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Abstract
The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant

Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for

U. gibba because they help the plant to survive in nutrient-deprived environments. The U.
gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter

microbial inhabitants. To determine whether the traps indeed have a microbiome that dif-

fers, in composition or abundance, from the microbiome in the surrounding environment, we

used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and

functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural

habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding

water. The total predicted number of species in the Ugt was more than 1,100. Using pan-

genome fragment recruitment analysis, we were able to identify to the species level of some

key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagen-

ome suggests that the trap microbiome plays an important role in nutrient scavenging and

assimilation while complementing the hydrolytic functions of the plant.

Introduction
Plant-microbe interactions have historically been studied by means of culture techniques. Cul-
ture dependent techniques, and directed experiments (i.e. reporter genes) have identified nitro-
gen-fixing, and plant growth-promoting bacteria, mychorrhizae fungi, pathogens, parasites,
and protozoa that have a direct influence on plant health and development [1]. More than 30
years of research on plant-microbe interactions have expanded our horizons from the patho-
gen to beneficial microbe dichotomy to the current understand of microbes as a complex com-
munity associated with the plant, even being part of plant's extended phenotype [2]. Recently,
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next-generation sequencing platforms have allowed the study of microbiomes, which has
yielded information about a large portion of plant-associated bacteria that cannot be easily cul-
tivated in vitro. Several recent reports have focused on the study of the microbial diversity in
the rhizosphere and endosphere of several plants species, including Arabidopsis thaliana, rice,
and maize [3–7], however, they were performed primarily using 16S rRNA deep sequencing.
Although 16S rRNA gene alignment and comparison is the gold standard, microbiome studies
using this technology provide only proxy information about the potential functions harbored
by the microbial communities. Hence, describing the taxonomic and functional diversity of
microbiomes requires the use of whole-genome shotgun (WGS) metagenomics to complement
these types of studies. The genome and transcriptome of the aquatic, rootless, carnivorous
plant Utricularia gibba have recently been published [8,9]. The U. gibba's small genome of 82
Mb hosts around 28,500 predicted coding genes (CDS), and several whole genome duplica-
tions. U. gibba has specialized trap structures that supplement the plant with Nitrogen (N), and
Phosphorus (P) by digesting the preys. The nutrients generated by carnivory are relevant for
the plant as it is generally inhabiting oligotrophic environments with limited supplies of N and
P [8,10,11]. The environment inside the traps of U. gibbamay be analogous to a rhizosphere in
which the plant exchanges organic exudates derived from photosynthesis with its microbial
community, with in turn enhances the capacity of the plant root to scavenge N and P from the
soil. Due to the nature of the trap and its biophysical mechanisms to catch prey, the trap envi-
ronment has very low levels of oxygen and high production of reactive oxygen species (ROS)
[8,9]. Before the transcriptomic of the U. gibba's trap was determined, it was expected that the
microbial community within the trap was solely responsible for prey digestion. However, tran-
scriptome analysis of the trap revealed that several genes encoding hydrolytic enzymes are
actively expressed in this organ, suggesting a coordinated functional expression of the host and
the trap microbiome genomes for prey digestion [10,12,13]. There is a growing interest on the
study of carnivorous plant microbiomes, there are recent publications involving metatranscrip-
tomic and amplicon sequencing and analysis of the microbiomes for Genlisea genus and sev-
eral sister species of Utricularia: U. vulgaris, U. reflexa, U. australis, and U. intermedia. Both
Genlisea and Utricularia works rely on cultivated plants under laboratory conditions [14,15].

Recently, a two-step selection model for root microbiota differentiation was proposed [2].
The two step model takes into account the following considerations: edaphic or in our particu-
lar case water-substrate factors that determine the microbial diversity in the substrate; then the
plant rhizodeposits organic compounds originated from photosynthesis, and plant's cell wall
that could trigger chemotaxis mechanisms in the microbes promoting differential growth;
finally, the plant genotype could select the community that it allows to growth within the plant.

In this work, we collected U. gibba plants from a natural habitat and sequenced a composite
WGS metagenomes using approximately 400 U. gibba's traps (Ugt) and the surrounding water
and sediments (Ugm). Here, we show a thorough analysis of the microbial taxonomic and
functional diversity in the Ugt and Ugm. We used the transcriptomic and genomic data avail-
able for U. gibba to verify if there is a functional complementation between the plant and its
trap microbiome. The overall diversity is also compared with several related, publicly available
metagenomes, including tropical soils, plant-associated samples, and water samples.

