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Abstract

Background: Strongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed
countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology
of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique
opportunities to rapidly address these questions.

Principal Findings: Here we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing
coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous
sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/
or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S.
ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic
proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new
pipeline which included non-classical secretory proteins. Potential drug targets were also identified.

Conclusions: Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and
metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel
methods of intervention against this neglected parasite.
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Introduction

Strongyloidiasis caused by Strongyloides stercoralis is a soil-

transmitted helminthiasis distributed worldwide, affecting more

than 100 million people, with endemic areas in Southeast Asia,

Latin America, sub-Saharan Africa, and parts of the southeastern

United States [1,2]. Recently, it was classified as one of the most

neglected tropical diseases (NTD) [3]. Chronic infections in

endemic areas may be maintained asymptomatically for decades

through the autoinfective cycle with the filariform larvae L3

[1][4,5]. The diagnosis of these chronic infections requires more

sensitive diagnostic methods, particularly in low-level infections

and immunocompromised patients [1].

Epidemiological studies in developed countries have identified

endemic areas where misdiagnosis, inadequate treatment and the

facilitation of hyperinfection syndrome by immunosupression (i.e.

by the administration of steroids) are too frequent and can cause a

high mortality rate ranging from 15 to 87% [5,6]. Among these

areas, an endemic area with chronic patients have been described

at the Valencian Mediterranean coastal region of Spain related to

environmental conditions [7].

The diagnosis of strongyloidiasis is suspected when clinical signs

and symptoms, or eosinophilia is observed [8], but current

definitive diagnosis of strongyloidiasis is usually made on the basis

of detection of larvae in agar plate coproculture and serological

diagnosis by ELISA [9,10]. Those methods have the drawbacks of
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being time consuming and requiring expertise in the first case, and

of low specificity due to remaining antibodies from previous

infection or cross-reactive antibodies [11]. A recent paper has

described a promising coproantigen ELISA based on a polyclonal

rabbit antiserum raised against excretory/secretory (ES) antigens

from the closely relative Strongyloides ratti [12], but the identification

of S. stercoralis specific ES proteins that could be new potential

targets for diagnosis is still required.

Control of strongyloidiasis has relied mostly on the treatment of

infected individuals with only three anthelmintic drugs: thiaben-

dazole (no longer available), albendazole, and more recently

ivermectin [3,13]. A recent study by Suputtamongkol et al. (2011)

has confirmed that both a single and double dose of oral

ivermectin are more effective than a 7-day course of high dose

albendazole for patients with chronic infection due to S. stercoralis

[14]. The risk of developing genetic resistance against the current

drugs administered (if used excessively and at suboptimal dosages)

exists and is based on the experience with drug resistance in

parasitic nematodes of livestock [15]. Thus, the current focus is on

the discovery of novel drugs against human parasites like S.

stercoralis. Such a discovery effort could be strengthened with an

integrated genomic and bioinformatics approach, using functional

genomic and phenomic information available for the free-living

nematode Caenorhabditis elegans (see WormBase; www.wormbase.

org). This nematode, which is the best characterized metazoan

organism [16,17], is considered to be related to nematodes of the

order Strongylida (to which Strongyloides belong) [18]. Recent

studies have reported that nearly 60% of genes in strongyloides

have orthologues/homologues in C. elegans, with a wide range of

biological pathways being conserved between parasitic nematodes

and C. elegans [19]. The comparison of molecular data sets between

nematodes should therefore allow the identification of specific

biological pathways as potential new targets for nematocidal drugs

[20].

As pointed out recently by Cantacessi et al. (2011) [20], advances

in genomic sequencing like Next Generation Sequencing (NGS)

and annotation as well as the integrated use of ‘-omic’ technologies

are now shedding light on our understanding of the systems

biology of nematodes on an unprecedented scale, and is likely to

provide unique opportunities for the development of entirely new

strategies for the treatment and control of neglected parasitic

diseases. New bioinformatic tools based on robust assembly

protocol for NGS data, along with compilation of a dataset of

experimentally determined ES proteins of parasitic helminths, and

annotation software like KAAS [21], allow efficient and up-to-date

homology-based predictions [22].

To date, there are few molecular and genomic studies on

Strongyloides species, and only the transcriptome from S. ratti adults

has become recently available (http://worm1.liv.ac.uk/file_summary.

html) [23]. In fact, 39166 ESTs are currently available in the NCBI

database of November 2011 (27366 from S. ratti and 11392 from S.

stercoralis). Yoshida et al. (2011) have obtained 162 unique singletons

and contigs from S. venezuelensis [24], and a recent study by

Ramanathan et al. (2011) has described DNA microarray for S.

stercoralis and used them to compare infective third-stage larvae

(L3i) with non-infective first stage larvae (L1), with 935 differen-

tially expressed genes identified [25].

