
Brain network motif topography may predict emergence

from disorders of consciousness: a case series
Danielle Nadin1,2†, Catherine Duclos1,3, Yacine Mahdid1,2,
Alexander Rokos1,2, Mohamed Badawy4,5, Justin Létourneau4,5,
Caroline Arbour6,7, Gilles Plourde4,5 and Stefanie Blain-Moraes1,3,*

1Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada;
2Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada; 3School of
Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada; 4Montreal
Neurological Hospital and Institute, McGill University Health Center, Montreal, QC, Canada; 5Department of
Anesthesia, McGill University, Montreal, QC, Canada; 6Centre de recherche, CIUSSS du-Nord-de-l’Île-de-
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Abstract

Neuroimaging methods have improved the accuracy of diagnosis in patients with disorders of consciousness (DOC), but novel,
clinically translatable methods for prognosticating this population are still needed. In this case series, we explored the associa-
tion between topographic and global brain network properties and prognosis in patients with DOC. We recorded high-density
electroencephalograms in three patients with acute or chronic DOC, two of whom also underwent an anesthetic protocol. In
these two cases, we compared functional network motifs, network hubs and power topography (i.e. topographic network prop-
erties), as well as relative power and graph theoretical measures (i.e. global network properties), at baseline, during exposure
to anesthesia and after recovery from anesthesia. We also compared these properties to a group of healthy, conscious controls.
At baseline, the topographic distribution of nodes participating in alpha motifs resembled conscious controls in patients who
later recovered consciousness and high relative power in the delta band was associated with a negative outcome. Strikingly,
the reorganization of network motifs, network hubs and power topography under anesthesia followed by their return to a
baseline patterns upon recovery from anesthesia, was associated with recovery of consciousness. Our findings suggest that to-
pographic network properties measured at the single-electrode level might provide more prognostic information than global
network properties that are averaged across the brain network. In addition, we propose that the brain network’s capacity to re-
organize in response to a perturbation is a precursor to the recovery of consciousness in DOC patients.
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Introduction

Brain injury often leads to loss of consciousness. Individuals
who survive but fail to regain behavioral responsiveness to
pain or external cues are considered to be in a disorder of
consciousness (DOC). Awareness fluctuates greatly in patients
with DOC according to their diagnosis: in unresponsive wake-
fulness syndrome (UWS), individuals exhibit spontaneous eye
opening and reflexive behaviors such as eye blinking and
swallowing, but are not aware of themselves or their environ-
ment (Monti et al. 2010), while those in a minimally conscious
state (MCS) are inconsistently able to respond to commands
and to their environment (Giacino et al. 2002). When diagno-
ses are made based on clinical consensus, over 40% of
patients in MCS are estimated to be misdiagnosed with
UWS—a phenomenon that has been attributed to variations
in behavioral assessment and interpretation (Schnakers et al.
2009; Peterson et al. 2015). Moreover, some patients diagnosed
with UWS have demonstrated awareness through willful
modulation of their brain activity in a functional magnetic
resonance imaging (fMRI) scanner (Owen et al. 2006; Monti
et al. 2010) and during high-density electroencephalography
(EEG) recordings (Cruse et al. 2011). Such neuroimaging
approaches have revealed that even when the best available
behavioral assessment (Coma Recovery Scale—Revised [CRS-
R]) is used, there is still a misdiagnosis rate of approximately
15% (Kondziella et al. 2016). Both the high misdiagnosis rate
of behavioral assessment and the presence of “covert” con-
sciousness in behaviorally unresponsive patients highlight
the need for objective assessment tools. However, as the gold
standard for the assessment of consciousness is self-report
and response to commands, there will always be uncertainty
associated with any new diagnostic test for unresponsive
individuals (Peterson et al. 2015). An alternative approach is
to develop tools for prognostication: since clinical outcomes
can be reliably gathered, prognostic tools have the potential
to achieve higher reliability and accuracy than diagnostic
tools in this population. Such tools can have substantial im-
pact on patient quality of life, influencing treatment and end-
of-life decision-making.

Advances in neuroimaging have improved prognostication
in this patient population beyond what is possible with clini-
cal measures such as age at injury or etiology alone.
Positron-emission tomography (PET) measures of brain glu-
cose metabolism and fMRI measures of functional connectiv-
ity in the default mode and attention networks have
predicted outcomes with accuracies of up to 88% (Stender
et al. 2016; Song et al. 2018). EEG in particular has been exten-
sively explored for prognosis due to its high translational po-
tential. Spectral power ratios (Sitt et al. 2014; Bagnato et al.
2017) and the presence of long-latency event-related poten-
tials (ERPs) have been established as predictors of recovery
from DOC (Wijnen et al. 2007; Faugeras et al. 2011, 2012;
Steppacher et al. 2013). More recently, brain network charac-
teristics have been explored for their prognostic value.
Network features including low functional connectivity in low
frequency bandwidths (Sitt et al. 2014; Bai et al. 2019), and
feedback-dominant frontoparietal connectivity and posterior-
dominant network hubs (Blain-Moraes et al. 2016) have been
associated with favorable outcomes in patients with DOC.
Graph theory analysis of EEG has demonstrated that path
length, participation coefficient, modularity, and clustering of
brain networks are potential prognostic markers (Chennu
et al. 2017; Stefan et al. 2018). Finally, the complexity of the

brain’s EEG response to transcranial magnetic stimulation has
been associated with the degree of recovery from DOC
(Casarotto et al. 2016). While these EEG studies have estab-
lished the enormous potential of this neuroimaging technique
for prognosis in this population, to date, none have achieved
sufficient prognostic accuracy, specificity, and sensitivity to
be clinically useful (�85% for all three metrics), particularly in
UWS patients. There is therefore a need to explore novel EEG
prognostic measures, or refine existing ones, in this
population.