Materials and Methods

Sampling
A total of 13 Utricularia gibba L. (Lentibulariaceae) specimens were collected in the Trans-
Mexican volcanic belt in shallow fresh waters, next to a dam near the locality of Umecuaro,
Municipality of Morelia, in the Mexican state of Michoacan (19.53 N, -101.25 W; elev. 2191
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masl; collection date: 07-12-2013 13:14:00 UTC -6; water temperature 18°C). The plant was
identified in the field by its flower. Surrounding water and substrate (~5 cm depth) were also
collected in sterile 50 ml tubes. All the samples were thoroughly collected and placed in indi-
vidual sterile containers and immediately frozen in liquid nitrogen. No special permissions
were required for the sampling location, and the land owner allowed us to carry on the collect.
U. gibba is a pan-tropical distributed species and abundant in wide geographical area, so it is
not an endangered nor protected species it is ranked as Least Concern (LC) in the Red List of
the International Union for Conservation of Nature (IUCN).

DNA extraction and library preparation
DNA from each subsample (water, substrate and traps) was isolated using an extraction buffer
with 100 mM Tris- HCI pH 8.0; 50 mM EDTA pH 8.0; 500 mMNaCl 1.2% β-mercaptoethanol,
2% SDS and 10% PVP. Equal concentrations (10 μg) of environment DNA (water and sub-
strate) were mixed to make a composite genetic pool representing the total DNA composition
for U. gibba’s surroundings, we did not get enough DNA from water to performWGS sequenc-
ing so we mixed it with the muddy sediment. The U. gibba's surroundings worked as a baseline
and reference to compare the environment and U. gibba's microbiome. We considered that the
shallow waters (>30 cm), and the underlying sediments are a single system. The goal to study
the mixed water-sediment metagenome is that phenomena like chemotaxis to plant's exudates
could drive the establishment of a distinctive bacterial community along with substrate depen-
dent community structure, as it has been suggested [2]. The U. gibba's traps were separated
individually from the plant and pooled to extract the DNA; approximately 400 traps (»100 mg)
were used. DNA purity and concentration were analyzed using a NanoDrop spectrophotome-
ter. Libraries were constructed and sequenced at the Genomic Services laboratory, Unidad de
Genomica Avanzada (UGA, formerly LANGEBIO-CINVESTAV), Mexico, using the MiSeq™
platform according to the manufacturer's instructions (Illumina, San Diego, CA).

Sequence processing
We sequenced the samples using Illumina's MiSeq™ with paired ends in a 2x250 bp configura-
tion for the U. gibba's traps and environment. Pair-end reads were merged using PANDASEQ
[16]. Quality checks and trimming (Q>30, 98% of the sequence) were performed using the
FASTX_Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Using Bowtie we performed an ini-
tial alignment and screening of the reads against reference genomes [17] in order to eliminate
U. gibba genomic sequences, as well as other Eukaryotic organisms. The reference genomes
used were: U. gibba, Arabidopsis thaliana, Drosophila melanogaster, Cryptosporidium parvum,
Saccharomyces cerevisae, and Trypanosoma brucei. Alignments against the references were per-
formed sequentially against the reference genomes, discarding the matching sequences in each
step. We used the output from the reference genome alignments that did not match any of the
references as the assembly input. The assembly was conducted using Velvet [18] using a
31-kmer threshold. The unfiltered dataset was used to estimate the overall diversity including
other Eukarya and Archaea that might be discarded due to filtering.

Diversity
Taxonomic comparison with other microbiomes, including three plant associated microbiomes
with Arabidopsis and soybean (4562080.3, 4562079.3, 4477749.3 [6,19]; two fresh water micro-
biomes (4536380.3, 4441590.3 [20,21]; and two soil microbiomes (4445993.3, 4562078.3
[6,22]) as comparative external groups to establish a baseline of particular taxonomic composi-
tion within the U. gibba's related metagenomes. For the 16S rRNA gene determination we used
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homology detection by means of RDP naive classifier and the Greengenes database [23,24]. We
used a minimum threshold for Greengenes DB of an alignment length of 20 bases and e-value
of 1e-10. Structural alignments were assembled against reference models for eukaryotes,
archaea, and bacteria for the unfiltered Ugt data set with SSU-align [25]. LCA was performed
using both NCBI's NR (December 2014), and the M5NR databases [26] with Megan [27].

Annotation
Coding sequences of the Ugt and Ugm were annotated using the KEGG Automatic Annotation
Server [28], using the best bi-directional hits and an e-value cut-off of 10−10. The filtered meta-
genomic assemblies were uploaded and annotated with the MG-RAST server [29]. The cut-off
values used were: e-value 1e-10; minimum identity of 60%, and a minimal alignment length of
15.

