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Abstract

Bacteria within the digestive tract of adult honey bees are likely to play a key role in the

digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not

well understood. During periods of low floral abundance, beekeepers often supplement the

natural sources of carbohydrate that honey bees collect, such as nectar, with various forms

of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the mono-

saccharides glucose and fructose). We compared the effect of these sugar supplements on

the relative abundance of bacteria in the gut of bees by feeding bees from a single colony,

two natural diets: mānuka honey, a monofloral honey with known antibacterial properties,

and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions

containing synthesised compounds associated with the antibacterial properties of mānuka

honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes contain-

ing mānuka honey, sucrose and invert sugar did not alter the relative abundance of domi-

nant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets

increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae,

Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of

Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bac-

teria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when

bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific

low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides,

and then to acetate.
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Introduction

European honey bees (Apis mellifera L.) are the primary pollinators of numerous nut, fruit,

and vegetable crops, so they play an integral part in global food production [1–4]. Pollination

by honey bee species (Apis sp.) and other bee species also ensures reproductive success of

uncultivated plants, including those in their native ranges [2, 4, 5]. In addition to pollination,

honey bees also produce economically valuable honey, as well as acting as a source of bee prod-

ucts such as pollen and propolis, the waxy resin collected from leaf buds. All three products are

utilised both as food and by the medicinal and dietary-supplement industries. This global utili-

sation of honey bees has made it important to understand the factors that influence honey bee

health. Hive management practices, and the colony’s access to adequate nutritional resources,

is crucial to colony health. The health and production of a colony is dependent on the location

that beekeepers place their hives to forage, the supplementary carbohydrate and protein

sources they feed their bees, and when they do this [6–8].

Honey bees require carbohydrate sources that they naturally obtain from nectar. Nectar

predominantly consists of water, pollen, and varying proportions of the monosaccharides glu-

cose and fructose, and the disaccharide sucrose [9–11]. Bee-pollinated flowers tend to produce

nectar with >35% sugar and honey bees reduce the moisture content within nectar to about

17% (range 13–24%) resulting in honey with a concentrated mix of sugar comprising of about

69% monosaccharides (approximately 38% fructose and 31% glucose) [12], and<15% disac-

charide (sucrose) [11].

The carbohydrates in the honey bee diet may be absorbed by the gut to sustain the bees, or

metabolised by gut bacteria before absorption [13]. However, during winter and spring when

nectar can be scarce, and when preparing colonies for winter, beekeepers often feed their bees

supplementary carbohydrates. These include sucrose, invert sugar (a mix of glucose and fruc-

tose) and high fructose corn syrup (HFCS; a sweetener made from cornflour, in which some

glucose has been converted to fructose) [6, 14, 15]. This additional feeding often protects the

bees from malnutrition, which can lead to immune system impairment [16] and increased pes-

ticide susceptibility [17]. However, extensive feeding of either sucrose or HFCS causes signifi-

cant differences in gene expression by the honey bee fat body (the nutrient-sensing organ

responsible for nutrient storage), including those associated with energy metabolism, and anti-

microbial peptide production [18]. These epigenomic consequences in honey bees, are very

similar to sugar-associated disrupted metabolism seen in vertebrates that are supplemented

with either glucose or fructose [19].

The function of bacteria residing in the digestive tract of animals, honey bees included, is a

rapidly developing field of scientific research that is proving to be fundamental to animal

health [20, 21]. A meta-analysis of the composition of gut bacteria in 62 insect species suggest

bacterial similarity within the subfamily Apinae, as well as the distinct communities of A. mel-
lifera relative to other bees [21]. This meta-analysis suggests that bacterial community struc-

ture in insects may be influenced by diet [21]. However, as this was not specifically identified

for honey bees, and recent research predominantly focusses on the effect of pollen rather than

carbohydrates, and does not specify the type or amount of supplementary feed consumed [22–

24], the effect of carbohydrate diets on the bacterial composition in the honey bee gut, and

how this may influence bee health, has not yet been researched.

The microbiota within the gut of adult worker honey bees contain 8 to 10 core bacterial

phylotypes [25]. These phylotypes are rarely found outside of the honey bee gut and are con-

sidered part of the conserved core microbiota, albeit with different relative abundances and

being more or less frequently detected [23, 26]. The dominant core phylotypes consist of two

species from the phylum Proteobacteria, Gilliamella apicola and Snodgrassella alvi [27]; two
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clusters of species from the phylum Firmicutes, Lactobacillus Firm-4; Lactobacillus Firm-5 [28,

29]; and the species cluster in the phylum Actinobacteria, Bifidobacterium [30]. The relative

abundances of the remaining core phylotypes are less consistent, and not always detected:

Frischella perrara [31], Bartonella apis [32], Parasaccharibacter apium [33], and a Gluconobac-

ter-related species group designated Alpha2.1 [29].

The gut has several sections that each contain bacterial populations of different taxonomic

compositions [28]. Only a few bacteria reside in the crop and the midgut. These include core

species that also reside in the larval gut such as Rhizobiaceae, the nitrogen-fixing bacteria [34],

Acetobacteraceae and Lactobacillus kunkeei [35]. The adult ileum is dominated by the non-

sugar fermenter S. alvi that colonises the gut wall, and the sugar fermenter G. apicola that

resides in the lumen [36]. The distal rectum is dominated by Lactobacillus and Bifidobacterium
[37, 38].

Bacteria in the honey bee gut are often symbiotic residents, with functions likely to be

essential to bee nutrition, digestion, reproduction, and protection against toxins and patho-

gens [39–41]. Metatranscriptome sequencing has shown that bacteria play several critical roles

in metabolising carbohydrate substrates. Some of these bacteria are primary sucrose-feeders,

and metabolise sugars into monosaccharides that are further metabolised into acid metabolites

such as acetate and lactate that assist with the breakdown of toxic sugars [41, 42]. The gut bac-

teria thus contribute to the repertoire of enzymes required for carbohydrate digestion [43].

