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The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration
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Mesothelial cells (MCs) cover the surface of visceral organs 
and the parietal walls of cavities, and they synthesize lubri-
cating fluids to create a slippery surface that facilitates move-
ment between organs without friction. Recent studies have 
indicated that MCs play active roles in liver development, 
fibrosis, and regeneration. During liver development, the 
mesoderm produces MCs that form a single epithelial layer 
of the mesothelium. MCs exhibit an intermediate phenotype 
between epithelial cells and mesenchymal cells. Lineage 
tracing studies have indicated that during liver development, 
MCs act as mesenchymal progenitor cells that produce 
hepatic stellate cells, fibroblasts around blood vessels, and 
smooth muscle cells. Upon liver injury, MCs migrate inward 
from the liver surface and produce hepatic stellate cells or 
myofibroblast depending on the etiology, suggesting that 
MCs are the source of myofibroblasts in capsular fibrosis. 
Similar to the activation of hepatic stellate cells, transforming 
growth factor β induces the conversion of MCs into myofibro-
blasts. Further elucidation of the biological and molecular 
changes involved in MC activation and fibrogenesis will con-
tribute to the development of novel approaches for the pre-
vention and therapy of liver fibrosis. (Gut Liver 2016;10:166-
176)
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INTRODUCTION

Hepatocytes occupy approximately 80% of the total liver 
volume and play essential roles in metabolism. In mice, the liver 
consists of median, right, left, and caudate lobes. In each lobe, 
the liver parenchyma is covered by a serous membrane (serosa) 
that comprises a single layer of mesothelial cells (MCs). MCs are 

easily recognized in liver sections under the microscope, based 
on their location on the liver surface and their flat morphology, 
but the presence of MCs is often ignored. Accordingly, little is 
known about their roles in the liver. Recent studies have sug-
gested that MCs are not only a simple barrier of the liver surface 
but that they also actively contribute to liver development and 
injury. In this article, we first introduce basic knowledge of MC 
biology, and then we review their characteristics and functions 
in liver development, fibrosis, and regeneration.

GENERAL FEATURES OF THE MESOTHELIUM

The name of MCs comes from their presence in the epithelial 
lining of mesodermic cavities.1,2 As this name implies, MCs are 
mesodermal in origin and lie on the organ surfaces as single 
epithelial sheets. MCs are separated from underlying fibroblasts 
by the basal lamina. The mesothelium covers the surface of the 
visceral organs, including the heart, respiratory tract (lung), di-
gestive tract (liver, stomach, and intestine), omentum, and ova-
ries.3 It also covers the parietal wall of the pleura, pericardium, 
peritoneum, and tunica vaginalis. MCs are flat epithelial cells 
that form epithelial sheets with tight junctions, adherence junc-
tions, gap junctions, and desmosomes.4 MCs exhibit a squamous 
epithelial cell shape in normal organs, and they express both 
epithelial cell and mesenchymal cell markers. MCs secrete a lu-
bricating fluid to create a slippery surface that facilitates move-
ment between organs without friction. MCs synthesize decorin 
and biglycan, and they are a major source of proteoglycans in 
the peritoneal fluid.5 MCs express cell adhesion molecules, such 
as intercellular adhesion molecule 1 (ICAM-1) and vascular cell 
adhesion protein 1 (VCAM-1), and cytokines, such as SDF-1/
CXCL12, MCP-1/CCL2, and IL-8, and they facilitate inflamma-
tory reactions via the recruitment of monocytes.6,7 The mesothe-
lium acts as a semipermeable barrier for water and solutes, and 

 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Kinji Asahina
Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, 
1333 San Pablo St., MMR 402, Los Angeles, CA 90089-9141, USA 
Tel: +1-323-442-2213, Fax: +1-323-442-3126, E-mail: asahina@usc.edu

Received on May 20, 2015. Revised on August 1, 2015. Accepted on August 18, 2015.
pISSN 1976-2283  eISSN 2005-1212  http://dx.doi.org/10.5009/gnl15226