Pan-genomes fragment recruitments
Complete sequenced prokaryote genomes files were downloaded from the following URL:
ftp://ftp.ncbi.nih.gov/genomes/Bacteria. A non-redundant list of genomes per species was
build and used as reference to concatenate all the predicted genes of all the strain for species in
a multi-fasta file. Afterwards, cd-hit-est [30] was used with a 90% identity and a word size of 8.
Each non-redundant cd-hit-est output is what is called here a pan-genome, a total of 1,434
pan-genomes were calculated. Fragment recruitments were done against each pan-genome
with nucmer, part of the MUMmer package [31], a minimum threshold of 0.8 in the metagen-
ome to pan-genome alignment was used as a filter to align individual metagenomic sequence
reads to the pan-genome. The pan-genome coverage is calculated as the metagenomic reads
aligned against the reference pan-genome.

Functional comparison with other metagenomes
Environmentally related metagenomes were compared using the following accessions from
MG-RAST: a tropical soil from a rain forest in Puerto Rico (4446153.3, [32]) a rice rhizosphere
from the Philippines (4449956.3; [33]), and a marsh, Albufera in Valencia, Spain (4516288.3;
[34]). Metagenomes were selected on the basis of their potential similarities to the U. gibba's
collective environment.

Statistical analysis
All statistical analysis were conducted using R (version 3.1.2, with a X86_64 architecture). Plots
were constructed using R's ggplot2, RcolorBrewer (v1.1–2), and phyloseq. Data was normalized
using relative proportions, non-parametric t-tests were conducted to compare between groups.
Multiple testing was corrected using False Discovery Rates through permutations to avoid the
inclusion of false positives. For qualitative purposes the average gene abundance was used as
baseline to determine the fold enrichment in Ugt. The statistical testing of diversity, and its sig-
nificance were assessed with phyloseq, vegan (v.2.2–1) and metastats R packages [35–37].

Availability of supporting data
The whole metagenome reads are available in the National Center for Biotechnology Informa-
tion Short Read Archive (SRA) under accession numbers SRS941319 (Ugt), and SRS941335
(Ugm). The annotated data of this study are also available on the MG-RAST server under
accessions numbers 4546121.3 (Ugt), 4546120.3 (Ugm).
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Results and Discussion

The Utricularia gibbametagenomes
The sequenced trap metagenome comprised a total of 3,431,148 reads spanning 1.13 x 109 bp,
and that for the surrounding water plus sediment (Ugm) comprised 3,541,022 reads spanning
1.06x109 bp. The GC% content was 51% ± 13 for Ugt and 58% ± 11 for Ugm. Before the assem-
bly of the prokaryotic metagenome for both Ugt and Ugm, we filtered the raw reads against the
custom eukaryotic genomic databases (see Methods). Assembly statistics are available in S1
Table. We analyzed the raw Ugt dataset to describe eukaryotic and archaea sequences within
the metagenome. Almost 50% of the raw-detected rRNA genes from the Ugt sequences were
assigned to eukaryotes, and by lowest common ancestor (LCA) we confirmed that most of
those hits (31,373) belong to plants, with 110 hits to Ecdysozoa (probably a nematode), 10
matches to ciliated protozoa (Tetrahymena), and 129 hits to Oomycetes fungi (see S1 and S2
Figs). The Ugm metagenome had a total of 3,267,004 predicted CDS, and it was possible to
annotate 42% of them. A total of 488,776 rRNA genes were predicted. The predicted ORFs
within the Ugt metagenome comprises 3,106,769 predicted proteins of which 50.21% had a
homolog in the M5NR DB. A total of 543,452 rRNA genes were identified in the Ugt.

Estimating the U. gibbametagenome diversity
We used three approaches to characterize the Ugt and Ugm microbiome: 16S rRNA gene pro-
filing, the lowest common ancestor (LCA), and fragment recruitment (Fig 1). The total number

Fig 1. Taxonomic diversity features ofU. gibba and related environments. (A) Alpha diversity measurements for U. gibba’s trap (Ugt), its surroundings
(Ugm), Plant-associated (Pa), Water (W), and Soil (S) microbiomes. Wemade use of both 16S rRNA gene (circles) fragment assignments and lowest
common ancestor (LCA, squares). Both Ugt and Ugm shows the largest expected number of species (Chao1) of the compared environments, although Ugm
is more diverse (Shannon) than Ugt, and Ugt is in a less dominated environment than Ugm (Simpson).