The bacterial species from the phyla Actinobacteria and the class Bacilli produce several glyco-

side hydrolases, which in turn break down complex polysaccharides and simple sugars, and

also produce peptidases for protein hydrolysis [41]. In particular, glycoside hydrolase family

32 was found to be linked with sucrose degradation [41].

Sucrose solutions and honey are both antibacterial in vitro because of osmolytic effects

when applied at concentrations�40% and 10–20% (v/v), respectively [44, 45]. The anti-bacte-

rial properties of honey have been attributed to this high sucrose-equivalent concentration ca.

80% (v/v), as well as the presence of hydrogen peroxide, produced by the enzyme glucose oxi-

dase that the bees add to nectar [44]. Mānuka honey, obtained from the plant Leptospermum
scoparium, comprises ca. 85% sugars, predominantly fructose and glucose, with< 1–15%

sucrose [46–48]. Mānuka honey demonstrates peroxide activity, but methylglyoxal (MGO) is

the primary antibacterial compound at concentrations >0.15 mg/g [45, 49–51]. This was char-

acterised by comparing the bactericidal effects of honey containing high MGO with the effects

of sucrose on resistant strains of Gram-negative Gammaproteobacteria (Escherichia coli and

Pseudomonas aeruginosa) and Gram-positive organisms (Bacillus subtilis, Staphylococcus
aureus, Enterococcus faeciumas) [45]. MGO is derived from the breakdown of dihydroxyace-

tone (DHA), which is also found in high concentrations in mānuka honey [50, 52, 53]. The

concentration of MGO in mānuka honey less than one year old is normally between 0.10 and

0.79 mg/g. This can increase to 1.54 mg/g with the breakdown of DHA over the course of a

year, or if the honey has been heat treated [51].

Honey bees commonly consume carbohydrates in the form of nectar, honey, sucrose, and

invert sugar, but not all carbohydrates are utilised by bees or their microbial residents [18, 54].

We hypothesise that honeys will affect the diversity and relative abundance of bacteria present

in the digestive tract compared with sucrose solutions, and that these effects may be attributed

to the differences in the sugar composition in these diets. We used 16S rRNA gene sequencing

to investigate the effect of carbohydrate sources on the relative abundance of bacteria present

in the digestive tract of caged adult honey bees from a single colony. The effect of two different

mānuka honeys (predominantly monosaccharides), were compared with the effect of invert

sugar (mix of monosaccharides), sucrose (a disaccharide), and diets containing the mānuka
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associated chemicals MGO and DHA in sucrose solution. These were also compared with the

effects of diet consumed by caged bees in a hive.

Materials and methods

Honey bee sampling and their treatment diets

A single A. mellifera colony, located at The New Zealand Institute for Plant and Food Research

Limited (PFR), Hamilton, New Zealand (NZ), was used in this trial to limit the effect of genetic

variation. A single frame of black-eyed (18–20 days old) honey bee pupae was selected from a

colony in early summer (December 2017) and incubated at 33˚C and 65% relative humidity

(RH). Throughout a 70-h period, a total of 1050 newly emerged workers, which were<24 h old

were marked on their abdomen with a spot of nail polish, caged and returned to the parent col-

ony for at least seven days. This allowed colonisation of the digestive tract with a full comple-

ment of bacteria, as observed by Powell, Martinson [38]. The bees slowly released themselves

from the cages over 24 h as the grass blocking the entrance dehydrated. Ten days after the first

marked bees were returned to their colony, 7- to 10-day-old marked bees were recaptured from

the colony and ten bees were placed in each plastic queen cage (75 x 30 x 15mm). It took

approximately 4 h to set up the seven diet treatments so replicate cages were allocated to each of

the treatments sequentially, one cage per treatment. The six modified diets had eight replicates

and the hive control diet had five replicates. In total, there were 53 cages of bees (Table 1).

Feeding commenced immediately and continued for a duration of 6 days. The control

cages (H) were pressed into the wax and honey in a honey frame above the brood nest of the

parent hive. The bees consumed the honey ad libitum and were likely to have received food

from the hive bees. The remaining six treatments were fed to the bees ad libitum, through grav-

ity feeders and the cages were incubated at 33˚C and 65% RH for 6 days. These laboratory

treatments were refreshed after 3 days. Two treatments were two mānuka honeys harvested by

Hikutaia Honey (Opotiki, NZ) from the same apiary, but from different seasons: mānuka

honey from the 2015 harvest (MH15, Lot # 112–15), and mānuka honey from the 2017 harvest

(MH17, Lot # 49–17). These honeys were extracted from the wax frames at 33˚C, and then the

honeys were passed through a 1200 μm mesh. Prior to the trial, the honeys were analysed for

DHA and MGO by Analytica Laboratories (Hamilton, NZ). Two further treatments were 50%

(w/w) sucrose solution mixed with one of two chemically synthesised mānuka components:

1692 mg/kg DHA (Sigma D107204, Lot # MKBS8481V, Sigma-Aldrich, Auckland, NZ) or 745

mg/kg MGO (Sigma M0252, Lot # BCBK5800V, Sigma-Aldrich, Auckland, NZ). The

Table 1. Carbohydrate diets fed to honey bees.

Treatment code Cage replicates Diet Sucrose (%) MGO

(mg/kg)

DHA

(mg/kg)

H 5 Hive diet: honey frame above the brood nest Unknownʘ _ _

IS 8 20 ml of 67˚B bulk invert sugar (NSFGIVB5BULK) 0 _ _

S 8 20 ml of 50% sucrose solution 50 _ _

MH15 8 20 g of 100% mānuka honey from 2015 <1–15 ‡ 745 1238

MH17 8 20 g of 100% mānuka honey from 2017 <1–15 ‡ 394 1692

MGO 8 20 ml of 745 mg MGO/kg 50% sucrose solution� ~50 745 _

DHA 8 20 ml of 1692 mg DHA/kg 50% sucrose solution ~50 _ 1692

ʘ The hive was not fed supplementary sources of sucrose throughout the spring.

