

Supplementary Material

Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition

Kateřina Němečková*, Jan Mareš, Lenka Procházková, Adam Culka, Filip Košek, Jacek Wierzchos, Linda Nedbalová, Jan Dudák, Veronika Tymlová, Jan Žemlička, Andreja Kust, Jan Zima Jr., Eva Nováková, and Jan Jehlička¹

* Correspondence: Corresponding Author: katerina.nemeckova@natur.cuni.cz

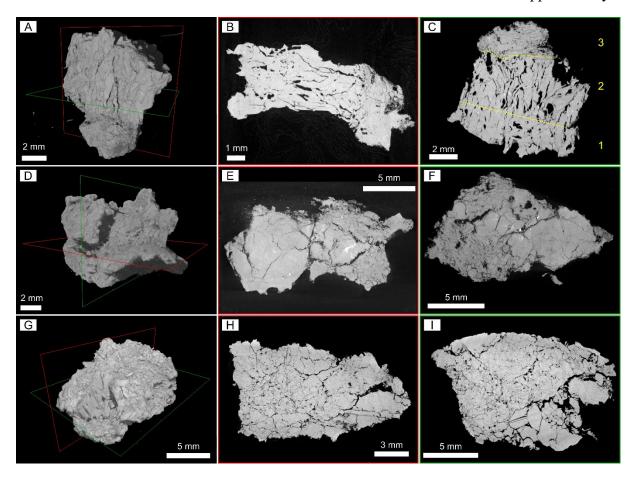
Table S1: Raman bands of the detected pigments.

Table S2: Table of samples used for metagenomics analysis, their lithology, characterization of endolithic colonization and relative abundance of endolithic phototrophs.

Figure S1: Micro-CT 3D reconstructions and selected slices illustrating the inner architecture and void space of gypsum fragments. Samples from Monte Perrera - MP1 (A - B) and MP2 (D - F); and from Monte Gibliscemi MG (G - I). The red and green frames in the 3D images show the position of the displayed slices.

Figure S1: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two localities in Sicily. Samples from the studied localities are enclosed within convex hulls with centroids marked by asterisks (Siculiana Marina – black, full line, Santa Elisabetta – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from Siculiana Marina exhibited greater overall diversity (they were also greater in number).

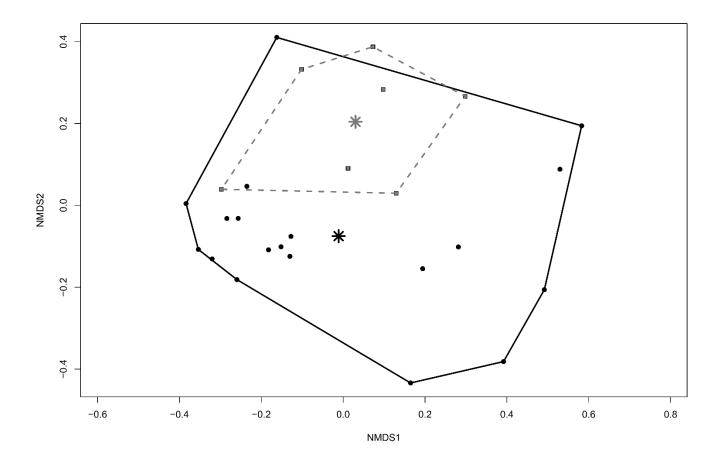
Figure S2: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two different gypsum varieties. Samples from the studied substrates are enclosed within convex hulls with centroids marked by asterisks (selenite – black, full line, crystalline gypsum – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from selenite exhibited greater overall diversity (but they were also significantly greater in number).