doi:10.1371/journal.pone.0148979.g001
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of species observed with LCA was 1,087 for Ugm and 1,041 for Ugt, whereas the Chao1 index
predicted a total of 1,222 species for Ugm and 1,168 for Ugt. The Chao1 index is a non-
parametric estimator that considers the number of observed species and then gives an expected
number of species based on the singletons (OTUs observed one time in the dataset) and dou-
bletons (OTUs observed twice), and it has been recommended for the comparison of samples
or environments with different coverages [38,39]. Shannon's index is considered to be in the
range of a diverse environment for both Ugt (4.217) and Ugm (5.44). Shannon values of
approximately 3–4 are considered diverse for macro-species [40], and the ranges for microor-
ganisms vary from 0.0076 to 8.7 [41]. We calculated these values with related environments
including soil, water, and plant associated microbiomes (see Methods for details about samples
used for comparison), finding that their index ranged between 4.0 and 5.34, which shows that
those environments are also diverse (Fig 1). Simpson's index, shows large values of dominance
for both Ugt (0.9376) and Ugm (0.9865), suggesting that the two systems are not equally dis-
tributed and some species dominate these environments, but Ugt is the least dominated envi-
ronment of the ones that we compared.

Using taxonomic assignments by 16S rRNA genes, the most abundant Phyla are: Proteobac-
teria (Ugm = 36.89%, Ugt = 79.92), Bacteroidetes (Ugm = 18.81%, Ugt = 8.25%), and Firmi-
cutes (Ugm = 7.29%, Ugt = 11.74%) (Fig 2). The relative abundances of the comparative groups
for plant, water and soil-associated environments also showed that the most frequently found
phyla are Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cyanobacteria,

Fig 2. Most abundant phyla assigned forU. gibba's trap.U. gibba's trap (Ugt), its surroundings (Ugm), and other related microbiomes. Independently of
the classification method used the most abundant phyla are: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, andCyanobacteria.

doi:10.1371/journal.pone.0148979.g002
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independent of the classification method used. At the family level the major players in Ugm are
Myxococcaceae (LCA = 11.15%; delta-epsilon Proteobacteria), followed by Verrumicrobia sub-
division 3 (LCA = 7.7%, 16S = 9.2%; Verrumicrobia), Planctomycetaceae (LCA = 6.32%,
16S = 5.82%; Planctomycetes) (Fig 3). The most abundant Ugt families using both LCA and
16S rRNA gene are Enterobacteriaceae (LCA = 20.32%; 16S = 20.87%) and Pseudomonaceae
(LCA = 17.29%; 16S = 23.89%) (Fig 3). The LCA method allows detection of families such as
Rhodocyclaceae (8.99%), Oxalobacteraceae (5.88%), and Neisseriaceae (3.35%) all belonging to
Betaproteobacteria. Some families, such as Clostridaceae (10.19%; Firmicutes), which is defined
by its strict anaerobic capabilities were detected in Ugt by 16S rRNA gene analysis but not by
LCA, albeit at a low abundance. In other systems it has been reported that Clostridaceae has a
role in atmospheric nitrogen fixation and has been found as an endophytic bacterium in Zea
spp. [42,43] which could explain its presence in the Ugt anoxic environment (Fig 3).

To detail the Ugt species composition we built a total of 1,434 species pan-genomes (see
Methods), which were used to perform fragment recruitment analysis. The pan-genomes that
recruited the most of Ugm reads (88% average identity, 0.93X coverage) corresponded to
Rubrivivax gelatinosus, a facultative photoheterotrophic Proteobacteria usually found in fresh-
water, sewage, and sludge [44], followed byMethylibium petroleiphilum, which is capable of
metabolizing Methyl ter-butyl ether (MTBE) fuel, aromatics such as benzene, and other hydro-
carbons [45] (Fig 3). In the trap, the most recruited metagenomic reads were matched to Pseu-
domonas monteilii (92% average identity, 2.94X coverage). Several other Pseudomonad species
were also recruited in the Ugt at a high abundance including P. putida, P. entomophila, P. bras-
sicacearum, and P. poae (Fig 3). A complete list of recruited species, average identity and cover-
age is available in S2 Table.

A bi-plot was conducted showing both families and different samples from soil, water and
plant associated environments (Fig 4A and 4B). Ugt is distant from the rest of the compared
environments; this is shown more dramatically by means of LCA classification, in which this
arrangement explains 66.71% of the variance (Fig 4B). The families that distribute closer to Ugt
are: Enterobacteriaceae, Oxalobacteraceae, Neisseriaceae, Rhodocyclaaceae and Clostridaceae,
whereas Ugm hasMyxococcaceae, Geobacteraceae, andMethylococaceae as the most abundant
families. Sample similarities were also inspected by cluster analysis, and in both 16S and LCA
ordering plant-associated and soil samples tend to cluster together, while Ugt is always a sister
group to water samples, as is the case for Ugm (Fig 4C and 4D). Fine details of the family abun-
dances across all samples are available as heat-maps (S3 and S4 Figs).