‡ Percent sucrose (w/w) was based on mānuka honey analysis in the literature [46–48].

� 0.931 ml 40% aqueous MGO + 499.17 ml 50% S).

https://doi.org/10.1371/journal.pone.0225845.t001
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concentrations tested were the maximum concentrations observed in the analysed mānuka

honeys (MH15 and MH17) and previously reported in the literature [55]. Two more treat-

ments were supplementary carbohydrate solutions used by the beekeeping industry: 67˚B

invert sugar (IS), and 50% sucrose solution (w/w) (S).

Sixteen days after their emergence as adults, 100% of the caged bees were still alive. At that

point, five individuals from each of the 53 cages (a total of 265 bees) were placed in 90% etha-

nol and stored at –70˚C.

DNA extraction, amplification, and 16S rRNA gene sequencing

For each replicate the five stored bees were thawed for three minutes and then each digestive

tract (crop to rectum) was aseptically dissected and pooled into a single DNase- and RNase-

free ZR BashingBead™ Lysis Tube, in ice, containing 750 μl lysis solution. At this point, the

tubes were returned to –70˚C until processing as the lysis solution contained a proprietary

DNA stabilising agent. The pooling was conducted to ensure homogeneity of the sample

extracted, (given that an individual gut sample averaged 26.3 mg such a low biomass would

have yielded a low concentration of DNA which may have been insufficient for sequencing),

and enabled the inclusion of more biological replicates. The five pooled tracts were processed

for DNA extraction using the Zymo Research Quick-DNA™ Fecal/soil Microbe Miniprep kit

(Zymo Research Corporation (ZR), California, USA). The samples were homogenised at 6 m/s

for 40 seconds using a FastPrep1-24 (MP Biomedicals, Seven Hills, Australia), and then the

rest of the ZR protocol was followed. The eluted DNA samples were stored at –70˚C prior to

being sent on ice by overnight courier to the Massey Genome Service (MGS; Massey Univer-

sity, Palmerston North, NZ) for 16S rRNA gene sequencing of the V3V4 hypervariable region

[56].

MGS evaluated the DNA concentration in each sample with Qubit™ 2.0 Fluorometer (Ther-

moFisher Scientific, NZ) analysis using a dsDNA HS Assay Kit for 12 samples per plate. A

PCR reaction was then performed using primers with adaptors: 16Sf_V3 (5’ - 3’ direction)–

CCTACGGGAGGCAGCAG; and 16Sf_V4 (5’ - 3’ direction)–GTGCCAGCMGCCGCGGT

AA [56]. The PCR products (c. 420–440 base pairs) were purified to generate a library and

their concentrations were analysed using Qubit™. The products were pooled in equimolar con-

centrations and the concentration and size were confirmed with both Qubit™ and LabChip

(PerkinElmer, Waltham, MA, USA) analysis. The PCR products were sequenced with a

250-base paired end run on an Illumina MiSeq™ platform (Illumina Inc.) with version 2 chem-

istry. Illumina PhiX Control v3 (FC-110-3001) was included as the sequencing control. The

resulting sequences are available in the National Center for Biotechnology Information’s

(NCBI’s) Sequence Read Archive (PRJNA531038).

Sequence processing and characterisation of microbial communities

A total of 5,127,987 read pairs were detected across all seven treatments and cage replicates.

The Illumina de-multiplexed fastq sequence data were processed and trimmed using ea-utils

to a 0.01 probability of error, an equivalent Phred score of Q20 [57], then further processed

using the Quantitative Insights Into Microbial Ecology 2 (QIIME 2) analysis suite, version

2018.2 [58] (https://github.com/PlantandFoodResearch/bioinf_Apis_metabarcoding). The

reads were run through dada2 methodology in QIIME2 to filter and trim the paired-end

sequences, dereplicate them, and filter chimeras to produce exact amplicon sequence variants.

The honey bee microbiome is a relatively new area of research, with new bacterial strains

being identified and reclassified frequently. Previous work indicated that some sequences were

incorrectly assigned to old nomenclature. To ensure taxonomic classification of honey bee gut
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bacteria were current, the 16S rRNA BLAST (Basic Local Alignment Search Tool) database

was downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) and customised to make a

QIIME 2 compatible reference dataset (https://github.com/pjbiggs/16SrRNA_taxonomy).

From the dataset a biological observation matrix (BIOM) was created that contained the Oper-

ational Taxonomic Units (OTUs) identified from the sequencing of each sample, that matched

with the assigned taxonomy. Any OTUs that were unable to be identified taxonomically to spe-

cies level were assigned to the closest identified taxonomic level.

Statistical analyses

Phylogenetic diversity was measured within a sample (α-diversity), and between samples (β-

diversity) using the web-based tool MicrobiomeAnalyst [59, 60]. The data counts were filtered

to a minimum of two, as well as a 10% prevalence in the samples. Variance was filtered using a

10% coefficient of variation. To reduce estimation errors that result from the different number

of sequences per sample, the data were rarefied to 52880, the number of sequences in the

smallest sample. The data were scaled using total sum but were not transformed.

Alpha-diversity was calculated at the feature level using Kruskal-Wallis pairwise compari-

sons of four diversity measures: Observed OTUs, Chao1, Shannon, and Simpson. β-diversity

for the taxonomic level feature was calculated using the distance methods Bray-Curtis dissimi-

larity (uses abundance of each OTU) and Jaccard Index (presence/absence), and the differ-

ences between the samples were compared using a permutational multivariate analysis of

variance (PERMANOVA) [61]. 3-D plots of Principal Coordinates Analysis (PCoA) were used

to present β-diversity.