Lua I and Asahina K: Liver Mesothelial Cells  167

this ability has been exploited for peritoneal dialysis in patients 
with kidney failure.8 

CHARACTERISTICS OF LIVER MCs

MCs form a single mesothelial cell layer that lines the liver 
surface and exhibit squamous epithelial cell morphology.9,10 
MCs in the adult mouse liver have microvilli protruding into the 
peritoneal cavity (Fig. 1). Microvilli are scarce from the mem-
brane immediately above the nuclei of the MCs, although the 
reason for this scarcity is unclear.9,11 Liver MCs express ICAM-1 
and VCAM-1 on the microvilli, mediating the binding of mono-
cytes onto MCs due to stimulation by lipopolysaccharide.11 MCs 
express cytokeratin 8 and 19, tight junction proteins and gap 
junction proteins.10,12,13 In the mouse liver, the expression of E-
cadherin is not evident in MCs.10 Liver MCs express mesenchy-
mal cell markers, such as vimentin (VIM) (Fig. 2). In addition to 
these markers, MCs express CD200, glycoprotein M6A (GPM6A), 
mesothelin (MSLN), and podoplanin (PDPN) (Fig. 2).10

In the mouse liver, the parenchyma is covered by a single 
layer of MCs and underlying capsular fibroblasts, also called 

sub-mesothelial cells (sub-MCs) (Fig. 3).9,14 Capsular fibroblasts 
synthesize collagen fibers and do not express MC markers.10,15 
Hepatic stellate cells (HSCs) reside in the space of Disse between 
the hepatocytes and the sinusoidal endothelial cells, and HSCs 
store vitamin A lipids as retinyl esters (Fig. 3).16,17 Differing from 
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Fig. 1. Ultrastructure of the liver 
surface analyzed by scanning elec-
tron microscopy. Mesothelial cells 
on the surface of the normal adult 
mouse liver have microvilli protrud-
ing into the peritoneal cavity. The 
black regions represent areas hav-
ing few microvilli above the nuclei. 
Scale bars, 50 μm in (A) and 5 μm 
in (B).
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Fig. 2. Expression of markers in liv-
er mesothelial cells (MCs). Immuno-
histochemistry shows the expression 
of CD200, cytokeratin, glycoprotein 
M6A (GPM6A), mesothelin (MSLN), 
podoplanin (PDPN), and vimentin 
(VIM) in MCs covering adult mouse 
livers. Scale bar, 10 μm.
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Fig. 3. Structure of the mesothelium in mouse liver tissue. Mesothe-
lial cells (MCs) line up on the liver surface and form a single epithelial 
cell layer. The basal lamina separates the MCs from the underlying 
capsular fibroblasts (CFs)/sub-mesothelial cells (sub-MCs). Mouse 
livers show a single stratum of CFs beneath the MCs. Hepatic stel-
late cells (HSCs) reside in the space of Disse between hepatocytes and 
sinusoidal endothelial cells (SECs).
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HSCs, capsular fibroblasts beneath the MCs do not store vitamin 
A lipids in their cytoplasm.14 However, little is known about 
their characteristics and functions in the liver due to a lack of 
markers. 