Recently, the matagenome from some other species of carnivorous plants have been
sequenced, including Genlisea aurea, and 4 other Utricularia species [14,15]. The Genlisea
metatranscriptome work defines diversity at the genus level (39–188 genera) and define the
“active”microbiome as a function of the relative abundance (>0.1%) of transcripts. In a meta-
analysis using representative hits of 16S rRNA gene Ugt is more diverse than the Genlisea traps
(188 phylotypes at the genera level), the Ugt hosts 398 bacteria, 2 Archaea, and 797 eukaryotic
genera, the complete Ugt genera list and its details are available as S3 Table. The dominance of
Proteobacteria is common to both Genlisea and Ugt, as well as other plants. Although, Pseudo-
monas is the most abundant genus in Ugt while in Genlisea the genera Asaia and other Rhizo-
biales are enriched resembling a traditional root microbiome in the case of Genlisea [15].

The metatranscriptomic and microbiome analysis in the other Utricularia species focused
on diazotrophic diversity [14]. In this work we collected similar taxonomic diversity to the one
described previously in other Utricularia species, even in different continents. Going further,
we were able to identify up to species pan-genomic level in Ugt and reconstruct their genomes
with fragment recruitments analysis. We found that Pseudomonas monteilii is the most abun-
dant recruited species, which had been found, along with other Pseudomonas species, to be a
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plant growth promoting bacteria [46,47], and is in agreement with the previous findings of the
presence of Pseudomonas species in sister Utricularia species [14].

Functional diversity in the traps, its surroundings, and environmental
related metagenomes
A comparison between the U. gibba's predicted proteome against Ugt and Ugm was conducted
by means of KEGG orthology (see Methods). These comparisons allowed us to investigate
enzymes and general metabolism proteins shared among the plant, its trap and the surround-
ings (S4 Table). The core of the proteins in Ugt, Ugm and the plant is reduced to 860 shared
proteins (Fig 5A). Most of the shared genes are between Ugt and Ugm (3146), thus supporting
Ugt as a subset of Ugm. Ugt shows unique features (N = 1,221) which could be part of the
microbiome's functional input to its host (Fig 5A). The shared and unique features for Ugt,
Ugm and U. gibba are easily visualized by means of ternary and heat-map plots (Fig 5B and
5C). When comparing the functional diversity of Ugt and Ugm at the SEED's higher hierarchy
level (Fig 5D) the overall picture indicates that Ugt metagenome encodes genes for carbohy-
drates metabolism (Ugt = 3,148; Ugm = 2,789), iron acquisition and metabolism (Ugt = 621,
Ugm = 169), and dormancy and sporulation (Ugt = 201; Ugm = 37). By contrast Ugm devotes
a larger number of genes to respiration (Ugm = 1,596; Ugt = 1,180) and stress response genes
than Ugt (Ugm = 822; Ugt = 689) (Fig 5D). These results support the environmental niche of
Ugt and suggest that the microbes that colonize the trap take advantage of the carbon sources
provided by the plant and that iron is an active limitation for both the plant and its micro-
biome. The dormancy and sporulation category probably reflects the bias for organisms like
Clostridaceae while not being the dominant species within the trap, its presence in this niche
cannot be neglected because O2 limitation inside the trap selects for anaerobic and facultative
aerobic bacteria.

The selected metagenomes for the environmental comparisons were from related environ-
ments such as a rice rhizosphere, a tropical soil, and a marsh (see Methods). Nonmetric Multi-
dimensional Scaling (NMDS) functional analysis confirmed that the taxonomic Ugt
uniqueness, a total of 11,891 annotated features were used across all samples, placing the Ugt
cluster apart (Fig 6). The annotation, detected significant Ugt over-represented (OR) genes
with its false discovery rate corrected p-value, and the 250 most abundant genes within Ugt are
available in S5 Table.

The anaerobic conditions within the trap were supported by the presence of genes such as
arcB which is an aerobic respiration control sensor, a nitrate/nitrite sensor histidine kinase
NarQ (14-fold), ntrY (6-fold) which is a nitrogen regulation sensor, the nitric oxide deoxygen-
ase (33-fold), and NirD (18-fold) which is part of the NirBD complex that reduces NO2 to NH3

[48]. The presence of MazG (11-fold) could be explained in several ways, for example that is
the result of NTPs hydrolysis because of ROS damage, or as a sensing system for amino acid
starvation [49].

A putrescine importer (puuP, 10-fold) and its repressor (puuR, 8-fold), as well as the putres-
cine binding protein (potF, 5-fold), and its exporter PotE are present in Ugt, suggesting the
contribution of polyamines to the host by Ugt microbes. It has been shown that puuP is an
essential gene when only putrescine is used as Nitrogen/Carbon source [50].