In the present study, we have explored and functional annotated

the transcriptome of L3i of S. stercoralis by 454 sequencing coupled

to semi-automated bioinformatic analyses and predicted potential

therapeutic targets for strongyloidiasis.

Materials and Methods

Accession numbers
The nucleotide sequence data obtained for this study are

available in the GenBank database under accession number

ERP000798.

The assembled data from this study can be requested from the

corresponding author.

Parasite material and ethical issues
Fecal samples were obtained at the Hospital La Ribera, Alzira,

Valencia (Spain) from an infected individual in compliance with

Spanish ethical regulations [7], and approved by the Ethics

Committee in human research from the Universitat de Valencia.

Oral consent from the patient was obtained (she was happy to

participate in the study but felt uncomfortable with signing a

form), and documented as a tick on the case record form following

the Hospital Reviewing Board protocols. Samples were cultured

on Agar Petri dishes and L3i larvae were harvested and

concentrated by centrifugation for 5 min at 1000 g, washed three

times in 1 ml of phosphate buffered saline (PBS) pH 7.2

containing protease inhibitors (10 mM EDTA, and 1 mM PMSF)

and samples were processed for RNA isolation.

RNA isolation, cDNA synthesis and 454 sequencing
Total RNA from around 500 larvae was prepared using

VantageTM Total RNA purification kit (Marligen Biosciences,

Ijamsville, MD, USA) following the manufacturers’ instructions

and treated with Ambion DNA-freeTM DNase (Ambion/Applied

Biosystems, Austin, TX). The integrity of the RNA was verified by

gel electrophoresis and the yield determined using the nanoDrop

ND-1000 UV-VIS spectrophotometer v.3.2.1 (NanoDrop Tech-

nologies, Wilmington, DE).

The cDNA library was constructed from 0.5 mg total RNA

using MINT cDNA Synthesis Kit (Cat#SK001, Evrogen). First

strand cDNA synthesis starts from 39-primer comprising oligo(dT)

to enrich mRNA as template. Double strand cDNA synthesis was

performed using 17 cycles of PCR amplification. Total cDNA was

Author Summary

Strongyloides stercoralis (Nematoda) is an important
parasite of humans, causing Strongyloidiasis, considered
as one of the most neglected diseases, affecting more than
100 million people worldwide. Chronic infections in
endemic areas can be maintained for decades through
the autoinfective cycle with the L3 filariform larvae. In
these areas, misdiagnosis, inadequate treatment and the
facilitation of hyperinfection syndrome by immunosupres-
sion are frequent and contribute to a high mortality rate.
Among the affected areas, chronic patients have been
described in the Valencian Mediterranean coastal region of
Spain. Despite its serious impact, very little is known about
this parasite and its relationship with its hosts at the
molecular level, and more effective diagnostic tests and
treatments are needed. Next generation sequencing
technologies now provide unique opportunities to rapidly
advance in these areas. In this study, we present the first
transcriptome of S. stercoralis L3i using 454 sequencing
followed by semi-automated bioinformatic analyses. Our
study identifies 8037 putative proteins based on homol-
ogy, gene ontology, and/or biochemical pathways, includ-
ing putative excretory/secretory proteins as well as
potential drug targets. The present dataset provides a
useful resource and adds greatly to our understanding of a
human parasite affecting both developed and developing
countries.

S. stercoralis L3i Transcriptome
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digested with restriction enzyme GsuI in order to remove Poly (A)

tails. cDNA obtained was used to perform a library with the

required sequencing adaptors and was then sequenced using the

Genome Sequencer (GS) FLX instrument (Roche Diagnostics)

[26].

Bioinformatic analyses of sequence data
The overall bioinformatics analysis strategy followed was as

described originally by Nagaraj et al. [27,28], implemented in the

analysis pipelines ESTExplorer [29] and EST2Secretome [28].

This workflow approach has been successfully used for the analysis

of transcriptomic data from Dictyocaulus viviparus [30], Fasciola

hepatica [31], Clonorchis sinensis [32] and Opisthorchis viverrini [32].

However, to better identify non-classically secreted proteins from

helminth parasites [33,34], we have recently implemented a novel

analysis strategy for short reads applied on Strongyloides ratti [22]

(see Figure S1).