Further data analysis was conducted in R (version 3.5.1) [62]. For all analyses, sequences

with a minimum total read composition of<0.1% prevalence were filtered from the dataset

(the remaining number of reads totalled 4,767,519). To investigate the differences in the num-

ber of phylotypes between treatments, a Poisson generalised linear model was used with the

number of phylotypes as the response and treatment as a fixed effect. To explore the relation-

ship between phylotypes and treatment, the data were visually explored using heat maps,

where the response was the mean read composition per replicate. The interaction of the rela-

tive abundance (proportion of total bacterial abundance) of phylotypes was explored using

nonmetric multidimensional scale (NMDS) plots. For the NMDS plots, the dissimilarity

matrix was calculated using the Bray-Curtis dissimilarity method. A linear mixed effect regres-

sion model was performed using the R package lme4 [63]. Replication was included as a ran-

dom effect to account for replicate to replicate variability between all phylotypes present

within each sample. Assumptions were checked via standard residual plots and a logarithmic

transformation was applied. Post-hoc pairwise comparisons of least-square means were car-

ried out using Tukey. The predicted means were back-transformed and dissimilar letters were

used to indicate significant differences among treatments. To determine whether carbohydrate

diet altered the bacterial community within the gut, a mixed model PERMANOVA [61] was

conducted using Adonis2 [64] to compare the variation in relative abundance between the

treatments.

Results

The 4,767,519 read pairs detected across all seven treatments and cage replicates were clustered

into 75 OTUs. OTU sequences were classified as 11 unique phylotypes, of which two were fam-

ilies, one was a genus, and eight were species (Table 2). The mean number of OTUs listed in

Table 2 were similar for each diet treatment but the invert sugar (IS) treatment had the least

(69 OTUs). Further analysis of this difference in OTUs revealed no clear pattern, only that the
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IS treatment had one less OTU for each of five phylotypes (S1 Table) and the Poisson general-

ised linear model provided no evidence to suggest a difference in the number of phylotypes

between treatments (S2 Table). Similarly, the α-diversity analysis indicated that none of the

treatments caused a significant influence on the richness (Chao1, Observed OTUS), and this

did not change after accounting for evenness (Shannon and Simpson Indices) (P> 0.05) (S2

Table).

The phylotype Lactobacillus sp. dominated all the samples with counts 3- to 4-fold higher

than all other phylotypes. The25 OTUs associated with Lactobacillus sp. suggests the phylotype

contains a lot of genetic diversity (Table 3). In comparison, the three species that were identi-

fied as Lactobacillus species: L. mellis, L. mellifer, and L. kunkeei, contained 8, 1, and 1 OTUs,

respectively. Lactobacillus mellifer is often included in the phylotype Lactobacillus Firm-4.

However, this manuscript individually identifies L. mellifer and refers to Lactobacillus Firm-4

as the phylotype Lactobacillus sp.

Although each diet produced very similar gut microbiome diversity and most of the core

bacteria were found at similar relative densities across all diets, there is evidence that the pro-

portion of some phylotypes changed in response to diet (Table 3, Fig 1). The heatmap demon-

strates evidence of sucrose treatments (S, MGO, and DHA) affecting the mean composition

reads for some of the phylotypes, such as Rhizobiaceae (Fig 1). The effect of diet was supported

by the Analysis of Deviance for the linear mixed effect regression model where significant

interaction between the mean relative abundance of each bacteria within each treatment was

evident (P< 0.001) (S2 Table).

The effect of the different carbohydrate diets on the phylotypes was further identified with

the post-hoc pairwise comparisons where the mean relative abundance of four of the sub-dom-

inant core phylotypes differed significantly (P< 0.01) (Table 3) (see S1 Table for the mean

total abundance for each bacteria within each treatment. The totals in the S1 Table decreased

in the same order as Table 3): The relative abundance of Frischella perrara was two-fold higher

(P< 0.01) in the hive control than in the sucrose and DHA treatments. The relative abundance

of Rhizobiaceae was 4- to 5-fold higher (P< 0.01) in the three sucrose-rich treatments

(sucrose, MGO and DHA) than in the four sucrose-poor treatments (H, IS, MH15, MH17).

Acetobacteraceae was also 2- to 3-fold higher (P< 0.01) in the sucrose treatment than the hive

and invert sugar treatments, while the relative abundance of L. kunkeei was 2- to 7-fold higher

(P< 0.01) in the sucrose-rich and DHA treatments compared with the MGO, invert sugar,

and mānuka honey treatments. In contrast, the diet treatments did not affect the relative

Table 2. Number of Operational Taxonomic Units (OTUs) and the associated taxonomic groups within the gut of

NZ honey bees.

Diet treatment Number of OTUs Number of phylotypes

H 74 11

S 75 11

IS 69 11

MH15 72 11

MH17 72 11

MGO 74 11

DHA 74 11

The bees were sourced from a single hive and fed different carbohydrate diets for 6 days: Hive-fed (H); sucrose (S);

invert sugar (IS); 2015 mānuka honey (MH15); 2017 mānuka honey (MH17); methylglyoxal (MGO);

dihydroxyacetate (DHA).

https://doi.org/10.1371/journal.pone.0225845.t002
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abundance of the five dominant core bacteria (G. apicola, S. alvi, Lactobacillus sp., Lactobacil-
lus Firm-5, and Bifidobacterium).

The NMDS analysis (Fig 2) also suggests that the composition of the microbiome shifted

primarily as a function of the sucrose content of the diet. Communities in the sucrose-rich

diets (S, MGO, and DHA) were displaced from the sucrose-poor diets (H, IS, MH15, MH17)

along axis one of the ordination. The sucrose-rich diets produced communities that converged

with a strong representation of Rhizobiaceae, while the sucrose-poor diets tended to increase

in G apicola. The relative abundance of F. perrara and L. mellis tended to move towards the

opposite direction on axis two, and thus seemed to be less affected by sucrose content or other

contents of the diet.