MC DEVELOPMENT

The development of the mesothelium has been studied mainly 
in chick embryos. During gastrulation, the mesoderm is formed 
between the ectoderm and endoderm. The mesoderm becomes 
the paraxial mesoderm, intermediate mesoderm, and lateral 
plate mesoderm.18 The paraxial mesoderm forms the somite 
and gives rise to skeletal muscle, cartilage, and the connective 
tissue of the skin. The intermediate mesoderm gives rise to the 
urogenital organs, including the kidneys. The lateral plate me-
soderm gives rise to blood vessels and mesenchymal cells in the 
heart, digestive tract, body wall, and limbs. The mesothelium is 
derived from the lateral plate mesoderm.18 As the coelomic cav-
ity develops in the lateral plate mesoderm, the mesoderm forms 
the splanchnic mesoderm and somatic mesoderm. The splanch-
nic mesoderm develops with the endoderm, and together they 
form the gut tube. During the gut organogenesis, mesodermal 
cells, exposing the coelomic cavity, become visceral MCs that 
cover the surface of the internal organs, including the lungs, 
liver, and intestine.18,19 The somatic mesoderm underlying the 
ectoderm forms the wall of the cavity and gives rise to parietal 
MCs, which cover the surfaces of the body cavities. Thus, vis-
ceral and parietal MCs are separated during the formation of the 
coelomic cavity in the early developmental stage. In mouse em-
bryogenesis, the nascent mesoderm, expressing mesoderm pos-
terior 1 (MESP1), which is a basic helix-loop-helix transcription 
factor, contributes to visceral MCs in the liver.20,21 In contrast, 
MESP1+ mesoderm does not contribute to parietal MCs on the 
body wall of the peritoneal cavity, indicating distinct origins of 

the visceral and parietal MCs in mice.15 In chick embryos, MCs 
in the gut derive from resident mesenchymal progenitor cells.22 
MCs seem to have organ-specific functions in each organ.

DEVELOPMENT OF THE SEPTUM TRANSVERSUM  
MESENCHYME 

Liver epithelial cells originate from the definitive endoderm 
developed in the foregut (Fig. 4). A transplantation study in 
chick embryos showed that the foregut endoderm differentiates 
into liver in the presence of the cardiac mesoderm.23 In mouse 
embryos, the cardiac mesoderm secretes fibroblast growth fac-
tors and induces hepatoblasts from the foregut endoderm.24 In 
addition, bone morphogenetic proteins from the septum trans-
versum mesenchyme (STM) are required for the transformation 
of the endoderm into hepatoblasts.25 Hepatoblasts are bipotent 
liver progenitor cells, and they give rise to both hepatocytes and 
cholangiocytes.26,27 During liver development, hepatoblasts in-
vade the STM and form a hepatic cord.28 

The STM surrounding the foregut endoderm is heterogeneous, 
containing at least mesenchymal cells and endothelial cells.29 
Although the STM is required for liver development, this tran-
sient mesenchymal cell population also contributes to heart 
development and diaphragm formation. Mesenchymal cells 
budding from the surface of the STM into the pericardial cavity 
are called proepicardial cells.30,31 They traverse the pericardial 
cavity, attach to the heart surface, and form a single layer of 
MCs on the heart surface, called the epicardium. Epicardial cells 
undergo epithelial-mesenchymal transition (EMT), migrate in-
ward from the heart surface, and give rise to mesenchymal cells 
of the coronary vessels in chick embryos.32,33 In mouse embryos, 
proepicardial cells express T-box18 (TBX18) and Wilms tumor 
1 homolog (WT1). Cell lineage tracing of TBX18+ or WT1+ 
proepicardial cells revealed their contributions to fibroblasts and 

Cytokeratin ALCAM Cytokeratin WT1
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Fig. 4. Mouse liver development at embryonic day 10. Foregut endoderm (FG) differentiates into hepatoblasts that are positive for immunohisto-
chemical staining of cytokeratin (red). Cytokeratin+ hepatoblasts invade the surrounding septum transversum mesenchyme (STM) and form liver 
buds. The STM expresses mesothelial cell markers, such as activated leukocyte cell adhesion molecule (A, green) and Wilms tumor 1 homolog (WT1) 
(B). WT1+ mesenchymal cells also differentiate into epicardial cells of the developing heart (H). Scale bar, 20 μm.
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smooth muscle cells in the developing heart.34,35 In addition, lin-
eage tracing of Semaphorin3D (SEMA3D)+ and Scleraxis (SCX)+ 
proepicardial cells showed their contributions to coronary vas-
cular endothelial cells,36 suggesting heterogeneity of the STM.