Fig 3. Family diversity and fragment recruitment to 1434 reference pan-genomes. The most abundant species are shown using an identity >90% of 6
frame translations for both reference and queries. In the bottom line of fragment recruitments, we can observe the consensus sequence comparing with the
reference pan-genome.

doi:10.1371/journal.pone.0148979.g003
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Nitrogen plays an important role in the Ugt microbiome. First, the Ugt microbiome has
genes encoding for metabolism of cyanophycin (p = 0.00674), which is a reserve material for C
and N, and is also present in the specialized cyanobacteria heterocists where nitrogen fixation
takes place [51]. Several significant Over Represented (OR) nitrogen related proteins such as
NifE (p = 0.00009), and NirN (p = 0.0239) are included in Ugt. NifE codes for an assembly pro-
tein for a nitrogenase with a FeMo-cofactor and because of the limited Oxygen within Ugt it
makes sense to have the Nitrogen fixing capabilities. NirN, by contrast is a largely ubiquitous
gene among denitrifying bacteria that encodes a dehydrogenase involved in denitrification car-
rying out the last step of heme d1 biosynthesis [52]. The observation of this in Pseudomonas
strains corresponds with our results from fragment recruitments. The energy production via
denitrification is relevant when growing under anaerobic conditions such as those present in
the Ugt. The possible role of the Ugt microbiome in the urea cycle and the polyamines is rein-
forced by an ORF for putrescine utilization pathways (p = 0.005), cyanophycin related proteins
(p = 0.007), and arginine and ornithine degradation enzymes (p = 0.019). This is also sup-
ported by the presence of Glutathionylspermidine amidohydrolase (p = 0.018), which is a
bifunctional enzyme with synthetase and hydrolase domains that could help to regulate antiox-
idant stress in the trap environment [53].

Phosphorus uptake and assimilation in Ugt are represented by genes encoding the phospha-
tases PldB (8-fold), and PldA (7-fold). Here, in comparison with other metagenomes we found
that the master transcriptional regulator, responsible for the sensing and response to Pi from
the environment, PhoB [54], is significantly OR in Ugt (p = 0.4251). Another piece of evidence
for the relevance of phosphonate scavenging is the finding that 2-aminoethylphosphonate
pyruvate aminotransferase is OR in Ugt (p = 0.0367), as is an alkylphosphonate ABC trans-
porter (p = 0.0054); it is also supported by a large set of the phn related genes are over-repre-
sented in the Ugt (phnCDIJKP).

Within the unique features of Ugt, which were not present in the other environmental meta-
genomes, we found several proteins that could help bacteria to deal with the trap's harsh envi-
ronment via osmoprotection such as K00697 coding for OtsA, a trehalose phosphate synthase;
K05845-46 with the genes opuC (4.6-fold), opuBC (13-fold) and proP (10-fold) which are part
of the osmoprotectant transport system; and a range of two component system coding genes
such as envZ (20.5-fold) which works an osmolarity sensor. It has been reported that the Ugt
maintaining negative pressure within the trap, and also that water is removed within Ugt when
a prey is captured, thus making it necessary to have strategies cope with dehydration and pre-
serve the cell functioning [55]. TauB (5.5-fold) is present and its part of an ABC transporter,
and taurine could help to cope with ROS, via NADPH oxidase [56]. Along these lines, glutathi-
one related proteins are found to be OR in Ugt: reductases (7.8-fold), transferases (4.4-fold),
and ketFG (7_fold; glutathione-related potassium efflux system). Another osmoprotection pro-
tein, GbcA, a glycine betaine demethylase is only in Ugt.

There are functional similarities between Ugt and other analogous systems like the Rice
endophytes. In the rice's endophytes metagenome [7], there are several ROS detoxification pre-
dicted proteins which are in line with the findings for Ugt. It has been proposed previously that
endophytes require ROS detoxification enzymes to successfully colonize the plant, this has

Fig 4. U. gibba's traps are a unique environment according to its taxonomic profile.Correspondence analysis using both (A) 16S rRNA gene, and (B)
Lowest Common Ancestor (LCA) profiles families. It can be seen that the U. gibba's traps (Ugt) is a unique environment, this is more evident in the LCA bi-
plot, where it stands on its own quadrant. This distribution explains a total of 66.71% variance. The bi-plots show the closest families to the Ugt. (C) 16S rRNA
gene clustering dendrogram (complete linkage) showing the similarity between theU. gibbamicrobiomes and the soil, water, and plant-associated ones. The
surrounding U. gibba's environment (Ugm) is closer to water samples than it is to Ugt, and Ugt is on its own with a large branch length. Using the LCA
approach a family level clustering (D) shows that Ugt and water-related samples cluster apart from all the related environments.