The PERMANOVA confirmed significant differences in community assembly with diet for

both distance measures (P< 0.001, R2 = 0.243) (Table 4).

The PCoA visualisation using Bray-Curtis dissimilarity indicated that the majority of the

communities showed separation based on the abundance of sucrose (sucrose, MGO, and

DHA), or the limitation of sucrose (H, IS, MH15, MH17) (Fig 3) (see S1 Fig for PCoA’s based

on different distance methods).

Table 3. Mean relative abundance for each of the phylotypes in the digestive tract of honey bees fed different carbohydrate diets for 6 days.

Bacterial phylotype Mean OTUs H IS MH15 MH17 S MGO DHA

Lactobacillus sp.� 25 42.6a 51.5a 44.4a 46.8a 44.7 48.9 46.4
(25.8–70.4) (34.7–76.5) (29.9–65.9) (31.5–69.6) (30.1–66.4) (32.9–72.7) (31.2–68.9)

Gilliamella apicola� 13 14.0a 11.7a 15.1a 17.7a 10.1a 10.2a 10.1a

(8.5–23.0) (7.9–17.4) (10.2–22.5) (11.9–26.3) (6.8–15.0) (6.9–15.1) (6.8–15.0)

Lactobacillus mellis 11 11.9a 9.3a 8.7a 7.8a 10.5a 10.3a 9.5a

(7.2–19.7) (6.3–13.9) (5.8–12.9) (5.2–11.6) (7.0–15.5) (6.9–15.3) (6.4–14.1)

Bifidobacterium 8 8.5a 8.0a 8.3a 7.7a 8.5a 6.8a 7.7a

coryneforme� (5.1–13.9) (5.4–11.9) (5.6–12.4) (5.2–11.5) (5.8–12.7) (4.6–10.2) (5.2–11.4)

Snodgrassella alvi� 5 8.0a 6.3a 8.0a 6.2a 4.8a 5.9a 5.2a

(4.9–13.2) (4.2–9.3) (5.4–11.0) (4.2–9.3) (3.2–7.1) (3.2–7.1) (3.5–7.8)

Ensifer adhaerens 1 1.4a 1.2a 2.0a 2.0a 2.4a 2.4a 2.1a

(0.8–2.2) (0.8–1.7) (1.4–3.0) (1.3–2.9) (1.6–3.5) (1.6–3.5) (1.4–3.1)

Lactobacillus mellifer� 1 1.5a 1.3a 1.8a 1.5a 1.9a 1.9a 1.8a

(0.9–2.5) (0.9–2.5) (1.2–2.7) (1.0–2.2) (1.3–2.8) (1.3–2.8) (1.2–2.7)

Frischella perrara 5 5.5b 2.7ab 4.1ab 3.6ab 2.0a 2.7ab 2.0a

(3.4–9.1) (1.8–4.0) (2.8–6.1) (2.4–5.4) (1.3–2.9) (1.8–4.0) (1.4–3.0)

Rhizobiaceae 4 1.1a 0.8a 1.4a 0.8a 4.3b 4.1b 5.0b

(0.6–1.7) (0.6–1.2) (1.0–2.1) (0.6–1.2) (2.9–6.3) (2.7–6.0) (3.4–7.5)

Acetobacteraceae 1 1.3a 1.5a 2.0ab 2.5ab 4.1b 3.2ab 3.3ab

(0.8–2.2) (1.0–2.2) (1.3–2.9) (1.7–3.7) (2.8–6.1) (2.2–4.8) (2.2–4.9)

Lactobacillus kunkeei 1 0.3ab 0.3a 0.2a 0.1a 0.8b 0.2a 0.7b

(0.2–0.5) (0.2–0.4) (0.1–0.3) (0.1–0.3) (0.5–1.2) (0.1–0.3) (0.5–1.1)

Honey bees from a single hive were fed one of seven carbohydrate diets for six days: Hive-fed (H), invert sugar (IS), 2015 mānuka (MH15), 2017 mānuka (MH17),

sucrose (S), methylglyoxal (MGO), and dihydroxyacetate (DHA). The columns of sucrose-rich treatments are shaded in light grey. The back transformed means were

identified using Tukey post-hoc comparisons from the linear mixed effect model, α = 0.05. The dissimilar letters indicate significant differences among treatment

means. Differences are bolded and the phylotypes that changed significantly with diet are shaded in dark grey. The corresponding phylotypes are shaded in medium

grey. OTUs (Operational Taxonomic Units). Dominant core bacteria (�).

https://doi.org/10.1371/journal.pone.0225845.t003
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Discussion

We examined the gut bacteria of adult A. mellifera from a single colony after being fed seven

different dietary regimes for six days. The effect of carbohydrate composition on the diversity

and relative abundance of bacteria present in the digestive tract was determined by comparing

the effect of invert sugar (mix of monosaccharides) and two different mānuka honeys (pre-

dominantly monosaccharides), with the effect of sucrose (a disaccharide), and diets containing

Fig 1. Heatmap of mean composition reads of the bacteria in the honey bee digestive tract fed different

carbohydrate diets. Reads>0.1% prevalence were included. Honey bees from a single hive were fed one of the

following treatments for 6 days: Hive-fed (H), sucrose (S), invert sugar (IS), 2015 mānuka (MH15), 2017 mānuka

(MH17), methylglyoxal (MGO), and dihydroxyacetate (DHA).

https://doi.org/10.1371/journal.pone.0225845.g001

Fig 2. Nonmetric multidimensional scaling plot of relative abundance of bacteria in the digestive tract of honey bees fed different carbohydrate diets. Total read

composition with>0.1% prevalence was included. Honey bees from a single hive were fed one of the following treatments for 6 days: Hive-fed (H), sucrose (S), invert

sugar (IS), 2015 mānuka (MH15), 2017 mānuka (MH17), methylglyoxal (MGO), and dihydroxyacetate (DHA). A solution for the plot was reached at stress level 0.273.

https://doi.org/10.1371/journal.pone.0225845.g002
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the mānuka associated chemicals MGO and DHA in sucrose solutions. These were all com-

pared to the diet that bees consume within a hive.