CONTRIBUTION OF THE STM TO LIVER MESENCHYME

Although the STM is known to be important for heart and 
diaphragm development, little is known about its cell lineage 
and function in liver development. A morphological study 
showed that hepatoblasts invade the surrounding STM and form 
a hepatic cord in mouse embryos (Fig. 4).28 During this process, 
mesenchymal cells seem to be trapped between growing hepa-
toblasts and become HSCs. Conditional cell-lineage tracing in 
mice revealed that WT1+ cells in the STM give rise to MCs on 
the liver surface and HSCs in the liver during liver develop-
ment.29 GATA binding protein 4 (GATA4) is broadly expressed 
in both STM and endoderm at the onset of liver development.37 
Rojas et al.38 identified an enhancer of GATA4 which is spe-
cifically active in the lateral plate mesoderm and STM around 
E7.75-9.5 embryos but not in HSCs in the developing liver from 
E11.5. A lineage tracing study using the STM-specific GATA4 
enhancer-Cre mouse showed that the STM contributes to 64% 
of HSCs during liver development.39 The results of these studies 
indicate that the STM is the origin of HSCs during mouse liver 
development. 

The STM expresses forkhead box F1 (FOXF1), GATA4, LIM 
homeobox protein 2 (LHX2), heart and neural crest derivatives 
expressed transcript 1 (HAND1), H2.0-like homeobox (HLX), 
mab-21-like 2 (MAB21L2), TBX18, zinc finger protein multi-
type 2 (ZFPM2/FOG2), and WT1.29,37,40-46 Because the STM is 
the source of epicardium in the heart, of the diaphragm, and of 
MCs in the liver, deletion of the MAB21L2, TBX18, and ZFPM2 
gene resulted in abnormal development of the heart, diaphragm, 
and liver.44-46 GATA4-null mouse embryos showed heart defects 
due to underdevelopment of the STM.37 Conditional deletion of 
GATA4 in the STM caused reduced liver size, precocious activa-
tion of HSCs, and abnormal deposition of ECM in embryonic 
livers,39 indicating that GATA4 regulates the quiescent pheno-
type of embryonic HSCs. Loss of deletion of β-catenin in MCs 
and HSCs expressing TWIST2 also caused abnormal activation 
of HSCs in embryonic livers.47 WT1 gene deletion resulted in 
abnormal development of the mesothelium, including of the 
liver, and impairment of hepatocyte proliferation.48-50 WT1 could 
regulate the differentiation of MCs into mesenchymal cells via 
retinoic acid signaling in developing livers.49,51 HLX-null em-
bryos impaired hematopoiesis and resulted in liver hypoplasia.52 
MCs in the embryonic liver express pleiotrophin (PTN) and 
midkine (MDK).48,53 PTN and MDK are secreted heparin-binding 
proteins, and they induce the proliferation of hepatoblasts in 
liver development.48 

MCs ACT AS MESENCHYMAL PROGENITOR CELLS 
DURING LIVER DEVELOPMENT

Although the STM emerges as an aggregate of mesenchymal 
cells surrounding the foregut endoderm, it also expresses MC 
markers, such as activated leukocyte cell adhesion molecule 
(ALCAM/CD166) and WT1, on embryonic days (E) 9-10 in 
mouse embryos (Fig. 4).29 As the liver bud invades the STM, the 
surrounding mesenchyme becomes thinner, and flat MCs appear 
on the liver surface around E11.5. From E12.5, the MCs start to 
express cytokeratin, CD200, GPM6A, and PDPN, similar to MCs 
in adult livers.29 MCs also express podocalyxin-like (PODXL) 
and MSLN.48 The expression of ALCAM and WT1 was observed, 
not only in MCs but also in sub-MCs beneath the MCs in the 
embryonic liver around E11-14.20 MCs and sub-MCs are sepa-
rated by the basal lamina, which is composed of type IV colla-
gen. Different from MCs, sub-MCs cells also express HSC mark-
ers, such as nerve growth factor receptor (NGFR/P75NTR) and 
platelet-derived growth factor receptor α (PDGFRA). HSCs and 
fibroblasts around the blood vessels express NGFR and PDGFRA 
but not MC markers, including ALCAM, PDPN, and WT1. Sub-
MCs seem to be intermediate cells between MCs and HSCs in 
embryonic livers.54