Figure S3: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two differently coloured layers of colonization. Samples from the studied

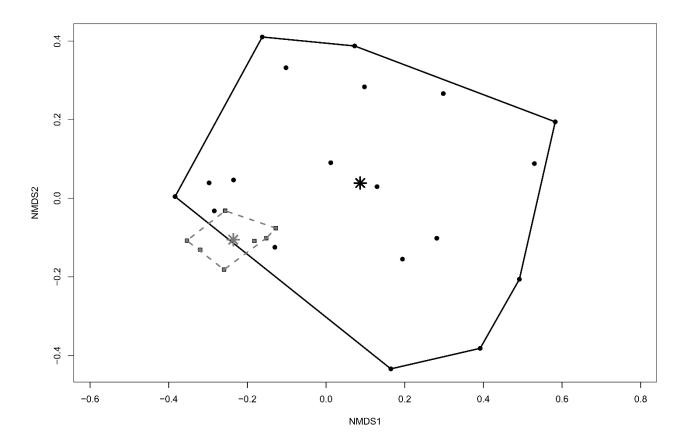
endolithic layers are enclosed within convex hulls with centroids marked by asterisks (black zone – black, full line, green zone – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from black layers exhibited greater overall diversity.

Site	Sample/ colour of colonisation	Organism	Identified pigment	Detected Raman bands	
	1CF black	Nostoc sp.	scytonemin	1712 w, 1633 m, 1600 s , 1558 m, 1387 w, 1324 w, 1174 ms , 1098 mw, 1023 w, 755 w, 681 w	
Siculiana Marina		Gloeocapsa sp.	gloeocapsin	1671 m, 1289 m, 480 mw	
		Gloeocapsopsis pleurocapsoides	carotenoid	1516 vs , 1449 w, 1388 w, 1283 mw, 1189 mw, 1155 ms , 1004 m, 957 w	
Monte	S12 black	Gloeocapsa compacta	gloeocapsin	1668 s, 1571 s, 1424 ms, 1340 m, 1280 ms, 1190 m, 465 m, br	
Perrera site		Nostoc sp.	scytonemin	1711 w, 1633 m, 1598 s , 1555 m, 1381 mw, 1171 ms , 573 w, 436 w	
		Nostoc sp.	carotenoid	1513 vs , 1283 w, 1193 m, 1155 s , 1003 m, 958 w	
Monte Gibliscemi	S14 orange	Chlorophyta	carotenoid	1517 s , 1447 w, 1389 w, 1274 w, 1191 ms , 1156 s , 1005 m, 964 w	

 Table S1: Raman bands of the detected pigments.


Figure S1: Micro-CT 3D reconstructions and selected slices illustrating the inner architecture and void space of gypsum fragments. Samples from Monte Perrera - MP1 (A - B) and MP2 (D - F); and from Monte Gibliscemi MG (G - I). The red and green frames in the 3D images show the position of the displayed slices.

