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Abstract:  

The COVID-19 pandemic has yielded disproportionate impacts on communities of color in New 

York City (NYC). Researchers have noted that social disadvantage may result in limited 

capacity to socially distance, and consequent disparities. Here, we investigate the role of 

neighborhood social disadvantage on the ability to socially distance, infections, and mortality. 

We combine Census Bureau and NYC open data with SARS-CoV-2 testing data using 

supervised dimensionality-reduction with Bayesian Weighted Quantile Sums regression. The 

result is a ZIP code-level index with relative weights for social factors facilitating infection risk. 

We find a positive association between neighborhood social disadvantage and infections, 

adjusting for the number of tests administered. Neighborhood infection risk is also associated 

with capacity to socially isolate, as measured by NYC subway data. Finally, infection risk is 

associated with COVID-19-related mortality. These analyses support that differences in capacity 

to socially isolate is a credible pathway between disadvantage and COVID-19 disparities. 
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Introduction  

 The 2019 novel coronavirus (SARS-CoV-2) emerged in Wuhan, China, and has since 

become a worldwide pandemic. In the United States, given the nature of this novel infectious 

disease, anyone exposed to the pathogen was believed susceptible to infection, there were no 

proven pharmacologic treatments, and testing capacity was low. Pre-existing conditions are 

known risk factors of disease severity, and mortality increases sharply with age1. Consequently, 

the United States federal, state, and local governments have principally relied on non-

pharmaceutical interventions such as social distancing and mask-wearing. New York State 

(NYS) on PAUSE is one such effort, whereby essential workers, i.e. healthcare workers, food 

purveyors, bank tellers, etc., were the only employees that should be reporting to work2. We 

examine the role of social factors, such as employment and commuting patterns, population 

density, food access, and personal finances and access to healthcare, in infection risk. 

 It has been widely noted in popular media and emerging scientific evidence that COVID-

19 is taking a disproportionate toll on communities of color3–6. For example, in Chicago, Blacks 

comprise 70% of COVID-related deaths, but only 30% of the population6. In New York City 

(NYC), Hispanics/Latinx and Blacks are disproportionately impacted, representing 34% and 

29% of the deaths, but 28% and 22% of the population, respectively6. While differences in 

disease severity are likely attributed to higher levels of preexisting conditions, i.e. health 

disparities7, this does not explain differences in disease incidence. A survey of laboratory-

confirmed hospitalized cases across 14 states found, where race was reported, that 33.1% of 

hospitalized patients were non-Hispanic Black8. In NYC, as of May 13, 2020, the cumulative 

incidence of non-hospitalized positive cases were 798.2, 684.8, and 616.0 per 100,000 for 

Blacks/African Americans, Hispanic/Latinx, and Whites respectively9.   

 A body of literature on the social determinants of health suggest that there are numerous 

inequities that provide the scaffolding for increased COVID-19 infection rates in communities of 

color. Racism operates on both the interpersonal and structural levels, the latter explaining the 
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societal mechanisms that reinforce inequality, including through housing, employment, earnings, 

benefits, health care, criminal justice, etc.10. Those structural forms of social disadvantage are 

responsible for many of the health disparities we observe in communities of color11.  

Researchers have outlined the ways in which residential segregation and structural 

disadvantages lay the groundwork for racial disparities in infectious diseases12. More recently, 

others have noted that social distancing is more difficult for communities of color6. Taken 

together, this literature highlights the social mechanisms that facilitate viral spread in 

communities of color. The underlying structural disadvantages relevant to the current 

coronavirus pandemic might include that people of color (POC) are more represented amongst 

low-wage jobs13, many of which are now deemed essential14. When they get home from work, 

they are more likely to return to densely populated homes and neighborhoods15. Further, 

multigenerational homes are more common in communities of color16, making social distancing 

between least susceptible (healthy children) and most susceptible (elderly adults with chronic 

conditions) difficult. POC often live further from supermarkets and sources of nutritious foods, 

necessitating further travel for groceries17. These factors, among others, underscore the many 

ways that the capacity to social distance may be contextual, and based on structural factors. 