A morphological study showed possible migration of MCs 
from the liver surface and differentiation into HSCs in mouse 
liver development.49 Conditional lineage tracing of WT1+ 
MCs/sub-MCs showed that they migrate inward from the liver 
surface and give rise to HSCs, portal fibroblasts, and smooth 
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Fig. 5. Differentiation of mesothelial cells (MCs) in liver develop-
ment and fibrosis. (A) During embryogenesis, mesoderm posterior 1 
(MESP1)+ mesoderm gives rise to septum transversum mesenchyme 
(STM) and MCs. The MCs and underlying sub-MCs express Wilms 
tumor 1 (WT1). Cell-lineage tracing of WT1+ cells demonstrates their 
migration from the liver surface and differentiation into hepatic stel-
late cells (HSCs), fibroblasts (FBs) and smooth muscle cells (SMCs) 
around the blood vessels in mouse liver development. (B) Upon liver 
injury caused by CCl4 injection or bile duct ligation, MCs differentiate 
into myofibroblasts (MFs) or HSCs in adult mouse livers. Transform-
ing growth factor β (TGF-β) provokes the mesothelial-mesenchymal 
transition.
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muscle cells during mouse liver development (Fig. 5A).29 Lin-
eage tracing of MSLN+ MCs also showed contributions of MCs 
to liver mesenchymal cells in embryos.55 These studies failed to 
detect the multidifferentiation of MCs into hepatoblasts, sinu-
soidal endothelial cells, and Kupffer cells. Thus, an HSC lineage 
from WT1+ MCs is distinct from that of other liver cell types 
in liver development. Possible migration of WT1+ sub-MCs 
was also documented in human liver development.56 The lines 
of evidence have indicated that MCs act as progenitor cells for 
liver mesenchymal cells during liver development.

Differentiation of MCs into HSCs has also been reported in 
chick and zebrafish livers. In chick embryos, after labeling MCs 
using a vital dye, these cells were found in the liver as HSCs or 
endothelial cells.57 In zebrafish, heart and neural crest deriva-
tives expressed transcript 2 (HAND2)+ mesenchymal cells on 
the liver surface, presumably MCs, give rise to HSCs in liver 
development.58 These studies indicated that the migration and 
differentiation of MCs into HSCs are common processes during 
liver development in different species.

In addition to the developing liver and heart, differentiation 
of MCs into mesenchymal cells has been reported in the devel-
oping heart, lungs, and intestine.55,59 During lung development 
in mice, MCs migrate inward and give rise to smooth muscle 
cells and mesenchymal cells.60-62 Similar contributions have 
been reported in developing gut.22,63,64 In addition, WT1+ MCs 
were shown to differentiate into visceral fat in mice.65 These 
studies suggested that MCs are the source of mesenchymal cells 
in organogenesis. 

MESODERMAL ORIGIN OF MCs AND HSCs

In adult livers, HSCs reside in the space of Disse and store 
vitamin A lipids as retinyl esters.16 Upon liver injury, HSCs are 
activated, and they differentiate into myofibroblasts express-
ing α-smooth muscle actin (ACTA2).17 In addition to HSCs, 
there are portal fibroblasts around the bile duct, and they have 
been suggested to be another source of myofibroblasts in bili-
ary fibrosis.66-68 MESP1 is a basic helix-loop-helix transcription 
factor expressed in the nascent mesoderm during gastrulation.69 
MESP1+ mesoderm contributes to the primary and secondary 
heart fields and to other mesodermal cells during embryogen-
esis. Cell lineage tracing in MESP1-Cre and ROSA26 reporter 
mice showed that MESP1+ mesoderm gives rise to the STM 
before liver development.29 During liver development, MESP1+ 
cells contribute to MCs, HSCs, and portal fibroblasts around the 
vein.29 These cells differentiated into ACTA2+ myofibroblasts in 
fibrosis induced by CCl4 or bile duct ligation.21 