There was no evidence of correlation between diet and the relative abundance of the five

dominant core bacteria in the digestive tract of A. mellifera. However, the sucrose diet altered

the relative abundance of some of the sub-dominant core OTUs when compared with the hive

control, and a significant shift in the overall composition of the microbiome was observed.

The relative abundance of Rhizobiaceae increased by 4- to 5-fold, Acetobacteraceae

increased by 2- to 3-fold, and Lactobacillus kunkeei increased by 2- to 7-fold. In contrast the

relative abundance of OTUs from the species F. perrara decreased with a sucrose diet by

2-fold. F. perrara is associated with scabbing of the epithelial surface in the pylorus, which is

potentially due to an immune response in the bees [65]. All bees were initially exposed to the

same hive environment to develop a natural gut microbiome before being fed the specific diet

treatment, only the sucrose and DHA treatments appear to have inhibited the proliferation of

F. perrara and potentially the immune system response.

As both sucrose [44, 66], and mānuka honey are antibacterial [49], it was hypothesised that

both of these carbohydrate treatments may inhibit the gut bacteria. However, sucrose and

mānuka honey appeared to affect the gut bacteria differently as the relative abundances of

Table 4. The effect of dietary treatments on the beta-diversity of OTUs within the gut of NZ honey bees.

Distance method P—value F- value R squared Axis 1 Axis 2 Axis 3

Bray-Curtis < 0.001 1.7153 0.1828 15.8% 8.7% 8.5%

Jaccard < 0.001 1.4539 0.1594 11.3% 6.5% 6.3%

Honey bees from a single hive were fed one of seven treatments for 6 days. The relative abundance of OTUs were analysed with different distance methods using

PERMANOVA.

https://doi.org/10.1371/journal.pone.0225845.t004

Fig 3. A principal co-ordinate analysis of the beta-diversity of OTUs within the gut of NZ honey bees. Honey bees

from a single hive were fed one of seven carbohydrate diets for 6 days.

https://doi.org/10.1371/journal.pone.0225845.g003
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Rhizobiaceae, Acetobacteraceae, and L. kunkeei increased with sucrose but this was not

observed in the hive controls or the mānuka honey treatments.

These differences in the sub-dominant core bacteria are further evidence that diet affects

the bacterial composition within the digestive tracts of A. mellifera, as already seen with differ-

ent pollen diets and differing environmental landscapes [22–24]. However, as the dominant

core bacteria did not alter, we suggest that the biotic factors affecting the honey bee gut micro-

biome should be discussed more specifically in terms of dominant or sub-dominant core bac-

teria, as changes seen so far are relatively subtle and seem to mainly effect the less abundant

phylotypes.

The relative abundance of the phylotype Lactobacillus sp. (Firm-4) was 3- to 4-fold higher

than all other phylotypes, across all treatments. This higher relative abundance did not alter

with diet, but since the phylotype Lactobacillus sp. contained 25 OTUs that were unable to be

classified more finely in our study, it is likely to represent several species. This has previously

been shown using 16S rRNA gene sequence analyses, and phenotypic and genetic characteris-

tics to isolate seven species of Lactobacillus from the lactic acid bacterial community within

bees [67]. Of these seven species, only two were identified in our analysis, L. mellis and L. melli-
fer, suggesting that additional species may feature within our Lactobacillus sp. phylotype, and

the effect of diet on these individual bacteria may have been concealed, as some may have

increased in relative abundance whilst others decreased.

Rhizobiaceae, Acetobacteraceae, and L. kunkeei are major bacterial phylotypes previously

identified in the honey bee crop but absent in the mid- and hindguts of nurse and forager bees

[33]. The crop and midgut contain<5% relative abundance of all bacteria in the gut [37], and

as expected these bacteria were present in relatively low abundance in our study. This was

expected because the digestive tracts of our samples were analysed in their entirety.

In contrast, the dominant core bacteria, which have previously been shown to represent

>94% of the gut bacteria in the mid- and hindgut [37], were relatively abundant. Of these, G.
apicola [27], S. alvi [36], Lactobacillus sp. [37, 68], and Bifidobacterium [68] are likely to effi-

ciently metabolise sugars to extract energy. We observed no large effects of diet on the relative

abundances of these dominant core bacteria, despite the variation of sugar type in the diets.

Metagenomics analysis, as compared to 16S RNA sequencing, may have identified changes to

the bacterial genes in response to the sugar source.

The Acetobacteraceae are a family of primary feeders that break down the di-, oligo- or

poly-saccharides such as sucrose to form mono-saccharides that they then metabolise to form

acetate and/or lactate [41, 69]. Acetobacteraceae increase in sucrose-rich environments by

establishing symbiotic relationships with insects that feed on sugar-rich diets. They have been

observed to aid host nutrition [70], increase larval tissue development in the Anopheles mos-

quito [71], and are associated with the defective immune genotype causing Drosophila gut dis-

ease [72]. Acetobacteraceae Alpha 2.2, recently described as Parasaccharibacter apium, is

present in the crop of A. mellifera forager bees, as well as their food stores in the hive, and in

the larval gut where they presumably metabolise sucrose to generate acetic acid [33].