doi:10.1371/journal.pone.0148979.g004
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Fig 5. Comparative functional genomics and the complement betweenU. gibba's genome, and its trap (Ugt). (A) Venn diagram comparing the
amount of shared genes between the plant's genome, Ugt, and Ugm (using KEGG orthologs). (B) A Heat-map showing the overall metabolic complement
supplied by Ugt, note that most of this complement is shared with Ugm and only a subset is in greater abundance in Ugt. (C) A ternary plot in which each dot
corresponds to a KEGG ortholog and its diameter is proportional to its abundance. This plot shows that most of the predicted gene functions are shared
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between Ugt and Ugm, whereas a minimal portion of genes are shared directly between Ugt, Ugm and the plant's genome. (D) Major functions coded by both
U. gibba's trap (Ugt) and its medium (Ugm). The categories used correspond to level 1 of the SEED's hierarchy.

doi:10.1371/journal.pone.0148979.g005

Fig 6. The Ugt metagenome is quite unique, even with the predicted functional analysis. A Non-Metric Dimensional Scaling (NMDS) bi-plot analysis is
shown and using 11,891 annotated features fromM5NR DB, where level 1 SEED's functional hierarchy is used to color the predicted genes. The analysis
confirms the uniqueness of Ugt with other metagenomes, and shows that Ugm is functionally clustered apart from Ugm.

doi:10.1371/journal.pone.0148979.g006
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been proposed for two of the species of plant growth-promoting bacteria found in the trap as
Enterococcus sp. and Klebsiella sp. [57,58].

Some DNA repair and recombination coding genes are OR in Ugt, as is the case for the
DNA repair protein RAD51 (p = 0.276) which is a eukaryote homologue to RecA and works in
homologous recombination [59], and the formamidoyrimidine-DNA glycosylase (Fpg;
p = 0.277) which is a DNA repair enzyme that removes oxidized purines [60].

The microbiome of U. gibba is probably contributes to cell detoxification within the trap,
as well as resistance to some antibiotics, as is the case for the multidrug efflux transporters
MexB (p = 0.04466), and MexD (p = 0.00748). MexB is part of themexA-mexB-oprK operon,
and its outer membrane is OprK; these genes account for the pyoverdine export, and resis-
tance to β-lactams [61]. By contrast, MexD is part of the efflux system MexC-MexD-OprJ
which gives resistance to fourth generation antibiotics, and fluorine-quinolones but not to
regular β-lactams [62]. The production of antibiotics could influence the Ugt microbiome
composition; for example, in the particular case of the bacteriocin TldD (p = 0.01223), which
acts as a protease and its required to maturate the mycrocin B17 prior to its export, a muta-
tion in tldD results in failure to export the mycrocin [63]. The community structuring via
antibiotics and bacteriocins has been found in other environments, and it occurs between
closely related species, suggesting that the selection struggle occurs even at a narrow phyloge-
netic distance [64,65].

Iron scavenging strategies and metal homeostasis are well represented in Ugt by means of
the iron complex receptor, permease, and substrate binding proteins (K02014-16, K16089).
The proteins responsible for metal homeostasis are also OR in Ugt with cusS/copS (22.5-fold)
which is a heavy metal sensor, a nickel/cobalt exporter (rcnA, 11-fold), zinc transport protein
(6-fold), and a Cu(I)/Ag(I) efflux membrane protein (5.25-fold). An interesting function
detected only on the Ugt metagenome, is carried out by NfuA a nickel-sulfur protein which
allows the use DNA as a sole carbon source [66]. The enrichment of iron scavenging mecha-
nisms have been seen also in the rice endophytes [7], and it has been suggested that this is a
potential of the endophyte communities to over-compete pathogens, this has been observed
with some cultured endophytes [67].

Regarding the hydrolytic contribution of the Ugt microbiome to its host, there are a plethora
of peptidases, proteases, and hydrolases that are much more abundant in Ugt than Ugm (com-
plete list is available as S4 Table). From the U. gibba's transcriptome we have learned about the
role of the plant in the hydrolytic activity within the traps, which was thought to be determined
solely on is microbial community [9], but the coding potential in the Ugt microbiome for
hydrolytic activities certainly have the capacity to complements the U. gibba encoded hydro-
lytic enzymes.