G**	Lithology	Layer	Sample ID	Relative abundance			
Site				< 5 %	5-49 %	> 50 %	
		Green	1	Nostoc sp., Microcoleus sp., Anathece sp.	Chroococcidiopsis sp., Chroococus sp., Gloeocapsa sp., orange- pigmented algae	-	
			2	Gloeocapsa novacekii, G.rupestris, Nostoc sp., Chroococcus sp.	Chroococcidiopsis sp., Gloeocapsa sp.	-	
			3	Nostoc sp. G. rupestris	Gloeocapsa sp.	Chroococcidiopsis sp.,	
			4	Chroococcus, G. Compacta, Nostoc sp., Anathece sp., Petalonema sp.	Gloeocapsa sp., G.rupestris	Chroococcidiopsis sp.,	
			5		Chroococcidiopsis sp., G. rupestris, G. novacekii	Gloeocapsa sp.	
	Selenite		6	Chroococcus sp., G. compacta	Chroococcidiopsis, Gloeocapsa sp., algae	-	
			7		Chroococcidiopsis sp., algae	Nostoc sp.	
			8	Gloeobacter violaceus, Nostoc sp., Chroococcidiopsis sp., G. novacekii	, Gloeocapsa sp., G. rupestris, algae	G. compacta	
		D11-	9			Nostoc sp.	
Siculiana		Black	10		algae		
Marina			11	Chroococcidiopsis sp.	Nostoc sp., Gloeocapsa sp.	Petalonema sp.	
			12	Petalonema sp., algae	Gloeocapsa sp.	Nostoc sp.	
_			13	G. novacekii, Nostoc	G. pleurocapsoides, G. rupestris, Gleocapsa sp. (bezbarvá)	G. compacta	
	White crystalline	Green	14	Gloeocapsa sp., G.compacta, Nostoc sp.	-	Chroococcidiopsis sp.,	
		Black	15	Petalonema sp., Chroococcidiopsis sp., Nostoc sp.	Gloeocapsa sp., G.compacta, G. biformis, G. rupestris, Gloeobacter violaceous	-	
		Green	16	Gloeocapsa sp., Nostoc		Chroococcidiopsis sp.,	
		Black	17	Gloeocapsa sp., G. novacekii, Nostoc sp.	Chroococcidiopsis sp., Gloeobacter violaceus, G. rupestris, G. compacta, G. biformis, Petalonema sp.	-	
		Green	18	·	Nostoc sp.	Chroococcidiopsis sp.,	
		Black	19	Petalonema sp., Chroococcus sp., G. novacekii,	Chroococcidiopsis sp., Nostoc sp., G. compacta	-	
		Black	20	Nostoc sp., G. novacekii	Gloeocapsa sp., G. compacta, G. rupestris, Chroococcidiopsis sp.	-	
Santa Elisabetta	Selenite	green	21	Petalonema sp., algae	Gloeocapsa sp., algae	Chroococcidiopsis sp.,	
		black	22	·	Gloeocapsa sp., Nostoc sp., G. biformis, algae		
		black	23	Chroococcidiopsis sp., algae	G. rupestris	Gloeobacter violaceus	
		black	24	Orange-pigmented algae	Nostoc sp.	Chroococcidiopsis sp.,	
		green	25		Chroococcidiopsis sp., Nostoc sp.	Gloeocapsa sp.	
		green	26	Chroococcidiopsis sp., algae	-	Gloeobacter violaceus	
		black	27		Nostoc sp., Chroococcidiopsis sp., algae	<u>-</u>	


Table S2: Table of samples used for metagenomics analysis, their lithology, characterization of endolithic colonization and relative abundance of endolithic phototrophs.

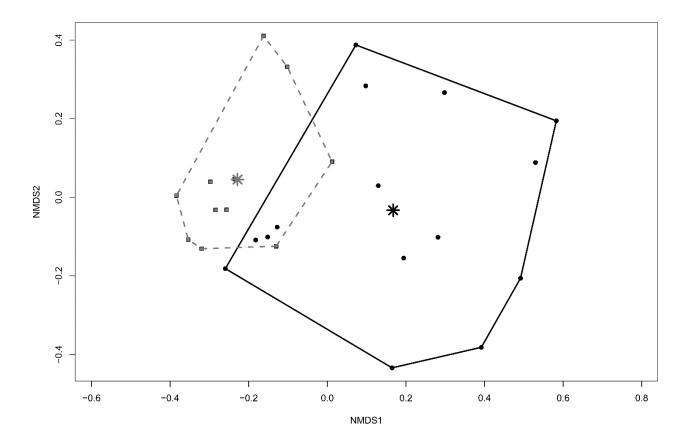

Figure S2: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two localities in Sicily. Samples from the studied localities are enclosed within convex hulls with centroids marked by asterisks (Siculiana Marina – black, full line, Santa Elisabetta – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from Siculiana Marina exhibited greater overall diversity (they were also greater in number).

Figure S3: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two different gypsum varieties. Samples from the studied substrates are enclosed within convex hulls with centroids marked by asterisks (selenite – black, full line, crystalline gypsum – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from selenite exhibited greater overall diversity (but they were also significantly greater in number).

Figure S4: Non-metric Multi-Dimensional Scaling (NMDS) analysis of the diversity among gypsum endolithic samples from two differently coloured layers of colonization. Samples from the studied endolithic layers are enclosed within convex hulls with centroids marked by asterisks (black zone – black, full line, green zone – grey, dashed line). The analysis was based on Bray-Curtis distance matrix inferred from normalized abundances of the amplicon sequence variants (ASVs). The samples from black layers exhibited greater overall diversity.