FASTA and associated quality files were extracted from the SFF

file after removing the sequence adapters. These reads were

preprocessed and their contigs were assembled using MIRA v.3.2

(http://chevreux.org/projects_mira.html) [35] with the following

parameters:

-job=denovo,est,accurate,454 -fasta

-OUT:rrol =1:rld=1:orc =1:org =0:ora =0:ors =0:otf = 0:otc=

0 -GE:not = 1 -CO:asir = 1

-LR:mxti = 1 -AS:sd = 0:uess = 0:urd = 0:ard = 1 -SK:mmhr =

2:mnr = yes 454_SETTINGS

-DP:ure = 0 -CO:mrpg = 10 -AS:bdq = 40

-CL:pvlc=0:cpat=0:mbc=1:mbcgs=30:mbcmfg=30:mbcmeg=

30:qc = 0 -ED:ace = 1

-AL:egp = no

-ALIGN:bip = 20:bmax = 120:mo = 10.

Contigs generated from MIRA were aligned and reassembled

into second order contigs using the Contig Assembly Program v.3

(CAP3) [36], employing a minimum sequence overlap length cut-

off of 40 bases and an identity threshold of 90%. Following the

assembly of S. stercoralis reads into second order contigs by CAP3

and contigs by MIRA, this contig dataset was matched using

BLASTX with the NCBI non-redundant sequence database;

http://www.ncbi.nlm.nih.gov, BLASTN with Nematode.net S.

stercoralis ESTs (www.nematode.net/) and BLASTN with dbEST

Strongyloides ESTs (www.ncbi.nlm.nih.gov/dbEST/), using permis-

sive (E-value: ,1E205), moderate (,1E215) and/or stringent

(,1E230) search strategies.

S. stercoralis contigs were conceptually translated into putative

proteins using the program ESTScan [37]. Putative protein

sequences were subjected to secretome analysis using TMHMM (a

membrane topology prediction program) [38] to predict trans-

membrane domains, SignalP 3.0 (signal peptide prediction

program) [39], SecretomeP (a prediction programme used to

identify non-classical secretory proteins in mammals [40], but used

in the case of parasitic helminths as well [41]), and TargetP

(mitochondrial protein prediction program) [42]. Briefly, excreto-

ry/secretory (ES) proteins were selected based on the presence of a

signal peptide at the N-terminus using SignalP 3.0 (employing

both the neural network and hidden Markov models) or predicted

as secretory using SecretomeP, predicted as non-mitochondrial by

TargetP and absence of transmembrane domains. In addition to

computational prediction of ES proteins were identified and

collated based on sequence homology (BLASTP, E-value,1E215)

to known ES proteins found in parasitic helminths secretome

studies.

Putative proteins were classified functionally using InterProScan

[43], employing the default search parameters. Based on their

homology to conserved domains and protein families, predicted

proteins were classified into Gene Ontology (GO) categories

(http://www.geneontology.org/) based on molecular function,

cellular component and biological process using interpro terms.

Putative proteins were also subjected to pathway analysis, utilizing

KEGG-Automatic Annotation Server (KAAS) [21], which maps

the putative proteins to biochemical pathways in which they are

involved and categories of Brite objects like enzymes, transcription

factors and translation factors.

Putative proteins were subjected to BLAST2GO software to

identify homologues from the most abundant ES transcripts [44].

BLASTP (Wormpep v 224) was used to identify C. elegans known

proteins homologues present in S. stercoralis proteins using

moderate search strategy (E-value: ,1E215). These proteins were

also searched for sequence homology (BLASTP, E-value,1E205)

in human (host) proteins. All the proteins which were found

homologous to C. elegans proteins and non-homologous to human

proteins were mapped to C. elegans RNAi phenotypes and known

drug targets present in the DrugBank database (http://drugbank.

ca/), a unique bioinformatics and cheminformatics resource that

combines detailed drug (i.e. chemical, pharmacological and

pharmaceutical) data with comprehensive drug target (i.e.

sequence, structure, and pathway) information [45].

Results

The transcriptome of S. stercoralis L3i larvae
Initially a total of 253266 short reads (82490223 bases) were

generated with 3256132.4 bases (average length 6 standard

deviation), with a GC content of 31.84%. These short reads were

pre-processed, which resulted in 237341 (93.7%) quality short reads

(EBI Sequence Read Archive [SRA] accession ID ERP000798).

High quality reads were assembled into 12333 contigs using MIRA

as described in the pipeline (Figure S1). Using CAP3, we were able

to achieve 507 second order contigs, leaving 10845 MIRA contigs

not assembled further by CAP3. We considered 11250 (99.1%)

contigs with a minimum length of 90 bases, discarding sequences

yielding peptides ,30 amino acids, for further secretory protein

prediction and analysis. These contigs were conceptually translated

into 8037 proteins by ESTScan (Table 1; sequences available from

http://biolinux.uv.es/marcilla/).

