100 ms in duration to be classified as bursts. (C) LFP power

in beta band and detected beta bursts. (D) Detected alpha and beta

bursts. (E) Final non-overlapping alpha and beta bursts, and burst-

free periods (non-burst). au = arbitrary units.
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confirmed an increase in AUC in the pre-cue, pre-move-

ment onset and post-movement onset periods compared

to rest (P5 0.001, P50.001, P5 0.001, respectively).

Therefore, the activity of neural ensembles picked up by the

subthalamic electrode contained information about the nature

of the forthcoming response to be actioned. Remarkably, pre-

diction of the effector to be chosen began in the pre-cue

period between instruction and imperative cue even though

the transformed EMG average power during pre-cue

[0.0058 � 0.0135 arbitrary units (au)] was not different

than that during rest (0.0035 � 0.0074 au, P = 0.4006).

To confirm that the information available in the pre-cue

period directly related to which limb was to be moved, we

performed a control block in a group of four subjects (six

electrodes) in whom there was no forewarning of the limb

to be moved at the start of each block of trials. Here, the

imperative cue instructed the limb to be moved, and this

was randomized across trials in the same block. Under

these circumstances the AUC during the pre-cue period

was 0.5277 � 0.0285, which was not different to the

AUC during the preceding rest period (0.5198 � 0.0194,

P = 0.5143). Exemplar data from one subject are shown

in Fig. 4B and data averaged across six electrodes are

shown in Fig. 4E.

Next, we analysed ipsilateral voluntary movements. These

were acquired in 8 of 18 subjects (13 electrodes; Fig. 4C and

Figure 4 Classification AUC across various task periods. Task periods included: rest (rst.), pre-cue (-cue.), pre-movement onset (-ons.),

and post-movement onset (+ons.). (A) Example of performance of one contralateral hemisphere during fixed-limb blocks. (B) Example of

performance of one contralateral hemisphere during random-limb block. (C) Example of performance of one ipsilateral hemisphere during fixed-

limb block. (D) Example of performance of one ipsilateral hemisphere during random-limb block. (E) Average across contralateral hemispheres

during fixed-limb block (n = 23) and random-limb block (n = 6) across six directional contacts (c2–c7). (F) Average across ipsilateral hemispheres

during fixed-limb (n = 13) and random-limb blocks (n = 2) across six directional contacts (c2–c7). A and C are for the left hemisphere of Subject

1 and B and D are for the left hemisphere of Subject 16. Horizontal dashed red line shows the AUC if classification were at chance level.
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F), as recording was cut short in five patients because of

fatigue. In subjects with paired contralateral and ipsilateral

data the AUC was not significantly different between the

two sides across any of the task periods. An ANOVA of

transformed AUC with main effects task period (rest, pre-

cue, pre-movement onset and post-movement onset) and side

(contralateral and ipsilateral) confirmed a significant effect of

period [F(1,12) = 178.7, P50.001], and a significant inter-

action between period and side [F(1.884,22.618)= 112.73,

P50.001]. The effect of side was not significant [F(1,12)

= 3.521, P = 0.085]. As before, the effect of task period

was due to an increase in AUC on both ipsilateral and

contralateral sides in the pre-cue, pre-movement onset

and post-movement onset periods compared to rest

(P5 0.001, P5 0.001, and P5 0.001, respectively). The

interaction between period and side was not further

investigated.

We also repeated our control random-limb blocks in two

of the 18 subjects while they made ipsilateral movements

(Fig. 4D and F). As before, there was no forewarning of the

limb to be moved at the start of each block of trials. The

imperative cue dictated the responding limb, and this was

randomized across trials. Under these circumstances the

AUC during the pre-cue period was 0.5325 � 0.0278,

which was not different to that during the preceding rest

period (0.5054 � 0.0058).

To summarize, STN activity over a wide band of fre-

quencies carries significant information about intended

contralateral and ipsilateral limb movements even when

these are yet to be made, provided that prior instructions

enable action selection.