Brain network motifs are recurring connectivity patterns
in a network that are present at numbers significantly higher
than in random networks (Milo et al. 2002). These subgraphs
are thought to be the building blocks of larger networks, with
functional motifs representing communication channels be-
tween nodes (Sporns and Kötter 2004). Motifs may reveal
granular changes in network composition that are associated
with the capacity of a network to sustain consciousness
(Shin et al. 2013; Kafashan et al. 2016), and thus may have
strong prognostic value for DOC patients. Our group has
demonstrated in healthy participants that three-node func-
tional motifs exhibit topographically distinct patterns asso-
ciated with states of anesthetic-induced unconsciousness
(Duclos et al. 2020). We have also demonstrated the feasibility
of using anesthesia to perturb the brain networks of a DOC
patient, allowing us to measure changes in the network that
herald the recovery of consciousness (Blain-Moraes et al.
2016). Driven by these findings, in this study, we investigate
the prognostic potential of three-node functional network
motifs in three DOC patients in an acute or chronic state, two
of whom were exposed to anesthesia. We hypothesize that
patient prognosis is associated with motif topography before,
during and after exposure to anesthesia. Furthermore, we
compared motif topography to other topographic network
properties (network hubs and power topography) and global
network properties (graph theoretical network properties
and relative power). We predict that the spatial information
provided by topographic network properties will be more
predictive of patient outcome compared to global brain net-
work characteristics, which are averaged across nodes in the
network.

Materials and Methods
Participants

A convenience sample of three patients in a DOC following ac-
quired brain injury was recruited from the Montreal
Neurological Hospital and the surrounding Montreal area.
Participants were included if they were between 18 and 80 years
old and were in UWS or MCS, as assessed using the CRS-R by a
trained experimenter (CA). They were excluded if they pre-
sented with elevated intracranial pressure, hepatic or renal fail-
ure, and/or hemodynamic instability, were receiving active
vasopressor therapy, were in a medically induced coma for in-
tracranial hypertension or status epilepticus, had a neurosurgi-
cal intervention in the 72 h prior to the study (due to open-head
injury or intracranial pathology), or had a documented allergy
to propofol. Participants were also excluded for pregnancy, or if
they were deemed medically unsuitable for the study by their
attending physician. Next of kin provided written informed con-
sent for all participants. The study was approved by the McGill
University Health Center Research Ethics Board (15-996-MP-
CUSM).
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Experimental design

We present a series of case studies of three patients in a DOC,
who underwent a high-density EEG recording. Details of each
case are presented in the Results section. Importantly, two
patients were in an acute state (<3 months post-injury), while
one was in a chronic state. We expected that the acute patient
in MCS would exhibit EEG patterns similar to healthy controls
(positive control), whereas the chronic UWS patient would not
(negative control). In the acute UWS patient, we tested the hy-
pothesis that topographic network properties—particularly,
network motifs—were associated with prognosis.

Two of the three patients were also exposed to anesthesia,
as per the anesthetic protocol detailed in Blain-Moraes et al.
(2016). Briefly, high-density EEG was measured at baseline, dur-
ing exposure to anesthesia, and after recovery from anesthesia.
We followed the guidelines of the Canadian Anesthesiologists’
Society in all regards, including pre-anesthetic assessment,
fasting, and monitoring. An Alaris PK Carefusion pump
(Carefusion, Switzerland) was used to administer propofol in a
target-controlled infusion mode using the Marsh kinetic set
(Marsh et al. 1991). The parameters to drive the pump were
based on the age and weight of the patients. The effect site con-
centration was of 2 lg/ml and was held constant for the dura-
tion of the anesthetic exposure (40 min). The patients
maintained adequate spontaneous respiration throughout. The
beginning of the recovery period was defined as the moment
the effect site concentration reached 0.5 lg/ml.

Global and topographic network properties in DOC patients
were compared against nine healthy controls undergoing
anesthetic-induced unconsciousness, induced by propofol and
maintained for 3 h using isoflurane (Maier et al. 2017; Duclos
et al. 2020). Similarly to DOC patients, high-density EEG was
recorded during baseline, anesthesia exposure, and recovery.

Electroencephalographic data acquisition and
preprocessing

EEG signals were collected from the scalp using a 128-channel
electrode net (Electrical Geodesics, Inc., Eugene, OR, USA) refer-
enced to Cz. Data were sampled at 1 kHz, and electrode impe-
dances were kept below 50 kX. Preprocessing was performed in
EEGLAB (Delorme and Makeig 2004). The data were bandpass fil-
tered from 0.1 to 50 Hz, and non-scalp channels were discarded,
leaving 99 channels for subsequent analyses. Noisy channels
were also removed, and the data were re-referenced to an aver-
age reference. When present, eye blinks were removed using
Independent Component Analysis. Five-minute segments of
EEG were extracted during three analysis epochs—baseline, an-
esthesia, and recovery—while patients were presented with au-
ditory stimuli to induce ERPs. (The results of ERP analysis are
not presented in this publication.) Upon visual inspection by a
trained experimenter (DN), noisy segments within each epoch
were removed.

Network construction

Functional networks were constructed using custom MATLAB
scripts (version R2018b). Data were first filtered into the delta
(1–4 Hz), theta (4–8 Hz), or alpha (8–13 Hz) band using a
Butterworth filter. Functional connectivity and directed func-
tional connectivity were calculated across 10-s windows and av-
eraged within each analysis epoch and frequency band to
generate representative connectivity matrices for baseline, an-
esthesia, and recovery periods. Functional connectivity was

calculated using weighted phase lag index (wPLI), and directed
functional connectivity using directed phase-lag index (dPLI)—
measures robust against the effects of volume conduction
(Vinck et al. 2011; Stam and van Straaten 2012).

The wPLI between two channels was computed as:

wPLIij ¼
E IðCijÞ
� �

E IðCijÞ
� � ¼

E I Cij
� �

sgnðIðCijÞÞ
� �

E IðCijÞ
� � ;

where I Cij
� �

is the imaginary part of the cross-spectrum Cij be-
tween signals i and j, and sgn is the signum function. When one
signal leads the other, the wPLI is close to 1, with a value of 1 in-
dicating perfect phase locking between signals. When there is
no phase relationship between the signals, the wPLI is equal to
0.