Putative proteins were annotated based on protein families and

domains using Interproscan and mapped to biochemical pathways

using KAAS [21]. Of the 8037 putative proteins, we were able to

annotate 4494 (55.91%) proteins with protein domains and

Table 1. Expressed sequence tag (EST) data for the S.
stercoralis L3i.

No. of EST Clusters by MIRA 12,333

Average length (6standard deviation) 538.7 (6260.7)

Re clustered unigenes after CAP3 assembly 11,352

Containing an Open Reading Frame 8,037

Returning InterProScan results 4,494

Gene Ontology 3,534

Biological process 1,905

Cellular component 1,068

Molecular function 3,083

Prediction of biological pathways (KAAS) 1,559

doi:10.1371/journal.pntd.0001513.t001

S. stercoralis L3i Transcriptome
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families (Table 1). The most represented Interpro terms are shown

in Table S1.

A total of 3534 proteins were annotated with GO terms (3083

{Molecular Function}, 1068 {Cellular Component} and 1905

{Biological Process}) based on Interpro term annotations (Tables 1

and S1). We established pathway associations for 1559 (19.39%)

putative proteins (Table 1).

All the contigs generated by using MIRA+CAP3 were checked for

homologous proteins against the non-redundant nucleotide database

(NR-NCBI), existing Strongyloides expressed sequence tags (ESTs)

present in dbEST, S. stercoralis ESTs available from dbEST and

nematode.net, S. ratti cDNA sequencing data from the University of

Liverpool (available at http://worm1.liv.ac.uk/file_summary.html),

and also for homologous proteins in C. elegans and human data

(Figure S1). Similarity searches were done using using BlastX and

BlastP algorithms at different E values (Table 2). A total of 3412

(42.45%) S. stercoralis putative proteins had homologues in the free-

living nematode, Caenorhabditis elegans using stringent match condi-

tions (E value: ,1E215). The recent availability of S. ratti

transcriptome data prompted us to compare these with our data

and 3855 similar putative proteins (47.96%) were found. As S.

stercoralis infects humans, we checked the similarity of S. stercoralis

proteins with known human proteins using BlastP at different E

values. Our results showed that 3759 putative proteins were similar

to human ones using a permissive search strategy (E-value: ,1E205),

discarding them as potential targets for treatment (Table 2).

Predicted proteins were also categorized according to their

inferred molecular function, cellular localization and association

with biological pathways. Mapping to KEGG BRITE objects [46]

is shown in Table 3. Enzymes were by far the most abundant

category, with 720 putative proteins, followed by chromosome,

spliceosome and ribosome components (with 90, 89 and 73

putative proteins, respectively). 73 putative protein kinases and 72

peptidases were also identified by BRITE (Table 3). These 72

peptidases corresponded to 60 different enzymes from 9 groups,

including calpains, cathepsins, different proteasome components

and aminopeptidases, and other ‘‘nematode common’’ proteases

such as astacin, legumain, and insulysin (Table S2).

All the putative proteins were grouped according to KEGG

pathways [46] into five categories, with metabolic proteins being

the most abundant, followed by genetic information processing,

environmental processing and cellular processes (Table 4). In the

first group, the most abundant putative proteins were related to

carbohydrate metabolism (201 proteins, 2.5%), amino acid

metabolism (174; 2.16%) and lipid metabolism (104; 1.29%). Also

23 putative proteins were related to drug metabolism (Table 4). In

the second group, the most abundant proteins were related to

translation (195; 2.42%), meanwhile 144 putative proteins (1.79%)

related to signal transduction were the most abundant in the group

of cellular processes (Table 4).

Prediction of ES proteins
We next analyzed ES proteins, which are key molecules to

understand host-parasite interactions [47]. Molecules from the

secretome contribute to important processes like parasite feeding,

tissue penetration or larval migration, and could participate in

blocking and/or evading host immune responses [48]. ES

prediction was carried out in Phase III of the pipeline (Fig. S1).