Bursts of 8–30 Hz subthalamic
activity compromise the prediction
of forthcoming movement

Our ultimate goal was to determine whether the informa-

tion about future movement held by local circuits was

compromised by bursts of locally synchronized activity,

as expressed in the LFP (Fig. 5A). The incidence of

bursts fell off steeply after the imperative cue (Fig. 5B),

but bursts were still frequent during the pre-cue period

during which the AUC for predictions of contralateral

limb movement was already elevated in our standard fore-

warned paradigm (alpha burst rate: 1.0125 � 0.1208

burst/s; alpha burst duration: 0.1672 � 0.0259 s, beta

burst rate: 0.7342 � 0.159 burst/s, and beta burst dur-

ation: 0.2015 � 0.0225 s; Fig. 5C and D).

Accordingly, 4 s of pre-cue period were reclassified with

respect to whether they contained alpha (8–12 Hz) or beta

(13–30 Hz) bursts or not. Alpha and beta bursts were

detected first, then a 100-ms window was centred on the

midpoint of each extracted burst. Periods representative of

bursts in the beta frequency were selected that did not

overlap with bursts in the alpha band, and vice versa

(Fig. 3E). Histograms of proportion of the pre-cue period

occupied by alpha and beta bursts (0.3007 � 0.0328) and

of the proportion of alpha and beta bursts that overlap

(0.1699 � 0.0772) for all the 23 contralateral hemispheres

are shown in Fig. 5E and F, respectively. Naı̈ve Bayes clas-

sifier was again used to classify alpha, beta and non-burst

classified pre-cue sections according to whether the wrist or

ankle would eventually be moved. AUCs were averaged

across the three directional contacts on each electrode

that afforded the best prediction. Averaging was performed

separately for two contact configurations. In the first con-

tact configuration, the AUC was averaged across the three

burst states (non-burst, alpha burst and beta burst) for each

of the six directional contacts and then the three contacts

affording the best predictions as measured by the AUC

defined (same three contacts, hereafter termed the three

best contacts). In the second, the three best contacts were

independently selected for each burst state (different three

contacts). This was performed in case there was a shift in

the spatial distribution in activities according to burst state,

and indeed the mean AUC for the same three best contacts

(0.6833 � 0.0272) was less than that for the different three

best contacts (0.7027 � 0.0258, P50.001) in the non-

burst state. Three, rather than six, directional contacts

were considered, as when testing the effect of bursting we

also wanted to explore the impact of bursting on feature

weights, and it was pointless to include directional contacts

where features contributed relatively little to classification.

The above revealed that the AUC for contralateral STNs

was decreased for pre-cue 100-ms windows containing

alpha and beta bursts compared with those that only con-

tained non-burst periods, as illustrated for the group data

in Fig. 6A and B, independently of whether the same or

different three contacts were considered. An ANOVA of

AUC for the same best three contacts during the pre-cue

period with main effect of state confirmed the significance

of this factor [F(2,42) = 65.1, P5 0.001]. Post hoc tests

demonstrated that the AUC during non-burst windows ex-

ceeded that during alpha (P5 0.001) and beta bursts

(P50.001), and the AUC in alpha bursts exceeded that

in beta bursts (P5 0.001) in the pre-cue period of the

standard forewarned task. A similar ANOVA for the dif-

ferent best three contacts configuration confirmed the sig-

nificance of burst state [F(2,42) = 110.497, P5 0.001].

Post hoc tests demonstrated that the AUC during non-

burst windows exceeded that during alpha (P5 0.001)

and beta bursts (P5 0.001), and the AUC in alpha

bursts exceeded that in beta bursts (P5 0.001). Note

that as the difference in AUC between the STN LFP with

and without alpha or beta bursts was assessed in the pre-

cue period it was likely independent of any change in re-

action time, which would arise after the period of

evaluation.

We also repeated the above in the subgroup of 13 sub-

jects in whom we tested both contralateral and ipsilateral

voluntary movements. In these subjects with paired

data the drop in AUC during alpha and beta bursts

did not differ between the two sides (Fig. 6C and D).
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Figure 5 Burst characteristics during the pre-cue period in the fixed-limb experiment. (A) Example shows power spectral density

for the three bursting states (non-burst, alpha, and beta) from the left hemisphere of Subject 1 (channel 4). (B) Raster plot of bursts (top) and

mean of beta burst incidence (% of total trials; bottom) at each time point for all trials of fixed-limb blocks (23 hemispheres, 9801 trials in total)

aligned to cue (green vertical line). Mean of trial movement onsets is blue vertical line and mean of trial movement offsets is yellow vertical line.