LIVER FIBROSIS AND MYOFIBROBLASTS 

Chronic liver injury caused by alcohol intake, drugs, hepatitis 
virus infection, and obesity results in fibrosis, and finally cir-

rhosis.70-72 Upon liver injury, quiescent HSCs are activated, syn-
thesize proinflammatory cytokines and extracellular matrices, 
and facilitate the regeneration of hepatocytes in injured livers. 
However, prolonged damage to the liver results in massive ac-
cumulation of collagen in the liver, leading to fibrosis and cir-
rhosis. HSCs have a fibroblastic morphology, and they express 
mesenchymal cell markers, such as desmin, Vim, and type I 
collagen. In addition, they express neural cell markers, such as 
glial fibrillary acidic protein, nestin, and NGFR. Although the 
neural crest was believed to be the origin of HSCs, based on 
their expression of neural markers, a cell lineage tracing study 
refuted this possibility.73 In addition, the presence of common 
progenitor cells for HSCs and hepatocytes in the embryonic liver 
has been proposed.74,75 However, as described above, the major-
ity of HSCs have been shown to originate in mice from MESP1+ 
mesoderm.20,21 

Myofibroblasts seem to be heterogeneous, and they might 
derive from different sources during liver fibrosis.76-79 Although 
bone marrow cells have been shown to differentiate into HSCs 
or myofibroblasts, their contribution seems to be negligible in 
liver fibrosis.80-83 EMT of hepatocytes or cholangiocytes into 
myofibroblasts was proposed in liver fibrosis, but cell-lineage 
tracing studies have refuted this possibility in mice.84-92 

In severely injured livers, oval cells, which are facultative 
stem cells, emerge in the portal area. Although oval cells are 
believed to be important for liver regeneration, their origin and 
roles have been controversial.93-95 HSCs were suggested to be 
the origin of oval cells in mice.96-98 However, lineage tracing of 
HSCs using lecithin-retinol acyltransferase (LRAT)-Cre mice did 
not find evidence of such conversion in different mouse injury 
models.99 Similarly, HSCs, portal fibroblasts, and MCs derived 
from MESP1+ mesenchymal cells did not contribute to hepato-
cytes, cholangiocytes, and oval cells, respectively, in mouse liver 
injury.21 These lineage tracing studies refuted the possibility of 
the conversion of HSCs into epithelial cells in liver injury. 

CONVERSION OF MCs INTO MYOFIBROBLASTS IN 
LIVER FIBROSIS

In liver fibrosis, collagen deposition is observed around the 
blood vessels and along the sinusoid, depending on the etiology. 
Conditional lineage tracing of WT1+ MCs revealed that MCs 
migrated from the liver surface and gave rise to ACTA2+ myofi-
broblasts in CCl4-induced liver fibrosis.10 MC-derived myofibro-
blasts were detectable at up to 150 μm in depth from the liver 
surface (Fig. 5B). Similar migration and differentiation of MCs 
were also observed in mouse livers after bile duct ligation (Fig. 
5B).10 Different from the CCl4 model, biliary fibrosis induces dif-
ferentiation of MCs into HSCs, suggesting that MCs differentiate 
into myofibroblasts or HSCs in injured livers, depending on eti-
ology. 
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CONTRIBUTION OF MCs TO FIBROSIS IN THE VISCERAL 
AND PARIETAL ORGANS