A qualitative analysis of the 250 most-abundant proteins for all the compared metagenomes
is shown in S5 Fig, and the data are available in S5 Table. The general overview of the qualita-
tive analysis is that Ugt is merely a subset of Ugm but with differential OR features supporting
the Ugt uniqueness. One of the most abundant Ugt predicted proteins is siderophore related,
which is specifically involved in the pyoverdine synthesis (S5 Fig Ids = 14964, 14968), and is
well known to be a Pseudomonas' trait [68]. The presence of 2-oxoglutarate dehydrogenase (S5
Fig id = 8840) which is highly abundant in Ugt, may contribute to a plant's ammonium input
[69]. The presence of the 2-oxoglutarate dehydrogenase (OGDH), and several genes associated
with the biosynthesis of its cofactor thiamin diphosphate (thiL, thiE, thiB and tbpA), along
with the enzyme aconitase, which was found to be significantly abundant in Ugt (p = 0.0238),
support a reverse TCA cycle, replacing the carbon source for glutamine with the synthesis of
acetyl CoA, citrate, and fatty acids under anaerobic conditions [70,71]. Nitrogen assimilation
via glutamine (GS) and glutamate synthetase (GOCAT) has been suggested to be a metabolic
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signal regulating both nitrogen and carbon metabolisms, this requires 2-oxoglutarate as a main
source [69].

Regarding to previous Genlisea and Utricularia's metatranscriptomes this work enriches
the knowledge in carnivorous plant microbiomes. When defining the active microbial popu-
lation metatranscriptomics is a choice, but we are also aware that metagenome sequencing
allows describing the taxonomic and metabolic community structure, which is necessary to
later distinguish between the active and resilient inhabitants from the transient ones.
Although, we are aware that some species and genes described in this work may not be tran-
scriptionally active, we describe the most represented taxa and genes in the Ugt microbiome,
without PCR amplification biases. The metatranscriptomic approach poses some biases gen-
erated by rRNA depletion/mRNA enrichments treatments and caution must be taken
because of the labile life of mRNA, some transcripts are so specific that are present only dur-
ing seconds to over an hour and then further degraded [72,73]. Finally, the goal of describ-
ing a metagenome is different from a metatranscriptome, the metagenome stands for
describing the composition and the metatranscriptome goal is to study gene regulation.
Moreover, it has been observed that 41% of transcripts of a metatranscriptome does not
show significant differences when comparing the gene abundances against the reference
metagenome [74].

Finally, the connection between the taxonomic and metabolic diversity is congruent in the
Ugt. The metabolic repertoire of the Pseudomonas genus is vast, and in the case of the particu-
lar species that recruited the most Ugt reads, P.monteilii has a wide range of catabolic capabili-
ties, including hydrocarbon degradation of benzene, toluene, ethyl-benzene [75],
formaldehyde [46], and organophosphate compounds [47]. Although P.monteilii and other
well represented species in Ugt such as Klebsiella variicola, and Enterobacter sp. R4-368 were
first isolated from clinical samples and treated as potential human pathogens [76], they also
have been shown to be nitrogen fixers when living as plant-associated bacteria [77,78] and pro-
viding other plant benefits like phosphorus mobilization, fungi pathogen inhibition, and pro-
viding plant hormones to its host [79–81]. Previous reports on the model Arabidopsis have
highlighted the thin line between being a pathogen or a beneficial bacterium. For instance, tiny
changes, such as modifications to a quorum sensing system in Pseudomonas aeruginosa, could
switch it from human pathogen to be a plant growth-promoting bacteria [82], and further
work on U. gibba's microbiome could test this duality.

Conclusions
The U. gibba's trap microbiome is a unique, and highly diverse bacterial community, with par-
ticular species composition even when compared with its surrounding environment. The U.
gibba's trap metagenome helped to find mechanisms by which microorganisms could help the
plant host to cope with the harsh trap environment with plentiful of ROS and its mutagen
effects, some of these mechanisms are shared with analogous systems like rice. This study com-
plements the previous U. gibba transcriptomic study, and its whole-genome sequencing, by
showing the metagenome complement supplied by its microbial inhabitants. At the pan-geno-
mic level, several Pseudomonas species seem to be major players within the trap along with sev-
eral species like Klebsiella and Enterobacter, and we were able to map the metagenomic reads
to reference pan-genomes, and giving the chance for further environmental genomes assem-
blies The predominance of bacteria in the trap that have been previously reported to be plant
growth promoters could suggest that in U. gibba, a rootless plant, the microbiome needed by
the plant to enhance its capacity for nutrient uptake and assimilation, and healthy development
has switched from being associated with the root system to being associated with the trap. This
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work also opens new venues regarding directed isolation of the most abundant bacteria within
the trap and test their metabolic capabilities, as well as testing their temporal resilience to deter-
mine whether the trap microbiome is stable or highly dynamic depending on seasonal or geo-
graphic conditions. The metabolic resemblances with other species like the rice, and the
taxonomic conservation compared with other Utricularia species are larger than chance and
opens the quest for a metabolic core of genes and species in the endophyte microbiome of
aquatic insectivorous plants.
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