 In this study, we use socioeconomic data on neighborhood characteristics to understand 

differences in infection incidence between neighborhoods, as we quantify the relative 

contribution of these measures of social disadvantage and if a proxy of social isolation, NYC 

subway utilization, helps us to understand these differences. We create a ZIP code level 

infection risk index for NYC and show how this index explains racial/ethnic disparities in cases, 

thus reflecting structural forms of disadvantage. Finally, we examine the relationship between 

neighborhood infection risk and neighborhood-level COVID-19 mortality. Ultimately, we create a 

tool that identifies social factors that facilitate viral spread, and therefore, may be useful 

throughout the US to pinpoint potential areas for targeted public health intervention.   
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Results 

Cross-sectional neighborhood infection risk index  

 We wanted to identify any association between a neighborhood social disadvantage 

composite index and cumulative COVID-19 infection incidence. There were 174,614 positive 

tests across 177 NYC ZIP Code Tabulation Areas (ZCTAs) as of May 7, 2020. Kendall’s tau 

correlations between social disadvantage variables ranged from -0.15 to 0.61. Kendall’s tau 

correlation tests were also conducted between each variable and the infection incidence 

(Supplemental Table 2). An assumption of the Bayesian Weighted Quantile Sums (BWQS) 

regression is that the direction of the effect for each variable is the same as the overall effect. 

Given the a priori hypothesis that increased disadvantage yields higher infections, we used the 

reciprocal of variables that are negatively associated with the infection incidence.  

The BWQS regression analysis identified evidence of an association between our 

composite variable of ZCTA-level social disadvantage (on a ten unit scale) and the number of 

infections per 100,000 (Figure 1). We found that each unit increase in social disadvantage is 

associated with a 10% increase in infections per capita (Risk Ratio: 1.10; 95% Credible Interval: 

1.08, 1.11). While all included variables contributed to this composite, they do not all contribute 

equally (Figure 2). We found that the average number of people in a household is the single 

largest contributor, followed by the proportion of the population who are essential workers and 

rely on personal vehicles or public transit to commute. Proportion of uninsured and the median 

income are also relatively informative compared to the other variables.  
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Fig. 1 Scatterplot of BWQS infection risk index and cumulative infection incidence. Unit of analysis is ZCTA 
(n=177). Fitted line represents the BWQS regression line, holding testing ratio constant at the median, and marginal 
histograms represent the distribution of the variable on each axis. 

 

Fig. 2 Estimated contribution of social variables to the BWQS infection risk index, with 95% credible 

intervals. The BWQS weights the explanatory variables by their relative contribution to the composite infection risk 

index, between 0 and 1. The mean weights sum to 1 and are organized into conceptual domains and ordered by 

mean weight.   
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 The spatial distribution of the BWQS infection risk index (Figure 3) largely mirrors that of 

infections in NYC (Supplemental Figure 1). We examined the population demographics of 

neighborhoods according to their BWQS infection risk index (Figure 4). The data shows that 

Blacks have the highest population-weighted mean index and Whites have the lowest. 

Examining these distributions by quantile of the BWQS Index shows that White populations are 

overrepresented in ZCTAs in the lower quartile of the infection risk index (<25th percentile) and 

underrepresented in the upper quartile of infection risk (>75th percentile) ZCTAs 

(Supplemental Figure 2). While Whites comprise approximately 32% of NYC’s population, they 

only make up 11% of high infection risk ZCTAs. Conversely, Blacks and Hispanic/Latinx are 

22% and 29% of NYC’s population and 31% and 42% of high risk areas respectively. 

 

Fig. 3 Map of NYC COVID-19 BWQS infection risk index. Unit of analysis is ZCTA (n=177). 

 
 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2020. .https://doi.org/10.1101/2020.06.02.20120790doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20120790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 4 Distribution of BWQS infection risk index by race/ethnicity of ZCTA residents. Infection risk varied by 

race/ethnic categories according to the 2018 ACS. Density plots are population-weighted to demonstrate the relative 

abundance of representation according to ZCTAs and their corresponding BWQS infection risk index and ordered by 

the population-weighted mean index.   

 

 

Capacity to social distance  

 We found that capacity to social distance appears lower in higher neighborhood infection 

risk areas, as indicated by the most important variables in our neighborhood infection risk 

analysis. To assess whether or not this was true using longitudinal data, we decided to model 

differences in subway utilization by UHFs in NYC. We only included UHFs with the most 

consistent data quality and that had subways present (Supplemental Figure 2). In order to 

identify the proper functional form of our nonlinear model, we fit it on the mean sigmoidal decay 

of subway utilization across all of NYC (Supplemental Figure 3). We then compared this model 

to an interaction model for UHF-level population-weighted BWQS index (Figure 5). A partial F-

test demonstrated that a model with an interaction term for BWQS index categories (above 

versus below the median) was a significantly better fit than one without the interaction term 

(p<0.0001).  
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Fig. 5 Subway ridership trends by population-weighted BWQS infection risk index at the United Hospital 

Fund neighborhood level. The nonlinear model was fitted using a generalized Weibull equation with two curves: 

high (above median) and low (below median) BWQS infection risk index at the UHF neighborhood level (n=36). Daily 

subway ridership is relative to 2015-2019. Dashed line represents the start of NYS on PAUSE social distancing 

policies. Ridership is shown between February 16, 2020 to April 30, 2020. 