Firstly, 247 (3.07%) proteins were predicted as classical secreted

proteins using SignalP [39]. The remaining 7785 (96.86%)

proteins, which were predicted as non-secretory by SignalP were

processed by SecretomeP [40] for prediction of non-classical

secretory proteins, with 252 (3.14%) proteins identified here. The

classical and non-classical secretory proteins (499, 6.21%) from

these two programs were analyzed by TargetP [42] for

mitochondrial proteins. Only 7 proteins were predicted as

mitochondrial proteins using TargetP at 95% specificity. These

seven proteins were removed from the set of 499 secreted proteins,

with 492 secretory proteins passed to TMHMM [38] for the

prediction of transmembrane proteins. 161 (2%) proteins, were

predicted as transmembrane proteins having one or more

transmembrane helices, and removed from the secretory protein

dataset. A total of 331 (4.12%) proteins were finally predicted as

ES proteins from the computational prediction pipeline. Proteins

that were considered non-secretory by SecretomeP and SignalP

were matched to our in-house dataset of 1080 non redundant

experimentally determined parasitic helminth proteins [22] using

the BLASTP [49] similarity search. We found an additional 882

(10.97%) putative proteins similar to known ES proteins by this

homology search approach (E value: ,1E215) (Table S3). From

those proteins, 50 have been recently described in the ES from

infective larvae of the related species S. ratti [50] (data not shown).

Among the most abundant transcripts encoding ES proteins

appeared a major antigen; cytoskeletal proteins like myosin heavy

chain, troponin, tropomyosin, actin; galectins; enzymes like

trehalase, PEPCK, GAPDH, enolase, as well as phosphatases

and kinases; proteases like Metalloproteinase, Calpain-1and

Cathepsin L; stress proteins like HSPs; calcium binding proteins;

detoxifying enzymes along with elongation factors, histones,

ubiquitins and signaling molecules (Table S4. Thus, for annotation

and analyses in Phase III, we compiled a total of 1213 ES proteins,

which is 15.09% of our putative proteins.

S. stercoralis proteins as drug targets
We found 4234 (52.68%) S. stercoralis putative proteins which

had no homologues present in humans (Table 2) and therefore are

Table 2. Sequence homology inferred between S. stercoralis current dataset and other datasets.

Dataset Hits (1e-05) Hits (1e-15) Hits (1e-30)

Strongyloides EST from dbEST (BLASTN) 4267 3935 3646

S. stercoralis EST from dbEST (BLASTN) 2903 2682 2519

S. stercoralis EST from nematode.net (BLASTN) 2225 2020 1904

S. ratti putative proteins (BLASTP) 3855 3052 2081

C. elegans proteins (BLASTP) 4475 3,412 2163

Human proteins (BLASTP) 3759 2583 1489

NR database (BLASTX) 7633 5948 4023

doi:10.1371/journal.pntd.0001513.t002
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preferred targets for parasite intervention strategies. These human

dissimilar proteins of S. stercoralis were checked for known drug

targets, which have lethal RNAi phenotypes present in C. elegans,

not present in human and similar to known drug targets, data

available from DrugBank 3.0 database [44], a unique bioinfor-

matics and cheminformatics resource that combines detailed drug

(i.e. chemical, pharmacological and pharmaceutical) data with

comprehensive drug target (i.e. sequence, structure, and pathway)

information. The database (available at http://drugbank.ca/)

contains 6707 drug entries (as of November 2011).

We found 14 contigs and singletons corresponding to four

different proteins. These could represent potential therapeutic

targets for strongyloidiasis as shown in Table 5. Sequence

comparison demonstrate that these proteins are homologous to

2,3-bisphosphoglycerate independent phosphoglycerate mutase

from Ascaris suum (with 1 contig and 1 singleton), hypothetical

protein CBG01975 from Caenorhabditis briggsae similar to glutamate

synthase [NADPH] from Ascaris suum (1 contig and 3 singletons),

isocitrate lyase from S. stercoralis (5 singletons), and alcohol

dehydrogenase I from the fungus Candida albicans WO-1 (2

singletons) (Table 5).

With a comparative analysis searching protein domain mapping

or sequence similarity with other drug targets, we found seven

additional potential targets for treatment, including well known

drug targets as tubulin b, c-amino butyric acid A (GABA)

receptor, glutamate-gated chloride channel or GST (Table S5).

Only one of those proteins, homologous to Ancylostoma caninum

metalloprotease precursor, which is also predicted to be secretory,

was not found similar either to C. elegans or human proteins (Table

S5).

Discussion

Strongyloides stercoralis can replicate within the host (autoinfection)

allowing the infection to remain undiagnosed and untreated for

years, resulting in perpetuating parasite dispersal, increasing the

risk of infection and eventually the appearance of resistances [3].

Uncontrolled multiplication of the parasite (hyperinfection) can be

life-threatening in immunocompromised individuals. We also face

serious endemic recurring infections in the future if this infection is

not controlled in transition economies like China, India, Southeast

Asia and Latin America [3] where the use of immunosuppressive

therapy is becoming common. As pointed out by Olsen et al. (2009)

[3], there is an urgent need to employ modern molecular methods

to improve and simplify diagnosis, differentiate species and strains

to facilitate epidemiological studies of S. stercoralis.