A Hilbert transform yielded the instantaneous phase time
series for each channel, and the phase difference D/ij between
all pairs of signals i and j was calculated. dPLI was defined as:

dPLIij ¼
1
N

XN

t¼1
HðD/ijÞ;

where N is the length of the analysis segment and t is a
given time point. H is the Heaviside step function, such that
when i leads j, the dPLI is between 0.5 and 1; when j leads i,
the dPLI is between 0 and 0.5; and, when there is no phase
relationship between the signals, the dPLI is equal to 0.5. As
the matrices were symmetrical, they were transformed into
phase-lead matrices. dPLI values below 0.5 (i.e. phase-lag)
were set to zero, and the remainder (i.e. phase-lead) were
normalized between 0 and 1.

The effects of spurious phase relationships in both the
wPLI and dPLI connectivity matrices were controlled through
a surrogate analysis, where signal i remained fixed while the
phase time series of signal j was scrambled, abolishing the
phase relationship between the signals while maintaining
their other (e.g. spectral) properties. wPLI and dPLI values
were compared against a distribution of the means of 20 sur-
rogate analyses and were retained if they were significantly
different (P < 0.05 level). Non-significant connections were set
to 0 (wPLI) or 0.5 (dPLI).

Global network properties

We defined global network properties as network measures
which were averaged across all nodes in the network, resulting
in a single value for each network. The global network proper-
ties examined in this study were relative power, and a set of
graph theoretical network properties.

Relative power analysis
Spectral power in the delta, theta, alpha, and broadband (1–
13 Hz) frequency bands was computed over 10-s windows using
a multi-taper power spectral density estimate (number of tapers
¼ 3, time-bandwidth product ¼ 2, spectrum window size ¼ 3 s)
from the Chronux package (Mitra 2007; Mitra et al. xxxx). Power
was averaged across time windows and all electrodes. Relative
spectral power was equal to the ratio between the average delta,
theta, or alpha power and the average broadband power.

Graph theoretical network properties
In each network, four graph theoretical properties were com-
puted using the Brain Connectivity Toolbox (BCT) (Rubinov and
Sporns 2010): (i) Global efficiency - the inverse of the average
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path length ( 1
Lw

), where Lw is the average shortest path length be-
tween all pairs of nodes in the network (Latora and Marchiori
2001). A high global efficiency reflects a more integrated net-
work, where nodes across the network are connected using
short paths. (ii) Clustering coefficient (Cw)—the ratio between
the number of connections between a node’s neighbors, and the
number of possible connections these neighbors could make,
averaged across all nodes (Watts and Strogatz 1998). A high
clustering coefficient indicates a more segregated network with
high local efficiency, where nodes tend to cluster together. (iii)
Modularity—the sum of the strength of connections within a
module, where modules are computed using Louvain’s algo-
rithm (Rubinov and Sporns 2010). High modularity indicates a
more segregated network, with strong within-module connec-
tions and weak between-module connections (Newman 2006).
(iv) Binary small-worldness—the ratio between the clustering
coefficient and the average path length (Cw

Lw
). This measure

reflects both the segregation and integration required in an effi-
cient network (Watts and Strogatz 1998).

Prior to computing these properties, networks constructed
using wPLI (see Network construction section) were binarized
by thresholding them at the top n% of connectivity values. To
determine the optimal threshold n for each participant, custom
MATLAB scripts were used to explore thresholds ranging from
1% to 90%. Specifically, for each participant’s baseline network,
n was decreased from 90% in steps of 1% until at least one node
became disconnected from the rest of the graph. Disconnection
was assessed using path length; when disconnected, nodes had
an infinite path length. The smallest n that did not result in
node disconnection was selected for each participant (n’s
ranged from 13 to 59 for healthy controls and from 33 to 48 for
DOC patients). This procedure resulted in networks which had a
minimal number of connections but no isolated nodes (Kim
et al. 2018), corresponding to what we would expect in a human
brain network with no isolated brain regions and an economical
number of connections. When connectivity values fell above
the selected optimal threshold, connections were set to 1, while
all others were set to 0.

Network properties for baseline, anesthesia and recovery
epochs were calculated by averaging the properties across 10-s
windows within each epoch. To account for spurious measure-
ments, 10 random binary networks where the degree distribu-
tion of connections was fixed, but the connections were
randomized, were computed. Connections were randomly
rewired 10 times while preserving node degree (Maslov and
Sneppen 2002). Global efficiency and clustering coefficient were
normalized by taking the ratio between the properties of the
original network and the properties of the average random
network.

Topographic network properties

We defined topographic network properties as measures that
were computed at the single-node level and visualized on a to-
pographic head map. Topographic maps were plotted using
EEGLAB’s topoplot function (Delorme and Makeig 2004).

Power analysis
As described previously, spectral power in the delta, theta, and
alpha frequency bands was computed using the multi-taper
method (see Relative power analysis section). Power topography
was mapped as the power at each node relative to all the other
nodes in its network. Specifically, the z-score for each node was

calculated using the mean and standard deviation of power
across all nodes in the network.

Hub analysis
From the binarized wPLI networks (see Graph theoretical net-
work properties section), the degree of each node in each net-
work was calculated to assess the location of high-degree
network hubs, using the BCT. The topographic distribution of
hubs was mapped as the degree of each node relative to all the
other nodes in its network. Specifically, the z-score for each
node was calculated using the mean and standard deviation of
the degrees of all nodes in the network. For clarity, hub topo-
graphic maps were visualized using wPLI matrices binarized at
the top 5% of connections.

Motif analysis
While motifs can theoretically be calculated for any number of
nodes in a network, the exponentially increasing computational
cost—and reduction in clinical translatability—associated with
higher numbers of nodes were motivators to focus this analysis
on three-node motifs. Of the 13 possible three-node motifs, only
five (ID ¼ 1, 2, 3, 5, 7) can be constructed based on the unidirec-
tional connectivity between nodes as calculated by dPLI (Fig. 1).

Motifs were computed on the dPLI networks (see Network
construction section) using custom MATLAB scripts and the
BCT. The motif topography for each analysis epoch was calcu-
lated based on motif frequency—the number of times a given
node in the network participated in a given motif with any other
node in the network. Spurious connectivity was accounted for
by comparing the sum of motif frequencies across all nodes in
each network against 100 surrogate networks using a z-score.
Surrogate networks were generated by randomly shuffling con-
nections while preserving the degree and weight distributions
of each node in the network. When the sum of motif

Figure 1. Three-node unidirectional network motifs explored during
motif analysis. Only unidirectional motifs can be computed using
the directed phase-lag index (dPLI) and are surrounded by boxes.
Circles indicate nodes in the network and arrows represent func-
tional relationships between nodes.
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frequencies was non-significant (P > 0:05), the frequency for all
nodes in that network was set to zero.