(C) Histogram of burst rate for alpha (blue) and beta (red) bursts across all contralateral hemispheres (n = 23). The overlap between the two

burst distributions is dark red. (D) Histogram of mean burst duration for alpha and beta bursts across all contralateral hemispheres (n = 23).

(E) Histogram of the proportion of the whole pre-cue period taken up by the combined alpha and beta bursts across all contralateral hemispheres

(n = 23). Ratio of 0.2 means, for example, that alpha and beta bursts comprise 20% of the pre-cue period. (F) Histogram of proportion of bursts

that overlap between alpha and beta across all contralateral hemispheres (n = 23).
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An ANOVA of AUC in the pre-cue period with main ef-

fects burst state (non-burst, alpha burst or beta burst)

and side (contralateral and ipsilateral) for the same best

three contacts confirmed a significant effect of state

[F(2,24) = 59.978, P5 0.001], but showed no effect of

side [F(1,12) = 0.054, P = 0.820], nor interaction between

state and side [F(2,24) = 0.106, P = 0.899]. The AUC

during non-burst periods exceeded that during alpha

(P50.001) and beta bursts (P5 0.001). However, al-

though the AUC in alpha bursts exceeded that in beta

bursts this was no longer significant (P = 0.1277). An

ANOVA of AUC with main effects state (non-burst,

alpha burst or beta burst) and side (contralateral and ipsi-

lateral) for the different best three contacts confirmed a

significant effect of state [F(2,24) = 166.471, P5 0.001],

and showed no effect of side [F(1,12) = 0.238, P = 0.634],

nor interaction between state and side [F(2,24) = 0.546,

P = 0.586]. As previously, the AUC during non-burst

windows exceeded that during alpha (P5 0.001) and

beta bursts (P50.001), and the AUC in alpha bursts ex-

ceeded that in beta bursts (P = 0.0212).

In summary, regardless of whether the STN contralateral

or ipsilateral to movement, or the same or different best

three contacts were considered, alpha and beta bursts com-

promised the AUC, with the effect of beta bursts being

significantly greater.

Spectral features over a wide
frequency range contribute to limb
prediction

Spectral features drawn across a wide frequency band (8–

500 Hz) contributed to prediction of the limb to be moved.

This was true for predictions made with the LFP signal

during the pre-cue, pre-movement onset and post-move-

ment onset periods of the fixed-limb paradigm before clas-

sification into burst states, as indexed by feature weights

(Fig. 7). Moreover, feature weights were significantly and

strongly correlated across task periods (Fig. 7 legend).

The same was also true of predictions made with the LFP

signal during the pre-cue period of the fixed-limb paradigm

after separation into burst states (non-burst, alpha, and

beta bursts) (Fig. 8). Overall, the importance of features

was similar between task periods (Fig. 7), but less between

burst states (Fig. 8).

Finally, in an exploratory analysis we investigated

whether bursts weakened feature weights. We focused on

those features that were consistent with high frequency os-

cillations suspected of being related to local multi-unit ac-

tivity (features 4 300 Hz; Meidahl et al., 2019). An

ANOVA of transformed high frequency (4300 Hz) feature

weights for the same best three contralateral contacts con-

figuration during the pre-cue period with main effect of

burst state showed a significant effect of burst state

[F(2,42) = 17.87, P5 0.001]. Post hoc tests demonstrated

that the high frequency weights during non-burst windows

exceeded those in alpha bursts (P5 0.001) and beta bursts

(P5 0.001). Another ANOVA of transformed high fre-

quency feature weights for the different best three contra-

lateral contacts configuration also demonstrated that burst

state was a significant main effect [F(2,42) = 5.482,

P = 0.008]. Post hoc tests demonstrated that the high fre-

quency weights during non-burst windows exceeded those

during alpha (P = 0.0193) and beta bursts (P = 0.0159).