The present study provides the first detailed analysis of the

transcriptome of the human pathogenic S. stercoralis L3i larvae and

has identified specific molecules predicted to play key biological

functions in this parasite. A total of 12,333 contigs were inferred

from the present EST dataset, thus increasing the number of

predicted proteins currently available (for this stage/species) in

public databases by approximately 141-fold [we obtained 8037

conceptually translated proteins, and there are currently 57

proteins in Genbank as of November 2011]. This quantity of

contigs is similar to the numbers obtained with other nematodes

like Trichostrongylus colubriformis [19], N. americanus and Ancylostoma

caninum [51], Haemonchus contortus [52], Dictyocaulus viviparous [20],

and Teladorsagia circumcinta [53]. The subset (55.91%) of S. stercoralis

sequences with orthologues/homologues in public databases was

slightly higher to that reported in similar transcriptomic studies of

other animal-parasitic helminths such as Necator americanus [51,54].

It is noteworthy to mention that 44.09% of the putative proteins of

S. stercoralis L3i transcriptome remain unannotated, warranting

further genomic and functional characterization studies.

With the exception of three metabolic proteins (citrate synthase,

arginine kinase and ATP:guanido phosphotransferase) all proteins

identified in a previous proteomic study with S. stercoralis L3i [55]

were included in the transcriptome described here. In addition, 41

antigenic proteins including SiR and tropomyosin were present in

the transcriptome (as searched in Table S1), confirming its value as

a tool for searching targets for immunodiagnosis.

It is well characterized that upon infection, infective larvae (L3i)

must penetrate skin as quickly as possible and then migrate within

the host. In this context, proteases play an essential role. Among

the proteins identified in our study, 60 different putative proteases

were annotated in nine groups. These include nine metallopro-

teinases and three aspartic proteases, some of them assumed to

play a major role in skin penetration in Strongyloides stercoralis

[56,57], and in other Strongyloides species like S. venezuelensis [58] or

Table 3. Functions of putative proteins inferred from the
transcriptome of the S. stercoralis L3i.

BRITE object name
Number of putative
proteins mapped

Enzymes 720

Chromosome 90

Spliceosome 89

Ribosome biogenesis 73

Protein kinases 73

Peptidases 72

Ubiquitin system 72

Ribosome 72

Chaperones and folding catalysts 61

Cytoskeleton proteins 53

Proteasome 41

Ion Channels 38

Transcription factors 36

Translation factors 34

DNA repair and recombination proteins 32

GTP-binding proteins 25

DNA replication proteins 20

Glycosyltransferases 15

Lipid biosynthesis proteins 14

Cellular antigens 11

Transporters 11

Secretion system proteins 10

Glycan binding proteins 9

SNAREs 7

Nuclear receptors 6

Prenyltransferases 6

G protein coupled receptors 4

CAM ligands 4

Proteoglycans 4

Enzyme linked receptors 2

Cytokine receptors 2

Cell adhesion molecules (CAMs) 2

Bacterial toxins 1

doi:10.1371/journal.pntd.0001513.t003
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S. ratti [22,23]. In S. venezuelensis, Yoshida et al. (2011) [24] have

recently identified an astacin-like metalloproteinase as being

specific of L3i in a transcriptomic study. Another abundant group

was the cysteine proteases, including cathepsin B, legumain and

calpain, proteins characterized as immunomodulators of host

response and promising vaccine and drug targets [59–61]. Similar

results have been reported for Ascaris suum, where 456 peptidases

have been identified in its draft genome [62].

Kinases are also an important group of proteins considered to

be good druggable targets from the medical and chemical

viewpoints, since they play essential functions in the parasite, in

mediating signal transduction [63–65]. In S. stercoralis L3i

transcriptome analysis 73 putative kinases including 11 putative

tyrosine kinases were identified (Table 3 and Table S1).

In our study, we have compiled 1213 putative ES proteins

among the 8037 (15.09%) S. stercoralis annotated proteins using a

new semi-automated computational approach, recently developed

and applied to predict the secretome of S. ratti adults [22]. In a

mixture of S. ratti parasitic females, free-living males and free-living

females, Garg and Ranganathan (2011) compiled 2572 putative

ES proteins, being 12.3% of the total putative proteins, which is

less than that found in S. stercoralis L3i larvae [22]. This could be

due to higher secretion processes in larvae in comparison to adults,

required by penetration and migration in the host. Supporting this

notion, Soblik et al. (in press) have recently described the presence

of 586 ES proteins in all the stages of S. ratti by proteomic analysis,

196 of which are also found in L3i [50]. When comparing larval S.

ratti ES proteins with our predicted S. stercoralis L3i ES proteins, we

find that 50 out of the 196 proteins identified from S. ratti were also

detected in S. stercoralis L3i, supporting the value of the prediction.