Fibrosis is a scarring process in organs. Similar to the liver, 
fibrosis develops in different organs and myofibroblasts play 
pivotal roles in collagen deposition.100 Recent studies show the 
similar contribution of MCs to myofibroblasts in the peritoneum 
and lung. Patients who undergo peritoneal dialysis for kidney 
failure often develop peritoneal fibrosis.101-103 Prolonged expo-
sure of a dialysis solution to the peritoneal cavity causes injury 
to MCs and induces conversion into myofibroblasts. Effluent 
of the dialysis solution from the peritoneal cavity contained 
MCs, showing a fibroblastic phenotype.104 Peritoneal fibrosis 
has been reproduced in mice by injection of dialysis solution or 
chemicals. Different insults to the peritoneal cavity cause injury 
to MCs on the body wall, as well as on the liver. In an experi-
mental mouse model of peritoneal fibrosis, WT1+ MCs gave rise 
to myofibroblasts in both the body wall and liver.15 The contri-
bution of MCs to myofibroblasts was approximately 16%, and 
fibroblasts beneath the MCs might be another source.105 In the 
lungs, MCs also differentiate into myofibroblasts in idiopathic 
pulmonary fibrosis.106 These studies suggest that MCs are among 
the sources of myofibroblasts in the fibrogenesis of different or-
gans. 

MCs exhibit different phenotypes in different organs. Visceral 
MCs express autotaxin, and they have greater migration capac-
ity than parietal MCs.107 Upon injury, peritoneal MCs on the 
body wall differentiate into myofibroblasts, and the MC layer 
disappears in mice. In contrast, liver MCs give rise to myofi-
broblasts that migrate beneath the MC layer, whereas the MC 
layer remains on the surface. It is unclear why visceral and pa-
rietal MCs behave differently upon injury. Recent studies have 
shown that visceral and parietal MCs are inherently different. 
In embryos, lung MCs are derived from the lung bud but not 
from other organs.22 Cell lineage tracing of MESP1+ mesoderm 
showed its contribution to MCs in the liver but not in the body 
wall.15 

MECHANISMS OF CONVERSION OF MCs INTO  
MESENCHYMAL CELLS

MCs are isolated from the effluent of the peritoneal cavity or 
by the digestion of organs. In culture, primary MCs grow and 
form epithelial colonies of MCs.108,109 Recent studies have identi-
fied specific surface markers for liver MCs, such as GPM6A or 
PODXL, and these markers have allowed for the purification of 
MCs by fluorescence-activated cell sorting (FACS) or magnetic-
activated cell sorting (MACS).10,48 Primary liver MCs grew and 
formed epithelial colonies (Fig. 6A). However, MCs lost their ep-
ithelial phenotype over several passages and became fibroblastic 
cells spontaneously.10 

Transforming growth factor β (TGF-β) is a pleiotrophic fac-
tor known to be a strong inducer of EMT.110 In culture, TGF-β 
treatment induced morphological changes of MCs into myo-
fibroblasts (Fig. 6B).10 According to these changes, MCs in-
creased the expression of ACTA2 and type I collagen α1 chain 
(COL1A1) while decreasing GPM6A. Conversion of MCs into 
myofibroblasts was blocked by the inhibition of TGF-β receptor 
or SMAD3, suggesting that a canonical TGF-β/SMAD3 pathway 
is involved in this process. Epithelial cells undergo EMT and 
acquire a mesenchymal cell phenotype. During this process, 
TGF-β is known to induce Snail transcription repressors and to 
suppress E-cadherin expression. However, liver MCs do not ex-
press E-cadherin, and the expression of Snail is low.10 Because 
MCs are mesodermal in origin and have an intermediate pheno-
type between epithelial cells and mesenchymal cells, we call the 
change of MCs into fibroblastic cells mesothelial-mesenchymal 
transition (MMT).10 The cellular mechanisms of MMT might 
not be identical to what we know about EMT in epithelial cells. 
Although the details of the downstream pathways of TGF-β 
signaling have not yet been clarified, suppression of TGF-β 
signaling with a soluble form of TGF-β type II receptor resulted 
in decreased MMT in mouse liver fibrosis.10 Furthermore, condi-
tional deletion of TGF-β type II receptor also reduced their con-
version into fibrosis.15,111 Thus, TGF-β signaling is responsible 
for the conversion of MCs into myofibroblasts both in vitro and 

+TGF-�A B

Fig. 6. Primary culture of liver 
mesothelial cells (MCs). (A) MCs 
isolated from adult mouse livers 
form epithelial colonies in culture. 
(B) Transforming growth factor β 
(TGF-β) treatment induces the me-
sothelial-mesenchymal transition.