 
The interaction model indicates that there is no difference between slopes for the high (-

5.6% per day; 95% CI: -5.9, -5.3%) versus low (-6.3% per day; 95% CI: -6.7, -5.9%) infection 

risk areas (Table 1). However, the lower asymptote of subway utilization under social distancing 

policies is higher for high infection risk (16%; 95% CI: 15.3, 16.7%) areas compared to low risk 

infection risk areas (9.6%; 95% CI: 8.8, 10.1%). This implies that high risk and low risk areas 

had similar relative rates of decreased subway utilization upon news of the pandemic, i.e. 

school closures, etc. However, high risk neighborhoods had a higher relative use of the subway 

system after official social distancing policies (NYS on PAUSE) went into effect.      

Table 1 Coefficients from nonlinear regression of BWQS infection risk and subway ridership.  

 High Infection Risk Low Infection Risk  

 Coefficient 95% CI Coefficient 95% CI P value 

Lower Asymptote 16% 15.3, 16.7% 9.6% 8.8, 10.1% <0.001 

Slope -5.6% per day -5.9, -5.3% -6.3% per day -6.7, -5.9% 0.52 

Lower Asymptote and Slope are parameters from a nonlinear model with generalized Weibull equation and two 
curves for high (above median) and low (below median) BWQS infection risk index at the UHF neighborhood level.  
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Mortality related to neighborhood infection risk index   

 There were 16,289 COVID-related deaths across 177 ZCTAs by May 23, 2020. Results 

from the negative binomial model show an association between the ZCTA BWQS infection risk 

index and cumulative COVID mortality incidence (Table 2). This regression model employed a 

spatial filtering approach to account for potential spatial autocorrelation at the ZCTA level. We 

found that each unit increase in the BWQS infection risk index is associated with a 21% 

increased risk of COVID-related mortality (Relative Risk: 1.21; 95% CI: 1.16, 1.26) when 

adjusting for the proportion of the population aged 65+ and accounting for spatial dependence. 

There was non-significant spatial autocorrelation in the residuals (Moran’s I: 0.07, p value: 

0.064).  

Table 2 Results from a negative binomial regression of BWQS infection risk index and COVID-19 cumulative 

mortality proportion at the ZCTA level.  

Term Relative Risk (95% CI) P value 

BWQS infection risk index 1.21 (1.16, 1.26) <0.001 

Proportion 65 plus (z-score) 1.03 (0.95, 1.11) 0.153 

Eigenvector of spatial element 0.35 (0.16, 0.76)  <0.001 

 

Discussion  

 We conducted a study using publicly-available data to identify the role of neighborhood 

social disadvantage on cumulative COVID-19 infections and COVID-19-related mortality. The 

neighborhood infection risk index was also used to understand differences in social distancing, 

as measured by subway ridership. In creating our neighborhood infection risk index, we found 

that a combination of social variables, indicative of social disadvantage, is associated with 

cumulative infections and mortality. Black and Hispanic/Latinx communities are overrepresented 

in high infection risk neighborhoods, and Whites are overrepresented in low infection risk 

neighborhoods, which may represent structural forms of racism. When examining differences in 

capacity to socially isolate, we found that high risk neighborhoods had higher subway ridership 
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during NYS-mandated social distancing. Finally, our neighborhood infection risk index is also 

associated with cumulative COVID-19 mortality at the ZCTA level. This implies that the same 

social factors that inform increased disease risk are also associated with severe outcomes, 

either directly or through intermediates.  