Rhizobiaceae are nitrogen-fixing bacteria that may have a pathogenic, symbiotic or sapro-

phytic relationship with the host [73, 74]. Rhizobiaceae, including the species Ensifer adhaerens
identified in this trial, are predominantly sustained on nitrogen-rich food sources normally

because of a paucity of carbohydrates in their environment [73]. E. adhaerens is a soil bacte-

rium [75] that has not previously been identified in the gut of the honey bee. It is possible that

E. adhaerens was consumed by the bees in this trial if the parent colony had foraged on flowers

or water dusted with soil containing this bacterium. The lack of variation in relative abundance

of E. adhaerens between the treatments suggests that either the bacterium was not affected by
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diet, or were dead within the gut. The fact that the soil bacterium E. adhaerens was present,

supports current literature that bees collect bacteria as they forage [76].

L. kunkeei are acid-resistant, obligate fructophilic bacteria that produce lactic acid, acetic

acid and ethanol [77]. They are the dominant lactic acid bacteria present in honey, bee-col-

lected pollen, and bee bread. They are also present in royal jelly and the honey bee crop [33,

78, 79].

Acetobacteraceae is present in larvae and all nurse worker feeding tissue, suggesting bee lar-

vae acquire bacteria from nurse bees [33]. During larval development, the bacteria undergo

ecological succession [35]. For example, the gut of first larval instars of honey bees are domi-

nated by Acetobacteraceae, whereas the fifth instar is dominated by L. kunkeei [35]. Inocula-

tion with Acetobacteraceae by nurse bees may be an important trigger for this microbial

succession. Our study suggests that the relative abundance of Acetobacteraceae is influenced

by the sucrose content in the honey bee diet, and so we hypothesise that the worker diet may

influence the abundance of Acetobacteraceae in honey bee larvae and this may influence larval

and/or adult bee mortality.

During the first three days of larval growth in a colony, the larvae consume a carbohydrate-

rich diet containing 18% sugar (sucrose and fructose). The sugar content then increases to

45% for the next two days of larval growth before the cells are capped [80]. Thus, bacteria with

saccharolytic activity, especially invertase, dominate the gut of larvae that are exposed to

sucrose-rich diets, and this may explain the increase of Acetobacteraceae and L. kunkeei in the

gut of adult bees fed the sucrose-rich diets S, MGO, and DHA. Although some isolates of P.

apium increase larval survival in vitro [33], the effect of increasing saccharolytic activity

through the feeding of sucrose-rich diets on bee larval development, the microbiome, and ulti-

mately colony health, is unknown. The key metabolites generated by Acetobacteraceae, such as

acetate, may have additional physiological effects in the host other than the recently recognised

utilisation of organic acids, such as acetate, pyruvate, and succinate, by S. alvi which reduces

oxygen in the ileum to generate a more anaerobic atmosphere [81]. The link between the diet

of nurse bees that feed larvae, and the associated effect that this may have on adult bee develop-

ment was not studied in this trial but should be further researched.

The significant increase of Acetobacteraceae in the gut of adult bees after six days of con-

suming sucrose-rich diets may be directly related to their ability to break down the disaccha-

ride. As the lifespan of a worker bee averages 15–38 days in summer and>140 days in winter

[15, 82], it is likely that A. mellifera colonies may experience prolonged feeding regimes of

sucrose during dearth periods, especially in winter. Prolonged feeding of sucrose may poten-

tially cause a resurgence and transmigration of crop-associated residents further along the

digestive tract, potentially resulting in changes to the dominant core bacterial composition

within A. mellifera. While such a bacterial increase may not have any pathogenic implications,

an overgrowth of such bacteria may potentially affect the colonisation of the entire microbial

community. This overgrowth has been observed in mosquito guts, in which bacterial over-

growth accelerated death [83], and in mice, in which infecting agents and chemical triggers

induced intestinal inflammation [84]. The possibility of bacterial overgrowth in honey bees,

and any potential implications should be further investigated.

Once the carbohydrates are used, protein substrates obtained from the host, as well as bac-

terial metabolites and remnant cell debris, enable the growth of nitrogen-fixing bacteria such

as Rhizobiaceae [34]. This may explain the increase in Rhizobiaceae observed when the bees in

our study were fed sucrose-rich diets. Comparatively, the relative abundance of the dominant

core bacteria are likely to remain stable as they are able to utilise other substrates such as nucle-

osides, flavonoid glycosides, and carboxylic acid [81] that collectively sustain both the host and

bacteria.
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Monosaccharides and water are rapidly absorbed across the midgut of honey bees. Glucose,

the chief energy source for bees, is absorbed within five minutes of consumption, whereas

sucrose and fructose must be converted to glucose by host enzymes before absorption can

occur [85]. Forager honey bees collect nectar in their crop where invertase (α-glucosidase), the

enzyme required for sucrose breakdown, is added [86] from the hypopharyngeal glands (HG)

[87, 88]. The HG are most active in nurse bees fed pollen aged 5–15 days as they secrete royal

jelly to feed to larvae, which contains protein-rich components and sugar [89, 90]. As the bees

in our trial were raised in a colony from 1–10 days it is likely the HG were fully developed [91],

and it is therefore possible that they were producing invertase, which may catalyse the break-

down of sucrose in the diet to fructose and glucose.

Several strains of Bifidobacterium asteroides, previously identified in the crop of forager

bees [68], were not detected in our data. Bifidobacterium coryneforme, also previously identi-

fied [68], contributed 7–9% of the gut bacteria in all seven diet treatments, although no

response to sucrose was observed. Bifidobacterium is infrequent in the crop, frequent in the

hindgut, and proliferates exclusively on pH neutral media [78]. This sensitivity to acidic condi-

tions may be why Bifidobacterium is found in the hindgut [78], rather than the midgut where

acid metabolites are generated by sucrose metabolism [92], and thus unaffected by the sucrose

treatments.