The topographic distribution of each motif was mapped as
the motif frequency at each node relative all the other nodes in
its network. Specifically, the z-score for each node was calcu-
lated using the mean and standard deviation of the motif fre-
quencies across all nodes in the network.

Comparison of electroencephalographic measures
across states of anesthesia exposure and against
conscious controls

Comparison across states of anesthesia exposure
Within each subject, topographic network properties across
baseline, anesthesia, and recovery were compared using cosine
similarity (s):

s ¼ b1 � b2

b1j jj j b2j jj j ;

where b1 and b2 are the z-scores corresponding to motif fre-
quency, node degree or power for states 1 and 2. Cosine similar-
ity ranges between �1 and 1, with 1 indicating identical and �1
indicating completely opposite topographic distributions. A
value of 0 indicates orthogonality or decorrelation.

Comparison against conscious controls
For topographic properties, cosine similarity was used to com-
pare motif, hub, and power topographies between DOC patients
and each healthy control. The median cosine similarity value
was used as a representative quantitative measure of the com-
parison between each patient and the group of controls.

For global properties, DOC patients’ properties were plotted
relative to the distribution of properties for the control popula-
tion. This allowed us to estimate whether DOC patients were
outliers (greater or less than the median 61.57 times the inter-
quartile range), and whether changes in global network proper-
ties across baseline, anesthesia, and recovery were similar
between patients and controls.

Results

The ability of topographic and global network properties to dis-
tinguish between consciousness and anesthetic-induced un-
consciousness was first validated in the healthy control dataset.
Then, for each DOC patient, a case report, followed by the
results of each analysis is presented. A summary of patients’
demographic and clinical data is shown in Table 1. For clarity,
results for the alpha band are presented in the main body of the
article, while results for the theta and delta bands are presented
in the Supplementary material.

Validation of analysis techniques in conscious controls

Topographic network properties
Motif analysis. Motifs 1, 2, and 7 were present at frequencies sta-
tistically higher than in random networks across participants.
On average, in the alpha band, motif 1 was centrally dominant
during consciousness and shifted posteriorly during uncon-
sciousness, while motif 7 demonstrated the reverse pattern (i.e.
posterior-dominant during consciousness, both posterior- and
anterior-dominant during unconsciousness) (Fig. 2A). These vi-
sual changes were reflected by a decrease in cosine similarity
during anesthesia, and an increase post-anesthesia (Fig. 2B).
Motifs in the theta band exhibited similar patterns
(Supplementary Fig. 1A), while motifs in the delta band did not
clearly reorganize across states (Supplementary Fig. 2A). Motif 2
did not reflect changes in states of consciousness, and therefore
was not discussed in this paper.

Hub analysis. Network hubs underwent topographic shifts as-
sociated with states of consciousness. On average, alpha hubs
were posterior-dominant during consciousness, and anterior-
dominant during unconsciousness (Fig. 2C). Visually observed
changes were captured by cosine similarity (Fig. 2D). Theta hubs
exhibited similar patterns (Supplementary Fig. 1B), while delta
hubs exhibited the opposite pattern (i.e. anterior-dominant dur-
ing consciousness and posterior-dominant during unconscious-
ness) (Supplementary Fig. 2B).

Power analysis. Alpha power topography distinguished be-
tween states of consciousness. On average, alpha power was
concentrated posteriorly during consciousness and shifted an-
teriorly under anesthesia (Fig. 2E). These changes were captured
by cosine similarity (Fig. 2F). In the theta band, power was con-
centrated anteriorly at baseline, and was suppressed under an-
esthesia (Supplementary Fig. 1C). There were no anesthetic-
induced topographical shifts in power in the delta band
(Supplementary Fig. 2C).

Global network properties
Graph theoretical network properties. In the alpha band, there was
an increase in clustering coefficient, binary small worldness
and modularity during anesthesia, and no change in global effi-
ciency (Fig. 6A, blue boxes).

Relative power analysis. During anesthesia, there was a de-
crease in relative alpha power, as well as an increase in relative
theta and delta power (Fig. 6B, blue boxes).

Case 1: Motif patterns in minimally conscious state are
similar to healthy controls

Case report
A 35-year-old female presented with a ponto-mesencephalic in-
tracerebral hemorrhage due to a ruptured arteriovenous malfor-
mation (AVM). After an initial partial recovery (with complete
return of her level of consciousness), she went to a

Table 1. Demographic and clinical data of patients

Case Age Sex Etiology Time post-injury State Clinical diagnosis CRS-R score

Auditory Visual Motor Oromotor Communication Arousal Total

1 35 F Stroke 53 days Acute MCS 2 3a 4a 1 0 2 12
2 50 F Stroke 25 days Acute UWS 1 1 1 0 0 0 3
3 24 M Anoxia 8 years 6 months Chronic UWS 1 0 2 1 0 1 5

aDenotes MCS.
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rehabilitation center where, 5 months later, she experienced a
second intraparenchymal hemorrhage in the pons and mid-
brain, extending to the fourth ventricle, complicated by seizures
and hydrocephalus. Once more, she regained consciousness fol-
lowing this second hemorrhage and underwent a surgical resec-
tion of her AVM eighteen days after the second ictus. During the
operation, she suffered from a hemorrhage in the fourth ventri-
cle and in the pontine surgical cavity. Post-operatively, she de-
veloped obstructive hydrocephalus which was treated with
extraventricular drainage. However, she failed to regain normal
consciousness during the weeks that followed. She was
recruited to the study 53 days post-operation, when she was in
MCS (CRS-R¼ 12, Table 1). This patient was excluded from the
anesthetic protocol as she was persistently febrile. Two weeks
after data collection, she began obeying commands with her
right foot and left arm. Upon discharge, 5 months and 23 days
after data collection, the patient was behaviorally responsive
and communicative (CRS-R¼ 23).