172  Gut and Liver, Vol. 10, No. 2, March 2016

in vivo.

SECRETORY FUNCTION OF MCs IN PARTIAL  
HEPATECTOMY AND RESECTION

The liver has remarkable regenerative potential.112 After 70% 
partial hepatectomy, hepatocytes start DNA synthesis, and the 
liver mass returns to the original size by the proliferation and 
hypertrophy of hepatocytes.113 Lineage tracing of WT1+ MCs 
showed no migration of MCs into the regenerating liver after 
70% partial hepatectomy.10 In the regenerating liver, MCs secrete 
PTN and MDK and support the proliferation of hepatocytes.114 

PTN- or MDK-knockout mice showed decreased proliferation of 
hepatocytes in the regenerating liver.115 It remains to be clarified 
how MCs sense regeneration stimuli by partial hepatectomy and 
how they coordinate proliferation with growing hepatocytes.

MCs secrete a lubricating fluid and have antiadhesive proper-
ties. After resection of liver lobes, the resected liver surface often 
adheres to the other liver lobes or organs, requiring reoperation 
to remove adhesions between organs. Suzuki et al.116 developed 
an adhesion model of liver surgery. After electrocauterization 
of rat liver lobes, the cauterized lobe formed adhesions with the 
intact liver lobes. Interestingly, the necrotic area of the cauter-
ized liver lobe rapidly induced the denudation of MCs from the 
opposite intact lobe, as well as adhesion with the deposition of 
fibrin. The finding of molecules inducing denudation of MCs 
will be important to designing anti-adhesion drugs. An MC 
sheet created using fetal livers prevented adhesion between the 
liver and body wall after surgery.114 Thus, MCs might be useful 
for the prevention of organ adhesion and for supporting regen-
eration of the liver after surgery.

MESOTHELIOMA	

MCs are the source of malignant mesothelioma. Mesothe-
lioma is rare, but exposure to asbestos has increased the risk of 
mesothelioma in the lung worldwide. Mesothelioma in the liver 
is extremely rare in humans, but it is experimentally inducible 
in rats by intraperitoneal injection of asbestos.117,118 Ovarian 
carcinoma cells attached to MCs in the peritoneal cavity and 
induced fibroblastic conversion of MCs.119 These MC-derived 
cancer-associated fibroblasts might provide a niche for the 
growth of ovarian carcinoma. Ovarian cancer cells induced a 
mesenchymal phenotype in MCs via TGF-β.120 Noting is known 
whether liver MCs also participate in cancer metastasis.

FUTURE DIRECTIONS

Although MCs were once considered a simple barrier of the 
organs, recent studies have indicated that MCs dynamically 
change their phenotype during liver development, injury, and 
regeneration. Further studies are necessary to understand how 

MCs coordinate and regulate liver development and growth 
with other liver cell types in embryogenesis. During liver fibro-
sis, MCs contribute to the generation of myofibroblasts near the 
liver surface. Although TGF-β has been shown to induce MMT, 
it is unclear how MCs sense hepatocyte injury. Elucidation of 
biological and molecular changes involved in MC activation 
and fibrogenesis will contribute to the development of novel ap-
proaches for prevention and therapy of liver fibrosis. It will also 
be interesting to examine whether myofibroblasts from different 
cell sources play different roles in fibrogenesis.121 Further stud-
ies are necessary to understand how the semi-permeable barrier 
function of liver MCs is changed in liver fibrosis and how it is 
involved in ascites formation in cirrhosis. 
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