 A growing body of literature is examining the greater impact of COVID-19 on 

communities of color. As some have noted, COVID-19 is not creating new health disparities, but 

exacerbating those that already exist3. A recent investigation found that county and ZCTA area-

based socioeconomic measures, specifically using crowding, percent POC, and a measure of 

racialized economic segregation, were useful in identifying higher COVID-19 infections and 

mortality in Illinois and New York18. Work on COVID-19 mortality in Massachusetts has found 

excess death rates for areas of higher poverty, crowding, proportion POC, and racialized 

economic segregation19. Similarly, researchers have begun to identify counties that are 

particularly susceptible to severe COVID-19 outcomes using a combination of biological, 

demographic, and socioeconomic variables20. They identify areas with high population density, 

low rates of health insurance, and high poverty as particularly at risk. However, a stated 

limitation of this work is that many of these variables are interrelated.  

 Our study has many strengths. First, we acknowledge and address the strong 

interrelation of social variables by using a data-driven method for modeling mixtures of 

exposures: BWQS. By using this method, we create a composite index that captures the 

combined effect of the constituent variables. This process is also supervised, meaning that the 

variables are not weighted equally in the composite index, but instead the approach empirically 

learns their individual contributions to explaining the outcome. Others have addressed the 

multicollinearity of social determinants with the use of dimensionality reduction techniques such 

as principal components analysis (PCA) in the case of the neighborhood deprivation index21. 

However, traditional PCA only considers correlations between SES variables, whereas a 

supervised method captures features most relevant for the outcome. Second, our approach 
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largely relies on ACS data, which is available across the USA, and may allow for the 

identification of other communities nationwide that are particularly vulnerable to future outbreaks 

or even other novel respiratory pathogens. Third, we explicitly excluded race and ethnicity from 

the creation of the index because we were more interested in identifying social processes that 

may facilitate infection risk, rather than those that may imply biological or behavioral 

explanations to health disparities22. The theory underlying these relationships is that structural 

racism sorts POC into areas of high disadvantage, and those structural forms of disadvantage 

facilitate pathogen spread. To demonstrate this, we employed the index to understand 

neighborhood differences in capacity to social distance. This finding provides additional 

evidence that low-income communities and communities of color may be less able to socially 

distance6. Fourth, our spatial analysis of COVID-19-mortality shows that the BWQS risk index 

may not only be useful in identifying infection risk, but also risk of severe outcomes. Finally, our 

data sources and analysis code are publicly-available, meaning that others can 1) reproduce 

these analyses, 2) expand on the work by assessing different modeling strategies and 3) assess 

the utility in other parts of the country.     

 This study also has notable limitations. First, we were unable to identify a measure of 

multigenerational housing at the ZCTA level, which may represent a pathway for infection, and 

potentially severe disease. Second, by not including race in our models, we may be missing an 

opportunity to tune these models to the impacts of interpersonal and structural forms of 

racism23. Third, early testing data in NYC was largely limited to hospitalized individuals, 

therefore those with more severe disease9. Consequently, ZCTA infection data may be 

confounded by the distribution of factors that drive disease severity. We addressed this by 

adjusting our BWQS regression for the amount of overall testing per ZCTA. Relatedly, for our 

spatial analysis of COVID-mortality, we were unable to access a ZCTA-level measure of chronic 

diseases. Since communities of color have higher rates of chronic disease at younger ages24, 

and chronic diseases increase the likelihood of severe COVID-19 outcomes, this is an important 
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challenge. However, because social disparities are a major contributor to differences in the 

chronic conditions that increase the likelihood of severe disease, we did not want to adjust for a 

causal intermediate. Instead, we adjust for spatial autocorrelation to account for residual risk 

factors that are more similar in nearby neighborhoods. Fourth, we use pre-pandemic social 

variables derived from the 2018 ACS and thus do not directly account for variation in mobility25. 

However, this should be captured, in part, by median income and other measures of affluence in 

our BWQS index. Fifth, our analysis of public transit only utilized data from subway turnstiles, 

but not bus ridership. Although buses are an important form of transit in NYC, especially in the 

outer parts of the boroughs, the MTA does not provide time-varying ridership data. Further, 

buses were made free during the pandemic, so accurate ridership data are likely unavailable to 

the NYC government as well26. Finally, an unfortunate potential consequence of creating a 

neighborhood risk index is the possibility of stigmatization of neighborhoods with high risk index 

values22. This is not our intention, and hopefully not the effect, as our goal is to identify social 

factors that facilitate viral spread, and demonstrate that current public health guidance is not 

equally observable by all populations. Therefore, it is up to policymakers and practitioners to 

identify those populations and design/implement interventions accordingly.     