Discussion
Our findings demonstrate that low frequency (8–30 Hz)

bursts of activity in the STN LFP impair the LFP-based

prediction of future limb selection during voluntary move-

ments. This is consistent with the hypothesis that the

increased synchronization denoted by bursting comprom-

ises information coding capacity in basal ganglia networks

Figure 6 Classification AUC during the pre-cue period for

different burst conditions [alpha (8–12 Hz), beta (13–30

Hz), and non-burst]. (A) Average across all contralateral hemi-

spheres (n = 23) for same best three contacts (i.e. the three con-

tacts affording the best predictions as measured by the AUC).

(B) Average across all contralateral hemispheres (n = 23) for dif-

ferent best three contacts. (C) Average across all ipsilateral hemi-

spheres (n = 13) for same best three contacts. (D) Average across

all ipsilateral hemispheres (n = 13) for different best three contacts.
���P5 0.001. Box and whisker plots with median (red horizontal

line), 25th and 75th percentiles (bottom and top edges of the box,

respectively), and outliers (red + ) noted. Horizontal dashed red line

shows the AUC if classification were at chance level.
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(Brittain and Brown, 2014). This effect was maximal in the

beta frequency (13–30 Hz) band. Bursts in this band are

attenuated and shortened in duration by treatment with

levodopa in patients with Parkinson’s disease (Tinkhauser

et al., 2017b), and specifically shutting down long duration

bursts using beta-triggered adaptive DBS also leads to im-

provement in motor impairment (Tinkhauser et al., 2017a).

Moreover, the incidence of such bursts correlates with clin-

ical scores of bradykinesia-rigidity (Tinkhauser et al., 2017a,

b) and with the velocity of specific movements (Torrecillos

et al., 2018; Lofredi et al., 2019). Together, these observa-

tions suggest that bursts of beta activity may be a key ab-

normality in the parkinsonian state (Deffains and Bergman,

2019), and the current findings provide a candidate mech-

anism for their effect and indicate that beta bursts restrict

information coding capacity in basal ganglia networks.

The STN bursts are themselves likely to reflect synchro-

nized oscillatory input, given that LFP activities of lower

frequency are thought to reflect afferent activity (Buzsáki

et al., 2012). In the case of the STN, although LFP beta

activity is locally generated (Kühn et al., 2005; Weinberger

et al., 2006; Trottenberg et al., 2007; Marmor et al., 2017),

it is coherent with, and led by, cortical beta oscillations

consistent with cortical driving (Fogelson et al., 2005;

Hirschmann et al., 2011; Litvak et al., 2010; Cagnan

et al., 2019). However, bursts compromised the feature

weights of activities above 300 Hz, which are believed to

be generated within the STN and which have recently been

linked to multi-unit activity and phase-amplitude coupling

(Foffani et al., 2003; López-Azcárate et al., 2010; van

Wijk et al., 2016, 2017; Meidahl et al., 2019). Indeed, as

the latter is an interaction with the phase of local beta

activity (López-Azcárate et al., 2010), and is focused in

beta bursts (Meidahl et al., 2019), it may be that phase-

amplitude coupling is a manifestation of the limitation in

information coding capacity exerted by relatively sustained

periods of increased, afferent driven, beta synchronization.

Microelectrode studies might help confirm whether

Figure 7 Feature importance for prediction during different task periods in fixed-limb blocks for raw LFP before classification

into burst conditions. (A) Average across all contralateral hemispheres (n = 23) for the same best three contacts in different task periods.

Feature importance was correlated across task periods e.g. between pre-cue and pre-movement onset, Spearman’s rho = 0.833, P = 0.008,

between pre-cue and post-movement onset, Spearman’s rho = 0.933, P5 0.001, and between pre- and post-movement onset, Spearman’s rho =