In S. stercoralis L3i, the most abundant transcripts encoding ES

proteins include cytoskeletal proteins (i.e. myosin heavy chain,

actin, tropomyosin, tubulin or paramyosin), metabolic enzymes

(i.e. Trehalase, PEPCK, PGK, PGM, GAPDH, enolase), prote-

ases, stress-response proteins, detoxifying enzymes, proteaseome

components, most of them identified previously in S. stercoralis by

proteomic studies [55]. These ES proteins play a major role in

infection since they are present at the host-parasite interface and

regulate host immune system [66]. ESPs also are among the target

choice of new therapeutic solutions for helminth infections [67], as

confirmed in the case of ivermectin (the currently the drug of

choice for treating strongyloidosis) which has been shown to act

reducing the secretion of ESPs from the ES apparatus in Brugia

malayi microfilariae [68].

Recent studies using microarrays have identified highly

expressed molecules in S. stercoralis L3i in comparison to L1

Table 4. KEGG pathways of putative proteins inferred from the transcriptome of S. stercoralis L3i.

Parent KEGG pathway No of putative proteins (%) Top KEGG pathway in the category

Metabolism

Carbohydrate metabolism 201 (2.50) Glycolysis/Gluconeogenesis

Energy metabolism 79 (0.98) Oxidative phosphorylation

Lipid metabolism 104 (1.29) Fatty acid metabolism

Nucleotide metabolism 100 (1.24) Purine metabolism

Amino acid metabolism 174 (2.16) Valine, leucine and isoleucine degradation

Metabolism of other amino acids 48 (0.60) Glutathione metabolism

Glycan biosynthesis and metabolism 30 (0.37) N-Glycan biosynthesis

Metabolism of Cofactors and Vitamins 46 (0.57) One carbon pool by folate

Metabolism of Terpenoids and Polyketides 5 Terpenoid backbone biosynthesis

Biosynthesis of other secondary metabolites 1 Caffeine metabolism

Xenobiotic biodegradation and metabolism 23 (0.29) Drug metabolism – other enzymes

Genetic Information processing

Transcription 83 (1.03) Spliceosome

Translation 195 (2.42) Ribosome

Folding, sorting and degradation 178 (2.21) Protein processing in endoplasmic reticulum

Replication and repair 34 (0.42) Nucleotide excision repair

Environmental information processing

Membrane transport 3 ABC transporters

Signal transduction 144 (1.79) MAPK signaling pathway

Signaling, molecules and interaction 7 Neuroactive ligand-receptor interaction

Cellular processes

Transport and catabolism 132 (1.64) Endocytosis

Organism systems

Immune system 7 Natural killer cell mediated cytotoxicity

Endocrine system 11 (0.13) Progesterone-mediated oocyte maturation

Development 3 Dorso-ventral axis formation

Environmental adaptation 6 Circadian rhythm – mammal

doi:10.1371/journal.pntd.0001513.t004
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larvae, including cytochrome bc1, Hsp-90 and FAR-1, which

potentially constitute new targets for intervention [25], all of which

were present in our transcriptome data, but did not appear as

druggable targets following our pipeline, possibly as these are not

present in DrugBank, where only lethal RNAi phenotypes are

included. Other important targets if interfered with, would still

lead to expulsion of live worms form a host, like motility genes. In

agreement with this, Garg and Ranganathan (2011) [22] have

recently identified 19 contigs as putative drug targets in the S. ratti

adult transcriptome, including myosin heavy chain, which is also

one of the most abundant transcript of ES proteins in S. stercoralis

(Table S4). This protein along with others like a metalloproteinase

precursor, major sperm protein or triosephosphate isomerase (also

identified in the S. stercoralis transcriptome in our study) did not

appear as druggable molecules in our study, due to the presence of

these proteins in host cells as well. In this context, efficient drugs as

antihelmintics like benzimidazoles (they inhibit tubulin ß resulting

in impaired microtubule formation during cell division) have much

more affinity for tubulin in helminth cells than the tubulin found in

the cells of mammals [69]. We found 11 potential targets for

treatment against L3i larvae. As already mentioned, these are the

first evolutive phase of S. stercoralis in the host, and constitute a

good target for treatment. From these target molecules, four, with

no homologues in the host, suggesting parasite specificity, are: 2,3-

bisphosphoglycerate independent phosphoglycerate mutase, glu-

tamate synthase, isocitrate lyase and alcohol dehydrogenase I.