 

Conclusion  

In this study, we created a neighborhood measure of social disadvantage that is 

specifically tuned to the impacts of COVID-19 infections and mortality and we show that this 

measure is associated with the capacity to socially distance, which may represent an important 

pathway for COVID-related health disparities. This is an important area of investigation given 

the large toll that COVID-19 has had, and will likely continue to have unless action is taken, on 

disadvantaged communities of color in NYC and elsewhere.  
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Methods 

Data sources and cleaning 

SARS-CoV-2 testing and COVID-19 mortality data. The New York City Department of 

Health and Mental Hygiene (NYC DOHMH) has been publicly releasing daily testing data 

(positive and total tests) at the patient’s home ZIP Code Tabulation Area (ZCTA) level since 

April 1, 2020, and COVID-19 related mortality data since mid-May, both available on GitHub27. 

The NYC DOHMH utilizes modified ZCTA geographies, designed to still be mergeable to the 

Census Bureau ZCTA designations. Our analyses relied on pre-pandemic demographic data to 

describe variation in neighborhood-level disease burden after much of the community had 

potential for exposure. Since spatiotemporal patterns in infection risk were highly variable at the 

beginning of the pandemic in relation to many independent viral introductions within NYC28, we 

estimated cumulative infections on May 7, 2020, four weeks after NYC’s peak infection period. 

We estimated time from symptom onset to death as 16 days29. Therefore we chose May 23, 

2020 for our cumulative COVID-19 mortality analysis. This analysis is not human subjects 

research as it did not include any intervention or interaction with individuals or any identifiable 

private information. 

Census data. We downloaded the Census Bureau’s 2018 American Community Survey 

(ACS) data via the tidycensus R package30. Data were collected for the 177 ZCTAs in NYC. 

Variables included: the total population, number of households, median income, median rent, 

health insurance status, unemployment, individuals at or below 150% of the federal poverty 

level, race and ethnicity, industry of employment, and mode of transportation to work. A full list 

of variables are provided in Supplemental Table 1. We created a proxy for proportion in 

essential worker positions using industry of employment variables. This estimate of essential 

workers was a sum of those who reported employment in the agricultural, construction, 

wholesale trade, transportation and utilities, and education/healthcare industries, divided by the 

total working-age population. To account for teachers mostly working from home, and 
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healthcare workers being essential, we included only half of the education/healthcare industry 

respondents. From these data we also estimated the average household size by dividing the 

total population by the number of households. We utilize race and ethnicity according to the 

following categories: Non-Hispanic Asian, Non-Hispanic Black, Non-Hispanic White, 

Hispanic/Latino of any race, and aggregate all other races into Other.   

 Residential buildings and food access data. We calculated the volume of residential 

space by merging datasets the NYC building footprints dataset31 and merged it with the Primary 

Land Use Tax Lot Output (PLUTO) dataset32. We divided residential volume by total population 

to calculate mean residents per residential volume, a metric of residential population density. 

Food access was used as a measure for the likelihood that individuals need to leave their 

neighborhoods for basic necessities. We estimated food access using data from New York 

State’s Open Data portal for Retail Food Stores33. Businesses were restricted to J, A, and C 

establishment code designations in order to identify those most likely to provide fresh foods and 

produce, and then manually removed any business names that indicated being a corner store or 

pharmacy, or primarily selling alcohol/tobacco. We spatially joined the point locations to our 

ZCTA shapefile and divided by the total Census population to calculate a ‘grocers per 1,000 

people’ variable as a proxy for food access.  

Mobility and transit data. The Metropolitan Transit Authority (MTA) of NYC releases 

subway utilization data on a weekly basis34. These data include the number of entrances and 

exits per station. For each day and geographic area, we summed all system entrances and 

exits.To account for typical usage of the subway on each month and day of the week, we 

divided the total turnstile count for each day and area by the median daily count on the same 

day of the week within the same month throughout the period 2015-2019. 