0.85, P = 0.006. (B) Average across all contralateral hemispheres (n = 23) for the different best three contacts. Feature importance was correlated

across task periods e.g. between pre-cue and pre-movement onset, Spearman’s rho = 0.87, P = 0.003, between pre-cue and post-movement

onset, Spearman’s rho = 0.862, P = 0.004, and between pre- and post-movement onset, Spearman’s rho = 0.917, P = 0.0013. (C) Average across

all ipsilateral hemispheres (n = 13) for the same best three contacts. Feature importance was correlated across task periods e.g. between pre-cue

and pre-movement onset, Spearman’s rho = 0.783, P = 0.0172, between pre-cue and post-movement onset, Spearman’s rho = 0.767, P = 0.021,

and between pre- and post-movement onset, Spearman’s rho = 0.467, P = 0.2125. (D) Average across all ipsilateral hemispheres (n = 13) for the

different best three contacts. Feature importance was correlated across task periods e.g. between pre-cue and pre-movement onset, Spearman’s

rho = 0.967, P5 0.001, between pre-cue and post-movement onset, Spearman’s rho = 0.967, P5 0.001, and between pre- and post-movement

onset, Spearman’s rho= 0.95, P5 0.001. Task periods were pre-cue (-cue.), pre-movement onset (-ons.), and post-movement onset (+ons.).
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incoming low frequency bursts serve to limit information

coding within the STN, which then impacts on STN output

in the form of multi-unit activity.

Although bursting denotes increased synchronization

(Levy et al., 2002a, b; Kühn et al., 2005; Weinberger

et al., 2006; Mallet et al., 2008; Deffains et al., 2018)

and excessive synchronization may potentially limit infor-

mation coding capacity in basal ganglia networks (Mallet

et al., 2008; Brittain and Brown, 2014), it should be

acknowledged that low frequency bursting might exert its

effects through some alternative unforeseen mechanism.

Regardless, however, the effects shown here and the pres-

ence of physiological beta bursts in cortical-basal ganglia

circuits in the healthy state raise the possibility that the

information regarding future voluntary movement in

motor circuits is dynamic and punctuated by low frequency

bursts that serve to temporarily degrade information fa-

vouring one or other course of action. This process,

which might under normal circumstances allow for flexibil-

ity in response, continues until the imperative cue, when

bursting is relatively suppressed and the motor system

fully commits to a given action. Of note, time-limited rela-

tive increases in beta activity in the STN have previously

been linked with the need to delay while more evidence is

accumulated when making difficult decisions about action

choices (Herz et al., 2018).

It is also worth considering what process might underlie

the change in neural activity allowing prediction of forth-

coming movement in the first place. In the fixed-limb

blocks reliable predictions could be derived from the STN

LFP even before presentation of the imperative cue, pro-

vided that the subject was forewarned about the limb to be

moved. This predictive activity could reflect anticipatory

action selection, anticipatory invigoration of the motor re-

sponse or subtle postural changes made to facilitate the

behavioural response when it would eventually be needed.

However, the absence of a significant difference in back-

ground EMG activity between the rest and pre-cue periods

would be against the STN changes denoting an instruction-

driven shift in posture or subliminal movement. The obser-

vation that LFPs from both the contralateral and ipsilateral

STN were equally predictive of the limb to be moved is

interesting and may relate to the fact that patients were

recorded OFF medication. Lateralized movement-related re-

activity effects in the LFP are dependent on dopaminergic

therapy (Androulidakis et al., 2007). However, the finding

of predictive LFP activity in both STN does not necessarily

mean that the activities within the two STN are identical.

The effect of beta bursts upon information coding cap-

acity was demonstrated for the pre-cue period. However,

the incidence of beta bursts dropped after presentation of

the go cue and during the movement, so how might a burst

Figure 8 Feature importance during the pre-cue period for the burst conditions: non-bursts, alpha bursts, and beta bursts.

(A) Average across all contralateral hemispheres (n = 23) for the same best three contacts. (B) Average across all contralateral hemispheres

(n = 23) for the different best three contacts. (C) Average across all ipsilateral hemispheres (n = 13) for the same best three contacts.

(D) Average across all ipsilateral hemispheres (n = 13) for the different best three contacts.
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related limitation of information coding explain motor im-

pairment? We have previously shown that, although beta

bursts appear less frequently after cues instructing move-

ment, they do still occur in some responses and it is these

responses that have slower peak velocities in patients with

Parkinson’s disease (Torrecillos et al., 2018; Tinkhauser

et al., 2020, in press). Similarly, beta bursts can reoccur

during self-paced repetitive upper limb movements and

during gait, and do so in association with bradykinesia

and gait freezing, respectively (Anidi et al., 2018; Lofredi

et al., 2019). Studies of beta-triggered adaptive DBS also

provide evidence that beta bursts occur during movement.