Although the dominant core bacteria do not require each other to colonise the bee gut,

cross-feeding interactions do occur. These interactions may be important for community

assembly and its resilience, as illustrated by the large amount of pyruvate produced by G. api-
cola, which is utilised by S. alvi [93]. Similar interactions may also occur among the less abun-

dant members of the community as our results show that the relative abundance of both

Acetobactereaceae and L. kunkeei increase in the presence of a sucrose-rich diet. Although it is

unknown whether the increase of these bacteria was in response to each other, an interaction

is likely to have occurred because Acetobacteraceae rapidly metabolise sucrose to generate lac-

tate, glucose and fructose, of which the fructose fuels the growth of L. kunkeei, the latter pro-

ducing both acetate and lactate [77]. Cross-feeding interactions may also occur between host

and bacteria as the major metabolite of Acetobacteraceae is acetate. Acetate serves as an energy

source for the growth of the bees, and it is utilised by the dominant core bacteria, such as S.

alvi, to fuel respiratory activity [36]. In rodents, a build-up of acetate, produced by bacteria fed

high calorie diets, decreased the pH of the microbial niche, and this in turn caused feedback

inhibition of bacteria [94]. At this stage it is unknown whether bacteria in the digestive tract of

honey bees fed sucrose-rich diets for extended periods may be associated with this type of feed-

back loop.

The well-documented in vitro antibacterial effects of MGO and DHA (its precursor) were

not demonstrated in this trial. As MGO is highly reactive, its half life is short in a biological

environment [95] and, therefore, at the time and site of analysis, local concentrations may

have been significantly reduced by the time the bees consumed it [95]. Consequently, the

MGO may have lost its activity by the time it reached the gastric phase of the digestive tract.

MGO may also have denatured in the gut, or perhaps these gut bacteria are simply unaffected

by MGO.

Sucrose appears to fuel the rapid proliferation of specific, low-abundance primary feeders

such as Rhizobiaceae, as well as Acetobacteraceae and L. kunkeei. The major metabolites ace-

tate and lactate that are likely to be produced by these bacteria may have important physiologi-

cal functions, such as weight gain in honey bees [96]. Given the distinct effects of the

carbohydrates, a metagenomics-based study would have been useful to examine the alterations

in the metabolic functionalities of the microbiome. We did consider functional profiling to

infer metabolic capabilities. However, none of the computational approaches currently
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available [97] were compatible with the customised taxonomic assignation that we used in this

study.

In conclusion, we have shown that diet does alter the bacterial composition within the

digestive tract of caged adult honey bees. Sucrose-rich diets resulted in the increase of sub-

dominant bacteria in the gut of honey bees that produce acetate and lactate metabolites and

were associated with significant increases in Acetobacteraceae, Rhizobiaceae, and L. kunkeei,
compared with those fed the sucrose-poor diets. Sucrose-rich diets were also associated with a

significant decrease in F. perrara. Further studies are required to understand the long-term

effects of these subtle but significant changes in bacterial composition within the honey bee

gut that we observed in response to diet, including the effect of increased metabolites and their

effect on larval development, dominant core bacterial composition, and ultimately colony

health. The effect of supplementary feeding with sucrose, glucose and other carbohydrates on

the metabolism of honey bees will be of great interest to the beekeeping industry which rou-

tinely practices supplementary carbohydrate feeding.
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59. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QIIME to analyze

16S rRNA gene sequences from microbial communities. Current protocols in microbiology. 2012; 27

(1):1E. 5.1–E. 5.20.

60. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for

comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research. 2017;

45(W1):W180–W8. https://doi.org/10.1093/nar/gkx295 PMID: 28449106

61. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecology.

2001; 26(1):32–46.

The effect of carbohydrate sources on bacteria in the digestive tract of honey bees

PLOS ONE | https://doi.org/10.1371/journal.pone.0225845 December 4, 2019 17 / 19

https://doi.org/10.1111/1462-2920.12526
https://doi.org/10.1111/1462-2920.12526
http://www.ncbi.nlm.nih.gov/pubmed/24905222
https://doi.org/10.1128/mBio.01326-16
https://doi.org/10.1128/mBio.01326-16
http://www.ncbi.nlm.nih.gov/pubmed/27803186
https://doi.org/10.1096/fj.09-150789
http://www.ncbi.nlm.nih.gov/pubmed/20228250
https://doi.org/10.1111/j.1365-2672.1992.tb04993.x
http://www.ncbi.nlm.nih.gov/pubmed/1447054
https://doi.org/10.1002/mnfr.200700282
http://www.ncbi.nlm.nih.gov/pubmed/18210383
https://doi.org/10.1016/j.fitote.2012.02.002
http://www.ncbi.nlm.nih.gov/pubmed/22366273
https://doi.org/10.1016/j.carres.2009.03.020
https://doi.org/10.1016/j.carres.2009.03.020
http://www.ncbi.nlm.nih.gov/pubmed/19368902
https://doi.org/10.1016/j.carres.2012.07.025
https://doi.org/10.1016/j.carres.2012.07.025
http://www.ncbi.nlm.nih.gov/pubmed/22960208
https://doi.org/10.1039/c5fo01409c
http://www.ncbi.nlm.nih.gov/pubmed/26948514
https://doi.org/10.1128/AEM.01043-13
http://www.ncbi.nlm.nih.gov/pubmed/23793624
https://expressionanalysis.github.io/ea-utils/
https://expressionanalysis.github.io/ea-utils/
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
https://doi.org/10.1093/nar/gkx295
http://www.ncbi.nlm.nih.gov/pubmed/28449106
https://doi.org/10.1371/journal.pone.0225845


62. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing: ISBN 3-900051-07-0: URL http://www.R-project.org; 2018.
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66. Kwakman PH, Van den Akker JP, Güçlü A, Aslami H, Binnekade JM, de Boer L, et al. Medical-grade

honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization. Clinical Infectious Dis-

eases. 2008; 46(11):1677–82. https://doi.org/10.1086/587892 PMID: 18433338
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