Quantitative Analyses 

Cross-sectional Neighborhood Infection Risk Index. Socioeconomic variables are 

known to be closely correlated with one another, which is a challenge to model fitting and 
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interpretation of the underlying latent relationship. To address these challenges, we develop a 

weighted combination of socioeconomic variables to explain the cumulative number of COVID-

19 cases per ZCTA using Bayesian weighted quantile sums regression (BWQS)35. BWQS 

distinguishes two groups of predictors. In one group, which comprises our socioeconomic 

variables, the predictors are transformed into decile ranks to limit the influence of outliers, and 

the coefficients are forced to lie in [0, 1] and sum to 1 with a uniform Dirichlet prior. We included 

a large candidate list of socioeconomic variables in the BWQS that could represent some of the 

underlying infection dynamics attributable to socioeconomic disadvantage. They included 

selected demographic variables collected from the 2018 ACS, as well as derived variables such 

as population density (persons per square foot of the ZCTA) and residential population density 

(persons per cubic foot of ZCTA residential volume). Our final list of variables was based on an 

iterative process according to: 1) maximizing model fit, measured by the widely applicable 

information criterion (WAIC), 2) removing one variable when bivariate correlations were high (|𝜏| 

≥ 0.9), and 3) our understanding of underlying social processes in relation to infectious disease. 

The other group of variables in a BWQS regression are the covariates, which in our case 

consist solely of the population-adjusted total number of tests administered per ZCTA. We 

included this to account for variation in disease surveillance. The predictor is untransformed and 

the coefficient is less constrained, using a normal prior with mean 0 and SD 100. A negative-

binomial distribution is used for the dependent variable: the cumulative number of positive 

SARS-CoV-2 tests per 100,000 people. The resulting weighted index was our neighborhood 

infection risk index.  

We visualized the distribution of the neighborhood risk scores by self-reported 

race/ethnicity as per the ACS categories and total population. We also separate the 

neighborhood risk scores into three categories: below the 25th percentile, between the 25th and 

75th percentiles, and above the 75th percentile. Populations were aggregated by race/ethnicity 

and then divided by the total population of the associated ZCTAs.       
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Capacity to Social Distance. Our BWQS model uses cross-sectional data to create an 

infection risk index, but we wanted to assess the degree to which those differences in infections 

were explained longitudinally by inability to socially isolate/distance. We utilized MTA transit 

data as a proxy for social distancing since public transit may reflect conditions that contribute to 

greater exposure risks. Subway stations are in a fraction of NYC ZCTAs, and individuals often 

traverse ZCTAs to get to a station, so we aggregated subway utilization to 42 United Hospital 

Fund (UHF) neighborhoods. UHF neighborhoods are composed of adjacent ZCTAs 

approximating community districts. Aberrantly low utilization observations (<10%) in February 

and early March 2020 were removed when explained by planned weekend service changes - 

specifically those in low subway density areas. We computed a population-weighted BWQS 

index per UHF.  

We modeled change in relative subway usage leading up to, and during, the NYS on 

PAUSE period. Relative subway utilization is a proportion, therefore the transition from 

business-as-usual to social distancing roughly followed a sigmoidal decay. A mean nonlinear 

response can be modeled by nonlinear least squares when a functional form is specified, as 

implemented by the drc R package36. We utilized a generalized Weibull formula, which took the 

following functional form:  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑠𝑒 = 𝑐 + (𝑑 − 𝑐)(1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(𝑏(𝑙𝑜𝑔(𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥) − 𝑙𝑜𝑔(𝑒))))),  

where c is the lower asymptote, d is the upper asymptote, b is the slope, time index is 

transformation of the date as an integer, e is the inflection point of the function, and relative use 

is the proportion of subway ridership. The model accommodates curve fitting with interaction 

terms to identify differences in model fit per group. For ease of interpretation and visualization, 

this was utilized to assess differences for high (above the median) versus low (below the 

median) BWQS index neighborhoods. We sought to identify any differences in slope (b) and the 

lower asymptote (c) as indicative of differences in the ability to socially isolate. An F-test was 
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used to compare a naive model (without considering the BWQS index) to a model with 

interaction by high versus low BWQS index.    

 Neighborhood infection risk and mortality. Given high COVID-related mortality in 

disadvantaged communities, we wanted to assess if our measure of neighborhood infection risk 

was also associated with cumulative COVID mortality by total population. To do so, we 

employed a negative binomial model, regressing ZCTA-level COVID mortality on the BWQS 

infection risk index, adjusting for the proportion of the population that was greater than or equal 

to 65 years old. In order to adjust for spatial autocorrelation, and thus unmeasured spatial 

confounding, we employed a spatial filtering approach whereby we identify the eigenvector 

associated with spatial autocorrelation (as measured by Moran’s I), and explicitly adjusted for 

those values in the negative binomial regression37,38. The goal, then, was to “filter out” spatial 

autocorrelation from the residuals. Negative binomial models were implemented with the MASS 

package, supplemented with spatial functions from the spdep and spatialreg packages39,40.    