Topographic network properties
Motif analysis. The participant’s alpha motifs had similar topo-
graphic patterns to conscious controls (Fig. 3A). As they were

close to emergence (CRS-R¼ 12), this was expected and may
suggest that their brain network had the capacity to sustain
consciousness. Motif 1 was concentrated in central brain
regions (s1 ¼ 0.530); motif 7 was spread across peripheral elec-
trodes (s7 ¼ 0.476). Motifs in the theta (Supplementary Fig. 3A)
and delta bands (Supplementary Fig. 4A) were also similar to
conscious controls.

Hub analysis. Alpha network hubs were dissimilar to con-
scious controls (s ¼0.157) (Fig. 3B), as were hubs in the theta
(Supplementary Fig. 3B) and delta bands (Supplementary Fig.
4B).

Power analysis. At baseline, alpha power topography did not
resemble the distribution for conscious controls (s ¼ �0.281)
(Fig. 3C). Neither did theta (Supplementary Fig. 3C) or delta
(Supplementary Fig. 4C) power topography.

Global network properties
Graph theoretical network properties. At baseline, in the alpha
band, global efficiency was within the range of conscious con-
trols, while clustering coefficient, binary small-worldness, and
modularity were all elevated relative to conscious controls
(Fig. 6A, red circles). Graph theoretical properties in the theta

Figure 2. Topographic network properties in the alpha band distinguish between consciousness and anesthetic-induced unconsciousness in
healthy controls; adapted from Duclos et al. (2020). In a cohort of nine healthy controls, the average topographies of alpha motif frequency,
node degree, and power undergo anterior–posterior shifts across stages of anesthetic-induced unconsciousness. Topographic maps represent
z-scores comparing motif frequency (A), node degree (C), and power (E) of each electrode to the distribution across all electrodes. Cosine simi-
larity to baseline quantitatively reflects these shifts (B, D, and F, respectively). M1, motif 1; M7, motif 7.
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(Supplementary Fig. 9, red circles) and delta band
(Supplementary Fig. 10, red circles) were either lower than or
within the range of conscious controls.

Relative power analysis. Relative power in the delta band was
within the range of conscious controls, while relative theta
power was higher and relative alpha power was lower than in
conscious controls (Fig. 6B, red circles).

Case 2: Motif, hub, and power topographic
reorganization in unresponsive wakefulness syndrome
is similar to healthy controls and predicts recovery of
consciousness

Case report
A 50-year-old female presented with a high-grade subarachnoid
hemorrhage (Fisher Grade IV, World Federation of Neurosurgeons
(WFNS) Grade V, with a right frontotemporal intraparenchymal

hematoma) secondary to a ruptured right middle cerebral artery
(MCA) aneurysm. She was behaviorally unresponsive upon admis-
sion (GCS ¼ 3). The patient underwent a decompressive craniec-
tomy and clot evacuation as well as the insertion of an
extraventricular drain on the day of admission. She did not regain
consciousness after this first surgery. Two days later, she under-
went a second operation for clipping of her right MCA aneurysm.
She did not regain normal consciousness during the 4 weeks that
followed. At the time of data collection, 25 days post-injury, the pa-
tient was behaviorally unresponsive and in UWS (CRS-R¼ 3,
Table 1). It is important to note that the right bone flap of the pa-
tient was resected prior to data collection. As the electrode net
lacked tension on this side of the skull, their brain networks’ topo-
graphic patterns were skewed. Three months and seven days fol-
lowing data collection, the patient recovered behavioral
responsiveness, and was able to spontaneously open her eyes,
obey commands, and produce slow but oriented speech (GCS¼ 15).

Topographic network properties
Motif analysis. At baseline, this participant’s alpha motif topog-
raphy was similar to conscious controls, although skewed
(s1 ¼0.404, s7 ¼0.528) (Fig. 4A). Strikingly, nodes participating in
motifs 1 and 7 reorganized during exposure to anesthesia
(Fig. 4A and B). While the topographic distribution of motifs in
the anesthetized state only has a weak similarity to anesthetic-
induced unconsciousness in healthy controls (i.e. not posteri-
orly or anteriorly dominant) the patient’s brain network adap-
tively reconfigured in response to propofol and the topographic
patterns returned to their baseline state upon cessation of the
anesthetic, perhaps suggesting that the patient was either con-
scious or had the capacity for consciousness at the time of data
collection. In the theta band, motif topographies are dissimilar
to conscious controls at baseline but undergo similar topo-
graphic reorganization during anesthesia (Supplementary Fig.
5A). Motifs in the delta band are similar to conscious controls
but did not undergo clear reorganization during anesthesia
(Supplementary Fig. 6A).

Hub analysis. Alpha network hubs were dissimilar to con-
scious controls at baseline (s ¼ �0.051) (Fig. 4C) but reorganized
under anesthesia in a similar manner as healthy individuals
(i.e. posterior-to-anterior shift) (Fig. 4C and D). This may once
again be suggestive of consciousness or the capacity of the brain
network to sustain consciousness. Theta (Supplementary Fig.
5B) and delta hubs (Supplementary Fig. 6B) also underwent to-
pographic reorganization under anesthesia.

Power analysis. At baseline, alpha power topography did not
resemble the distribution for conscious controls (s ¼ 0.317)
(Fig. 4E) but reorganized under anesthesia (posterior-to-ante-
rior) (Fig. 4E and F). Neither theta (Supplementary Fig. 5C) or
delta (Supplementary Fig. 6C) power topography shifted under
anesthesia.

Global network properties
Graph theoretical network properties. In the alpha band, all global
network properties were similar to conscious controls (Fig. 6A,
orange circles). While these properties changed across baseline,
anesthesia, and recovery, they did not shift in an expected pat-
tern. This was also the case in the theta (Supplementary Fig. 9,
orange circles) and the delta bands (Supplementary Fig. 10, or-
ange circles).

Relative power analysis. Relative power in the delta band was
within the range of conscious controls, while relative theta
power was higher and relative alpha power was lower than in
conscious controls (Fig. 6B, orange circles).