Two such studies have assessed repeated reach and return

movements (Johnson et al., 2016; Iturrate et al., 2019).

They indicate that 30–70% of trials involve the delivery

of adaptive DBS at any given point in the movement tra-

jectory. As stimulation is triggered by beta bursts this serves

as a surrogate measure for the percentage of trials with

beta bursts at any given point in the movement trajectory.

Studies of beta-triggered adaptive DBS also provide some

support for a causal link between beta bursts and motor

impairment, in so far as stimulation cuts short beta bursts

while improving kinematic measures of repeated tapping

and wrist movements (Tinkhauser et al., 2017a, b; Piña-

Fuentes et al., 2019; Velisar et al., 2019).

Alpha band bursts also significantly impaired prediction,

albeit not as strongly as beta band bursts. This is interest-

ing as it suggests that increased synchronization need not

necessarily be limited to the beta band to have a deleterious

effect. It also has its corollary in clinical studies that often

consider the correlations between motor impairment and

STN LFP activities in a combined alpha-beta band (Kühn

et al., 2006, 2009; Chen et al., 2010; Neumann et al.,

2016). A further study has demonstrated a positive correl-

ation between STN sub-beta frequency oscillations and

axial symptoms (Sharott et al., 2014). Alternatively, the

alpha band effects seen in the present study might just rep-

resent spectral leakage from a dominant effect in the beta

band, particularly as some evidence points to the lower

frequencies in the beta band as being most linked to motor

impairment. For example, it is these that are exaggerated in

amplitude in Parkinson’s disease relative to obsessive com-

pulsive disorder patients also recorded in the dorsolateral

STN, and which are suppressed by levodopa in the same

patients. In contrast, LFP activities at higher frequencies in

the beta band are more similar in amplitude in this region

between the two conditions (Rappel et al., 2018).

The current findings are also of interest in that they sug-

gest that local STN activity may potentially be decoded to

enable effector selection, in addition to force control

(Mamun et al., 2015; Tan et al., 2016; Golshan et al.,
2018) in brain-machine interface applications. Information

about the effector to be selected was present well in ad-

vance of the voluntary movement, affording hope that a

similar control signal might be present in the STN in the

absence of physical movement in paralysed patients or

those with amputation. As already noted, LFPs from both

the contralateral and ipsilateral STN were equally predict-

ive of the limb to be moved, although predictions of force

are better achieved from the contralateral STN (Tan et al.,

2016). Here, it is probably relevant that we recorded LFP

activity with directional electrodes that allow a higher reso-

lution sampling of local activity than conventional quadra-

polar DBS electrodes (Zhang et al., 2018). Under these

circumstances we were able to predict the selected limb

with an AUC of �0.8 from single time windows of 100-

ms duration when averaging across three electrode con-

tacts. It is likely that predictions could be strengthened

still further if information were derived from several win-

dows and the spatial patterning of activity across the six

different directional contacts considered.

We should acknowledge several limitations of the current

experiments. These were performed intraoperatively and

hence the number of movement trials and blocks were lim-

ited. Features were therefore necessarily selected on empirical

grounds and could not be independently identified through

advanced machine learning algorithms. Predictions might

have been improved with such algorithms, and also had

recordings been achieved in chronically implanted patients,

in whom any acute stun effects (Chen et al., 2006) compro-

mising STN processing would have abated.

In conclusion, using an STN LFP-based machine learning

approach we have been able to distinguish forthcoming

upper limb from lower limb movements and have shown

that the predictive information within the LFP is compro-

mised during bursts of alpha and beta activity, with the

major effect occurring in the latter frequency band. These

results support the hypothesis that bursts of low frequency

activity in the STN restrict the overall capacity of the

system to encode physiologically relevant information

about intended actions. Given that such bursts are exagger-

ated in Parkinson’s disease, our findings provide mechanis-

tic insight into the pathological relevance of beta dynamics,

while also encouraging consideration of the STN as an al-

ternative or complementary signal source in restorative

brain-computer interfaces.
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