Mapping and coding  

  Geoprocessing and visualization of spatial data were conducted with the sf package in 

R41. All analyses were conducted in R version 3.6.242 and the code is available via GitHub.  

 

Data Availability: All data were derived from public use datasets via government websites. All 

analytic code, including download procedures, are available to the public in GitHub at 

https://github.com/justlab/COVID_19_admin_disparities/tree/v1  
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Supplemental materials:  

 
Supplemental Table 1: 2018 American Community Survey (ACS) 5-year estimate variables collected via 

tidycensus R package for ZIP code tabulation area (ZCTA) units. 

ACS Variable 
Name 

Short description Explanation 

B19013_001 Median income 

Measure of neighborhood-level access to 
financial/economic resources 

B06012_002 Federal Poverty Level (below 100%)  

B06012_003 Federal Poverty Level (between 100-150%) 

B23025_005 Unemployed 

B22003_002 Households with supplemental nutrition 
assistance (SNAP) 

Financial/economic resources and food access  

B01003_001 Total population per ZCTA For adjustment and crude population incidence 
calculations  

B22003_001 Total households per ZCTA To create household-based proportions 

B27010_017 Uninsured (Under 19 years old) 

Access to care and medical information/warnings  

B27010_033 Uninsured (19-34 years old) 

B27010_050 Uninsured (35-64 years old) 

B27010_066 Uninsured (65+ years old) 

B08301_021 Work from home Capacity to socially distance in early stages of 
pandemic   

C24050_002 Employed by: Agricultural industry 

Industries that are likely to employ essential workers  

C24050_003 Employed by: Construction industry 

C24050_005 Employed by: Wholesale trade  

C24050_007 Employed by: Transportation industry 

C24050_011 Employed by: Education and Healthcare 
industry  

B08126_017 Employed by: Agriculture, Commute: personal 
car 

Mode of transportation for industries employing 
essential workers  

B08126_047 Employed by: Agriculture, Commute: Public 
Transit 

B08126_018 Employed by: Construction, Commute: 
personal car 

B08126_048 Employed by: Construction, Commute: Public 
Transit 

B08126_020 Employed by: Wholesale trade, Commute: 
personal car 

B08126_050 Employed by: Wholesale trade, Commute: 
Public Transit 

B08126_022 Employed by: Transportation, Commute: 
personal car 

B08126_052 Employed by: Transportation, Commute: 
Public Transit 

B08126_026 Employed by: Education/Healthcare, 
Commute: personal car 

B08126_056 Employed by: Education/Healthcare, 
Commute: Public Transit 
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Supplemental Fig. 1 Cumulative infections and COVID mortality per 100,000 by ZCTA as of May 7, 2020 and 

May 23, 2020 respectively.  

 

 
 

 

Supplemental Fig. 2 Race/ethnic composition of ZCTAs that fall within various quantiles of the BWQS 

infection risk index. Race/ethnic data from the 2018 ACS. NYC total demographic breakdown provided as 

reference.  
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Supplemental Table 2: Kendall’s tau correlations for social determinants with per capita cumulative SARS-

CoV-2 infection incidence as of May 7, 2020 by NYC ZCTA.  

 

Variable Correlation  P value  

1/median income 0.317 <0.0001 

Not insured (%) 0.231 <0.0001 

Unemployed (%) 0.296 <0.0001 

1/grocers per 1000 people 0.261 <0.0001 

Essential workers (%) 0.544 <0.0001 

Essential workers commuting via 
public transit (%)  

0.174 0.0001 

Essential workers commuting via 
car (%) 

0.493 <0.0001 

People who do not work from home 
(%) 

0.454 <0.0001 

Population density according to 
housing volume (people per cubic 
foot) 

0.096 0.058 

Average household size (#) 0.467 <0.0001 
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Supplemental Fig. 3 UHF neighborhoods by population-weighted neighborhood infection risk index. Six UHF 

neighborhoods excluded from the subway ridership analysis are indicated by asterisks. Dots represent subway 

stations with available data. UHF neighborhoods are colored as high (above median) or low (below median) BWQS 

infection risk index. 
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Supplemental Fig. 4 Fit of the generalized Weibull equation curve on the citywide mean of UHF-level ridership. 

Outlier on February 15th, a national holiday. Values above 1 indicate above-average ridership per our comparison 

with 2015-2019.   
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