Figure 3. Alpha network motif topographies resemble those of healthy
controls in an individual who emerged from minimally conscious
state. Topography of alpha motif frequency, but not of node degree
or power, are similar to those of healthy controls at baseline.
Topographic maps represent z-scores comparing motif frequency
(A), node degree (B), and power (C) of each electrode to the distribu-
tion across all electrodes. Rings surrounding the topographic maps
represent the median cosine similarity to conscious controls; a more
complete ring corresponds to higher similarity, the value of which is
also indicated to the right of each topographic map. M1, motif 1; M7,
motif 7.
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Case 3: Motif, hub, and power topographies in persistent
unresponsive wakefulness syndrome are dissimilar to
healthy controls

Case report
A 24-year-old male suffered from an anoxic brain injury 8 years
prior to this study, following cardiac arrest caused by commotio
cordis resulting from a blow to the precordial region, leaving the
patient without vital signs for �30 min. He did not recover nor-
mal consciousness following this injury. At the time of data col-
lection, the patient was diagnosed with UWS (CRS-R¼ 5,
Table 1). At the time of publication, this patient remains in
UWS.

Topographic network properties
Motif analysis. At baseline, motif topographies were dissimilar to
conscious controls (s1 ¼ 0.211, s7 ¼ 0.451). Motif 1 was spatially
dispersed, while motif 7 exhibited the opposite polarity of topo-
graphic distribution that we would expect based on observa-
tions in healthy controls (i.e. motif 7 was anteriorly instead of
posteriorly dominant) (Fig. 5A). This was expected as the

participant was in a chronic UWS state and might suggest that
the inability of the brain network to sustain consciousness is
reflected by its motif characteristics. The topographic organiza-
tion of motifs 1 and 7 shifted in response to anesthesia but
failed to return to baseline state post-anesthesia (Fig. 5A and B).
Contrary to what we would expect in a healthy individual, high-
frequency nodes seemed to become more polarized towards an-
terior brain regions for motif 1, and posterior brain regions for
motif 7. At recovery, node participation in motif 1 regained a
disorganized pattern, while motif 7 became insignificant. There
were no clear patterns in motif topography or reorganization in
the theta (Supplementary Fig. 7A) and delta bands
(Supplementary Fig. 8A); motifs at these frequencies were often
non-significant.

Hub analysis. Alpha network hubs did not resemble con-
scious controls at baseline ðs ¼ 0.101) (Fig. 5C) or return to base-
line state post-anesthesia (Fig. 5C-D). This may further
emphasize that the inability of the brain network to sustain
consciousness is associated with topographic network proper-
ties. There were no clear patterns in hub topography or reorga-
nization in the theta band (Supplementary Fig. 7B), although

Figure 4. Alpha network motif, hub, and power topographic reorganization under anesthesia in a patient who emerged from unresponsive
wakefulness syndrome. Topography of alpha motif frequency, but not of node degree or power, are similar to those of healthy controls at base-
line. Motif, node degree, and power distributions undergo topographic reorganization under anesthesia, similar to healthy controls.
Topographic maps represent z-scores comparing motif frequency (A), node degree (C), and power (E) of each electrode to the distribution
across all electrodes. Rings surrounding the topographic maps represent the median cosine similarity to conscious controls; a more complete
ring corresponds to higher similarity, the value of which is also indicated to the right of each topographic map. Cosine similarity to the partici-
pant’s own baseline quantitatively reflects these shifts (B, D, and F, respectively). M1, motif 1; M7, motif 7.
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hubs did undergo anesthetic-induced topographic reorganiza-
tion in the delta band (Supplementary Fig. 8B).

Power analysis. At baseline, alpha power topography did not
resemble the distribution for conscious controls (s ¼ �0.343)
(Fig. 4E) and did not reorganize under anesthesia (Fig. 4E and F).
Neither theta (Supplementary Fig. 7C) nor delta (Supplementary
Fig. 8C) power topography shifted under anesthesia.

Global network properties
Graph theoretical network properties. At baseline, in the alpha
band, global efficiency was within the range of conscious con-
trols, while clustering coefficient, binary small worldness and
modularity were all elevated relative to conscious controls
(Fig. 6a, blue diamonds). While these properties changed across
baseline, anesthesia, and recovery, they did not shift in an
expected pattern. This was also the case in the theta
(Supplementary Fig. 9, blue diamonds) and the delta bands
(Supplementary Fig. 10, blue diamonds).

Relative power analysis. Relative power in the theta band was
within the range of conscious controls, while relative delta

power was higher and relative alpha power was lower than in
conscious controls (Fig. 6B, blue diamonds). Importantly, this
patient, who did not recover consciousness, was the only one
with elevated delta power relative to conscious controls.

Discussion

In this study, we provide preliminary evidence, through a series
of three DOC cases, that network motifs may be associated with
prognosis in this patient population. Further, we compared net-
work motifs to other established topographic and global net-
work properties. In the cases presented here, topographic
network properties appear to have more prognostic value than
global network properties, bringing to light issues that may
arise during whole-brain averaging of brain network properties
in brain-injured populations. Our findings suggest that network
motifs are a promising addition to the existing repertoire of
prognostic EEG measures and demonstrate that the perturba-
tion of resting state brain networks using anesthesia can further
inform prognosis.

Figure 5. Alpha network motif, hub and power topographies are spatially incoherent in an individual with persistent unresponsive wakefulness
syndrome. Topography of alpha motif frequency, node degree and power are dissimilar to healthy controls at baseline. Under anesthesia, dis-
tributions either did not reorganize, or did not follow the pattern expected based on observations in healthy controls. Topographic maps repre-
sent z-scores comparing motif frequency (A), node degree (C), and power (E) of each electrode to the distribution across all electrodes. Rings
surrounding the topographic maps represent the median cosine similarity to conscious controls; a more complete ring corresponds to higher
similarity, the value of which is also indicated to the right of each topographic map. Cosine similarity to the participant’s own baseline quanti-
tatively reflects the failure of topographic patterns to reorganize in a clear pattern (B, D, and F, respectively). M1, motif 1; M7, motif 7.
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Figure 6. Comparison of alpha global network properties between conscious controls and individuals with disorders of consciousness. Graph
theoretical network properties were not associated with prognosis (A), but relative power in the delta band (B) was elevated relative to con-
scious controls in the patient who did not recover consciousness. Boxes represent the interquartile range of the values for conscious controls,
with the median indicated by a horizontal line. The whiskers extend to the minimal and maximal values which are not outliers, while outliers,
defined as values greater than the median 6 1.57 times the interquartile range, are represented by crosses. Values for disorders of conscious-
ness patients who recovered behavioral responsiveness are represented by circles, while the values for the patient who remained in unrespon-
sive wakefulness syndrome are represented by a diamond. CTRL, conscious controls; P, patient.
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Brain network motifs show promise as a novel
prognostic measure in disorders of consciousness

In the three presented cases, the topographic distribution of
three-node functional motifs resembles conscious controls at
baseline in patients who later emerged from their DOC. In these
cases, nodes participating in motif 1 were concentrated over
central brain regions, while those participating in motif 7 were
localized over lateral brain regions. Importantly, in a patient
who later recovered consciousness, motif topography reconfig-
ured under anesthesia and returned to baseline topography
post-anesthesia. This was not the case in the patient in persis-
tent UWS who underwent the same anesthetic protocol.