Accession numbers

Colonizing gypsum under moderate climate: phototrophic endoliths and their pigments

Kateřina Němečková*, Jan Mareš, Lenka Procházková, Adam Culka, Filip Košek, Jacek Wierzchos, Linda Nedbalová, Jan Dudák, Veronika Tymlová, Jan Žemlička, Andreja Kust, Jan Zima Jr., Eva Nováková, and Jan Jehlička¹

* Correspondence: Corresponding Author: katerina.nemeckova@natur.cuni.cz

Cyanobacteria

SUB12910156 Seq1 OQ509403	SUB12910156 Seq16 OQ509418	SUB12910156 Seq31 OQ509433
SUB12910156 Seq2 OQ509404	SUB12910156 Seq17 OQ509419	SUB12910156 Seq32 OQ509434
SUB12910156 Seq3 OQ509405	SUB12910156 Seq18 OQ509420	SUB12910156 Seq33 OQ509435
SUB12910156 Seq4 OQ509406	SUB12910156 Seq19 OQ509421	SUB12910156 Seq34 OQ509436
SUB12910156 Seq5 OQ509407	SUB12910156 Seq20 OQ509422	SUB12910156 Seq35 OQ509437
SUB12910156 Seq6 OQ509408	SUB12910156 Seq21 OQ509423	SUB12910156 Seq36 OQ509438
SUB12910156 Seq7 OQ509409	SUB12910156 Seq22 OQ509424	SUB12910156 Seq37 OQ509439
SUB12910156 Seq8 OQ509410	SUB12910156 Seq23 OQ509425	SUB12910156 Seq38 OQ509440
SUB12910156 Seq9 OQ509411	SUB12910156 Seq24 OQ509426	SUB12910156 Seq39 OQ509441
SUB12910156 Seq10 OQ509412	SUB12910156 Seq25 OQ509427	SUB12910156 Seq40 OQ509442
SUB12910156 Seq11 OQ509413	SUB12910156 Seq26 OQ509428	SUB12910156 Seq41 OQ509443
SUB12910156 Seq12 OQ509414	SUB12910156 Seq27 OQ509429	SUB12910156 Seq42 OQ509444
SUB12910156 Seq13 OQ509415	SUB12910156 Seq28 OQ509430	SUB12910156 Seq43 OQ509445
SUB12910156 Seq14 OQ509416	SUB12910156 Seq29 OQ509431	SUB12910156 Seq44 OQ509446
SUB12910156 Seq15 OQ509417	SUB12910156 Seq30 OQ509432	SUB12910156 Seq45 OQ509447

Supplementary Material

SUB12910156 Seq46 OQ509448 SUB12910156 Seq47 OQ509449 SUB12910156 Seq48 OQ509450 SUB12910156 Seq49 OQ509451 SUB12910156 Seq50 OQ509452 SUB12910156 Seq51 OQ509453 SUB12910156 Seq52 OQ509454 SUB12910156 Seq53 OQ509455 SUB12910156 Seq54 OQ509456 SUB12910156 Seq55 OQ509457 SUB12910156 Seq56 OQ509458 SUB12910156 Seq57 OQ509459 SUB12910156 Seq58 OQ509460 SUB12910156 Seq59 OQ509461 SUB12910156 Seq60 OQ509462 SUB12910156 Seq61 OQ509463 SUB12910156 Seq62 OQ509464 SUB12910156 Seq63 OQ509465 SUB12910156 Seq64 OQ509466 SUB12910156 Seq65 OQ509467 SUB12910156 Seq66 OQ509468 SUB12910156 Seq67 OQ509469 SUB12910156 Seq68 OQ509470 SUB12910156 Seq69 OQ509471 SUB12910156 Seq70 OQ509472 SUB12910156 Seq71 OQ509473 SUB12910156 Seq72 OQ509474 SUB12910156 Seq73 OQ509475

https://submit.ncbi.nlm.nih .qov/subs/?search=SUB1 2910156

Algae

OQ520113