Only the first one was predicted as present in ES. Further studies

are required to confirm whether these molecules are good drug

targets for strongyloidiasis. Next-generation sequencing technolo-

gies are improving genomic and transcriptomic studies, and

complemented by proteomic investigations, should allow the

characterization of differential gene expression and essential

pathways in all the developmental stages of S. stercoralis. The

transcriptomic dataset described here constitutes the basis for

future investigations enlightening the search for control measures

for one of the most neglected diseases.

Supporting Information

Figure S1 Bioinformatics workflow used for transcrip-
tomic data analysis. Bioinformatics workflow comprising

Phase I (pre-processing and assembly), II (Nucleotide level

annotation), III (prediction of excretory/secretory (ES) proteins)

and IV (Protein-level annotation).

(DOC)

Table S1 Strongyloides stercoralis L3i gene ontology
mapping using Interproscan.
(XLS)

Table S2 Peptidases found in the S. stercoralis L3i
transcriptome.
(XLS)

Table S3 BLAST results of proteins found homologous
to experimentally verified secretory proteins of parasit-
ic helminths at 1e-15.
(XLS)

Table 5. Predicted therapeutic targets from S. stercoralis L3i.

No Cluster ID
Description from
NR Database

WBGene
ID

C. elegans RNAi
lethal phenotype

Interpro
hits C. elegans Gene Ontology

Drugbank targets
hits ESP

1 Contig 19
Singleton
1215

2,3-
Bisphosphoglycerate
independent
phosphoglycerate
mutase (Ascaris suum)

WBGene
00019001

Slow growth;
embryonic lethal;
larval arrest; organism
morphology abnormal;
egg laying abnormal;
locomotion abnormal;
life span abnormal

IPR006124
IPR017850

BIOLOGICAL PROCESSES: glucose
catabolic process; positive regulation
of growth rate; embryonic development
ending in birth or egg hatching;
nematode larval development; body
morphogenesis; locomotion;
determination of adult life span;
oviposition. MOLECULAR FUNCTION:
phosphoglycerate mutase CELLULAR
COMPONENT: cytoplasm

2,3-
Bisphosphoglycerate
independent
phosphoglycerate
mutase

yes

2 Contig 462
Singletons
600, 2555,
3841

Hypothetical protein
CBG01975
(Caenorhabditis briggsae)
Glutamate synthase
[NADPH] (Ascaris suum)

WBGene
00012326

Slow growth;
embryonic lethal;
larval arrest

IPR000583
IPR002932
IPR017932
IPR002489

BIOLOGICAL PROCESSES: electron
transport; glutamate biosynthetic process;
nitrogen compound metabolic process;
embryonic development ending in birth
or egg hatching; nematode larval
development; positive regulation of
growth rate. MOLECULAR FUNCTION:
oxidoreductase activity, acting on the
CH-NH2 group of donors, NAD or NADP
as acceptor FAD binding; glutamate
synthase activity, NADH or NADPH as
acceptor; iron-sulfur cluster binding

Ferredoxin-dependent
glutamate synthase 2

No

3 Singletons
77, 154,
179, 2466,
10457

Isocitrate lyase
(Strongyloides stercoralis)

WBGene
00001564

Life span abnormal IPR000918
IPR006254
IPR015813

BIOLOGICAL PROCESSES: glyoxylate
cycle; carboxylic acid metabolic process;
embryonic development; determination
of adult life span. MOLECULAR
FUNCTION: isocitrate lyase activity;
malate synthase activity

Isocitrate lyase No

4 Singletons
2046,
10787

Alcohol dehydrogenase
I (Candida albicans
WO-1)

WBGene
00010790

Life span abnormal IPR002085
IPR011032
IPR013149

BIOLOGICAL PROCESSES: metabolic
process determination of adult life
span MOLECULAR FUNCTION: zinc
ion binding oxidoreductase activity

Alcohol
dehydrogenase

No

Putative proteins homologous to C. elegans proteins with lethal RNAi phenotype and with no homologue in the human host.
doi:10.1371/journal.pntd.0001513.t005
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Table S4 Top 50 abundant transcripts across Strongy-
loides stercoralis L3i excretory/secretory proteins using
Blast2Go [44].

(DOCX)

Table S5 S. stercoralis L3i putative proteins found
similar to known therapeutic targets in parasitic
nematodes either by protein domains mapping or
sequence similarity.

(DOCX)
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