This is the first study to explore network motifs as prognos-
tic markers in DOC patients. Previously, the emergence and sup-
pression of motifs across states of anesthetic-induced
unconsciousness have been observed using EEG (Shin et al.
2013) and fMRI (Kafashan et al. 2016) in healthy individuals. We
build upon this emerging field of study through our use of high-
density EEG, which provides greater spatial resolution, and by
applying this method in a novel clinical context.

While the neural mechanisms underlying motif topography
remain unclear, the specific configuration of motifs 1 and 7
informs hypotheses regarding their role in the brain. Motif 1,
which consists of two nodes which converge on an apical node,
has been associated with balancing between-module integra-
tion and segregation (Sporns and Kötter 2004). In particular, the
apical node is thought to integrate information as part of the
“rich club,” a core network of highly connected hubs (Gollo et al.
2015). Motif 7 forms a closed loop and has been implicated in
fast, within-module integration, particularly in peripheral sen-
sory brain regions (Gollo et al. 2015). Interestingly, nodes partici-
pating in motif 7 in both controls and DOC patients are located
over peripheral brain regions, and their topography is compli-
mentary to that of motif 1, supporting this theory. In the context
of persistent UWS, we observed a disruption of nodes partici-
pating in motifs 1 and 7. This may be driven by a breakdown in
between- and within-module integration, which has been asso-
ciated with reduced consciousness (Tononi 2004; Dehaene and
Changeux 2011). In UWS, reduced thalamocortical integration,
mediated by cortical, thalamic, or fiber damage, is believed to
underly negative behavioral outcomes (Rosanova et al. 2012)
and global network integration is thought to shift in favor of lo-
cal, segregated information processing (Rizkallah et al. 2019).

Our results demonstrate that motif reorganization is not as-
sociated with anterior–posterior shifts in alpha power across
states of consciousness. The anteriorization of alpha power has
traditionally been considered a marker of anesthetic-induced
unconsciousness (Tinker et al. 1977; John et al. 2001). While this
phenomenon can be observed in Case 2, the reorganization of
network motifs in this participant do not exhibit patterns of
change that are associated with the topographic shift in alpha
power. Case 3 provides further evidence of the dissociation be-
tween alpha power and motifs, as alpha power remains anterior
across all three states, while the motif topography reorganizes.
Our results also demonstrate that motif reorganization is not
associated with shifts in network hub location. Previous studies
have shown that posterior hub locations are associated with
states of consciousness, and anterior hub locations with states
of unconsciousness (Lee et al. 2013; Blain-Moraes et al. 2016). In
both Cases 2 and 3, the shift in the topographic distribution of
network node degree are not paralleled by the topographic shift
in motif 1 or 7. While these results do not provide an explana-
tion of the motif’s underlying neural mechanism, they

demonstrate the added value of this granular network analysis
above and beyond these more traditional markers of levels of
consciousness. Motif topography in Cases 1 and 2 was more
similar to conscious controls at baseline than alpha and hub to-
pography, further suggesting the added value of motif analysis.

Topographic network properties may be more strongly
associated with recovery from disorders of
consciousness than global network properties

Global network properties, which are averaged across nodes in
the network, were not strongly associated with prognosis. At
baseline and across states of anesthesia none of the graph theo-
retical network properties in any of the frequency bands consis-
tently predicted recovery of behavioral responsiveness. This is
in contrast to studies demonstrating that clustering and path
length in the alpha band (Stefan et al. 2018), as well as clustering
and modularity in the delta band (Chennu et al. 2017) predicted
outcomes in large cohorts of DOC patients. In terms of relative
power, the patient who did not recover exhibited elevated rela-
tive power in the delta band as compared to conscious controls.
This is in line with several studies that have associated high
delta power with negative outcomes (Sitt et al. 2014; Bagnato
et al. 2017; Golkowski et al. 2017; Stefan et al. 2018). On the other
hand, topographic network properties were consistently associ-
ated with behavioral outcomes. In patients who eventually re-
covered consciousness, we observed that nodes participating in
functional motifs, high-degree nodes and nodes with high alpha
power were organized in distinct patterns that reconfigured un-
der anesthesia and returned to their baseline state post-
anesthesia. We replicated the finding that alpha network hub
and power location shifts under anesthesia, predicting behav-
ioral outcome in patients who will eventually recover con-
sciousness (Blain-Moraes et al. 2016).

Interestingly, unlike global network properties, the informa-
tion provided by topographic network properties had prognostic
value despite the heterogeneity of types of brain injury in our
sample. While global network properties provide an overall rep-
resentation of network functioning, our results suggest that
valuable information may be lost during spatial averaging of
network properties. Motifs capture region-specific changes in
brain functioning and thus have the potential to be more
attuned to granular network changes that affect the capacity for
consciousness. This is especially promising in DOC patients,
where the heterogeneity of pathological brain networks across
individuals calls for analysis techniques that are sensitive to
changes in the building blocks of a network.

The capacity of brain networks to reorganize post-
perturbation may predict the recovery of consciousness

Topographic network properties provided additional prognostic
information when measured in the context of anesthesia. We
observed anterior–posterior shifts in network motif participa-
tion, hubs and power that were predictive of a patient’s recov-
ery from UWS. In the case of network hubs and power
topography, perturbing the brain using anesthesia was particu-
larly informative, as, on their own, similarity of hub and power
topographies to controls at baseline was not predictive of pa-
tient outcome. Although this lack of prognostic ability at base-
line may have been a result of the cortical lesions distorting
DOC patients’ brain network organization, this observation
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nevertheless highlights the prognostic value of applying a per-
turbation to patients’ brain networks.

One of the greatest challenges in DOC diagnosis and progno-
sis is the absence of a gold standard by which to validate novel
assessment tools (Demertzi et al. 2017). In the absence of self-
reported levels of consciousness, DOC patients are often com-
pared to healthy controls. As we have demonstrated in this case
series, baseline comparison to controls is not always sufficient
for detecting patients who will recover consciousness (as was
the case for network hubs and power topography in the cases
presented here). The perturbation of DOC brain networks using
anesthesia allows for the within-subject comparison of patients
to their own baseline. In this way, we control for the heteroge-
neity of etiology and chronicity of brain injury, which influences
between-group comparisons.

The concept of perturbing the brain with an external stimu-
lus and measuring its capacity to adapt to that perturbation in
the context of DOC is not new. In particular, transcranial mag-
netic stimulation has been investigated as one such perturba-
tion. The speed and spatial distribution (Rosanova et al. 2012), as
well as the complexity of the brain’s response to this type of
stimulation (Casali et al. 2013; Casarotto et al. 2016) have shown
promise as diagnostic and prognostic markers, achieving prog-
nostic accuracy of up to 81%. Further, right before recovery of
consciousness in healthy controls undergoing anesthetic-
induced unconsciousness, brain networks meet the conditions
required for rapid reconfiguration and synchronization (Kim
et al. 2016). In a similar vein, higher levels of consciousness have
been associated with a higher probability of transitioning be-
tween patterns of connectivity measured using fMRI, whereas
the brain networks of UWS patients showing no signs of covert
consciousness tend to remain in a static pattern (Demertzi et al.
2019). These findings are strongly supported by our study, as
evidenced by the brain network of a patient who remained in
UWS, which did not respond in an ordered way to anesthetic
perturbation. Here, we add to the growing body of evidence sug-
gesting that the brain’s ability to reorganize following a pertur-
bation and to transition between states are precursors to
emergence from disordered states of consciousness.

Topographic network analysis strikes a balance
between the predictive power of neuroimaging and the
need for clinical translatability

We found that clinical measures do not always predict recovery
of behavioral responsiveness. It has been established that DOC
patients who are older at the time of injury, who experience an
anoxic brain injury, who are further from the date of injury, and
who are diagnosed as UWS or have low CRS-R scores are less
likely to recover consciousness (Chennu et al. 2017; Song et al.
2018). Consistent with these findings, in the cases presented
here, the individual in UWS who did not recover was the only
case of anoxic brain injury and the most chronic DOC patient at
over 8 years post-injury. Clinically, this patient was therefore
the most unlikely to recover consciousness and it is worth noth-
ing that topographic network properties reaffirmed this. Our
study provides further evidence that measures usually obtained
in the clinic are important but insufficient to establish a definite
prognosis and could be supplemented with neuroimaging
assessments.

While, as previously discussed, PET and fMRI imaging
achieve high prognostic accuracy, these techniques are not al-
ways amenable to clinical implementation. Both neuroimaging
methods pose a financial barrier, are unsafe or distorted in the

presence of metallic implants, and are highly susceptible to
movement artifacts, which may result from the involuntary
movements of DOC patients. Studies on DOC prognosis based
on motor imagery in fMRI have labeled up to 17% of data as
unusable due to excessive motion artifacts (Cruse et al. 2011;
Monti et al. 2010). Patients are often sedated using propofol to
reduce movement during MRI but, as we and others have
shown, anesthesia is known to impact functional connectivity
(Demertzi et al. 2017; Kirsch et al. 2017). With this study, we dem-
onstrate once more that EEG—through its cost efficiency, porta-
bility and limited contraindications—is an attractive middle-
ground between strictly clinical assessment and PET or fMRI
imaging.

Limitations and future directions

In this study, we presented a series of three exploratory DOC
cases to demonstrate the feasibility and prognostic potential of
motif analysis in this population, as well as the potential
advantages of topographic versus global network analysis and
within-subject comparisons. Our findings are preliminary and
will need to be validated in a larger cohort of patients with di-
verse behavioral and demographic profiles, types of brain in-
jury and chronicity of injury. For instance, the third patient
presented was the most clinically unlikely to recover due to the
chronicity and mechanism of their brain injury. Our results
confirm the poor prognosis, demonstrating the validity of motif
analysis in this case, but do not add any additional information
beyond what can be discerned from the clinical profile. In addi-
tion, results were influenced by a missing bone flap in one pa-
tient; similarly, differences in brain lesions in our patient
population may have skewed topographic maps. Future studies
might employ source-localized EEG to evaluate functional con-
nectivity between specific brain regions, mapped onto the indi-
vidual brain anatomy of patients, in order to infer the neural
mechanisms underlying the observed topographic reorganiza-
tion and to account for heterogeneity of brain lesions.
Furthermore, connectivity measures other than dPLI, such as
symbolic transfer entropy (Staniek and Lehnertz 2008), could
be used to measure bi-directional motifs, which were excluded
from our analyses. Finally, limitations in our experimental de-
sign must be considered. DOC patients were subjected to a brief
anesthetic protocol (40 min) using propofol, while healthy con-
trols underwent propofol induction, followed by 3 h of isoflur-
ane maintenance. Nevertheless, despite differences in the
duration and type of anesthesia, patterns of topographic reor-
ganization in motifs, hubs, and power are similar between
groups.

Conclusion

In a series of three exploratory DOC cases, we found that topo-
graphic, but not global, brain network properties measured us-
ing high-density EEG were associated with prognosis. We
showed that functional network motifs, network hubs and al-
pha power topography—and their topographical reorganization
during anesthesia—may be associated with DOC patient out-
comes. We propose that topographic network properties mea-
sured at the nodal level might be used to complement clinical
and whole-brain global measures for the prognostication of
DOC patients. In addition, our findings demonstrate that the
brain’s capacity to adapt to a perturbation like anesthesia may
be predictive of recovery from DOC.
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