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Abstract: In previous studies, we identified the two principal transporters that mediate the uptake
of glutathione (GSH) from cytoplasm into the mitochondrial matrix of rat kidney proximal tubular
cells. We hypothesized that genetic modulation of transporter expression could markedly alter
susceptibility of renal proximal tubular cells to a broad array of oxidants and mitochondrial toxi-
cants. Indeed, we previously showed that overexpression of either of these transporters resulted in
diminished susceptibility to several chemicals. In the present work, we investigated the influence of
overexpression of the mitochondrial 2-oxoglutarate carrier (OGC) in NRK-52E cells on the cytotoxicity
of the antineoplastic drug cisplatin. In contrast to previous results showing that overexpression
of the mitochondrial OGC provided substantial protection of NRK-52E cells from injury due to
several toxicants, we found a remarkable enhancement of cellular injury from exposure to cisplatin as
compared to wild-type NRK-52E cells. Despite the oxidative stress that cisplatin is known to cause in
the renal proximal tubule, the increased concentrations of mitochondrial GSH associated with OGC
overexpression likely resulted in increased delivery of cisplatin to molecular targets and increased
cellular injury rather than the typical protection observed in the previous work.

Keywords: glutathione; transport; kidney; mitochondria; cisplatin; cytotoxicity; 2-oxoglutarate
carrier; oxidative stress

1. Introduction

Cisplatin (also known as cis-diamminedichloroplatinum (II) or CDDP) is a widely
used anticancer drug that was approved for use in treating several cancers by the U.S.
Food and Drug Administration in 1978. CDDP is also considered by the World Health
Organization as one of the 100 essential drugs [1]. Despite the continued utility of
CDDP in chemotherapy [2,3], two major problems in its use are tumor resistance and
off-target side effects [4]. Among the off-target side effects, kidney injury is one of the most
prominent [5–9] and has been extensively studied both in terms of developing biomarkers
to detect such injury during CDDP therapy and to design approaches to protect against it
so that therapy can continue.

Several factors and cellular mechanisms have been identified as critical determinants
of CDDP-induced nephrotoxicity. These have included active uptake by proximal tubular
cells by the organic cation transporter 2 (OCT2; Slc22a2) and the copper transporter 1
(CTR1; Slc31a1) [10,11], generation of oxidants and production of a cellular state of ox-
idative stress [12–24], endoplasmic reticulum stress [25,26], inflammation [27,28], various
processes in mitochondria that can lead to energetic failure [28–40], and cell death involving
autophagy and other pathways [34,41–46]. This list of cellular processes and functions
that are adversely impacted by CDDP exposure does not, however, explain the molecular
mechanism by which CDDP causes renal cellular injury. As noted by George et al. [7],
once inside the proximal tubular cell, the chloride atoms of CDDP become labile and are
replaced by water molecules to become hydrated, electrophilic species that can then target
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cellular macromolecules. One of the intracellular targets for this hydrated, electrophilic
form of CDDP appears to be glutathione (GSH), as conjugation of CDDP with GSH has
been reported in rodent kidney studies [47–49].

Although conjugation with GSH is cytoprotective for many reactive electrophiles,
Hanigan and colleagues [48–53] and others [54] have provided data in several in vivo
and in vitro studies that led them to conclude that the CDDP-GSH conjugate follows a
bioactivation mechanism in the renal proximal tubule that has been well-established for
halogenated solvents such as tri- and perchloroethylene [55]. The key data supporting
this include prevention of nephrotoxicity in vivo and cytotoxicity in vitro by inhibition
of γ-glutamyltransferase (GGT) or cysteine conjugate β-lyase (CCBL) activities. In some
contrast with these studies, Wainford et al. [56] examined CDDP nephrotoxicity in Sprague-
Dawley rats and cytotoxicity in isolated proximal tubular cells from rats and humans.
While inhibition of GGT activity protected rats in vivo from CDDP-induced nephrotoxicity,
inhibition of any of the subsequent enzymes in the pathway, including CCBL activity,
had no impact on CDDP-induced nephrotoxicity in vivo or CDDP-induced cytotoxicity
in vitro. Accordingly, these authors concluded that while GGT is a key enzyme involved in
mediating CDDP-induced nephrotoxicity, the CDDP-GSH conjugate does not follow the
bioactivation mechanism established for halogenated solvents. Based on the above discus-
sion, the potential protective or bioactivation role of GSH in CDDP-induced nephrotoxicity
remains unclear and is likely more complex than simply an antioxidant effect of GSH or as
a metabolic intermediate.

Despite the precise role of GSH in CDDP-induced nephrotoxicity being unclear, it
is well-established that both redox status—GSH status in particular—and mitochondrial
function in renal proximal tubular cells are key components in the renal response to CDDP
exposure [12–24,28–40]. To attempt to address the role of GSH and renal mitochondria
in the disposition and mechanism of action of CDDP in renal proximal tubular cells, we
investigated the impact of altered mitochondrial GSH status on CDDP-induced cytotoxicity.
The content of renal mitochondrial GSH is determined exclusively by transport of GSH from
the cytoplasm into the mitochondrial matrix and is mediated by two organic anion carriers
on the mitochondrial inner membrane, the dicarboxylate carrier (DCC; Slc25a10), and
the 2-oxoglutarate carrier (OGC; Slc25a11) [57]. In previous work, we demonstrated that
transient overexpression of the DCC in a proximal tubular cell line, Normal Rat Kidney-52
Epithelial (NRK-52E) cells, derived from rat kidney, increased mitochondrial GSH content
and protected those cells from injury due the oxidant tert-butyl hydroperoxide (tBH) or the
nephrotoxic metabolite of trichloroethylene, S-(1,2-dichlorovinyl)-L-cysteine (DCVC) [58].
Similarly, stable transfection of NRK-52E cells to overexpress the OGC resulted in marked
enhancement of mitochondrial transport and accumulation of GSH both in mitochondria
and in the cell as a whole and protection from apoptosis induced by either tBH or DCVC [59].
In contrast, stable overexpression in NRK-52E cells of a double-cysteine mutant of the OGC
(rOGC-C221,224S) with markedly reduced mitochondrial GSH transport function did not
protect the cells from injury. Instead, those cells exhibited enhanced susceptibility to injury
as compared to the wild-type cells [59].

In the present work, we hypothesized that NRK-52E cells that stably express high
levels of the OGC should be protected from cellular injury due to CDDP exposure. Re-
sponses of both wild-type (NRK-52E-WT) and OGC-overexpressing cells (NRK-52E-OGC)
to CDDP were assessed by measurements of cellular necrosis, apoptosis, and total cellular
concentrations of GSH and cellular morphology. Rather than demonstrate the expected pro-
tection by OGC overexpression, enhanced cytotoxicity from CDDP exposure was observed
as compared to WT cells.

2. Results
2.1. CDDP-Induced Necrotic Cell Death

Cell death by necrosis was assessed by measurement of release of lactate dehydroge-
nase (LDH). As shown in Figure 1A, NRK-52E-WT cells incubated for 4, 8, or 24 h with 0,
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10, 50, or 100 µM CDDP exhibited modest amounts of LDH release at 4 and 8 h but then ex-
hibited significant increases in LDH release with increasing concentrations of CDDP at 24 h.
In contrast with expectations that NRK-52E-OGC cells would be resistant to CDDP-induced
necrosis, these cells exhibited markedly higher amounts of LDH release as compared to
those measured in the NRK-52E-WT cells (Figure 1B). Whereas maximal fractions of LDH
release in NRK-52E-WT cells incubated with 10, 50, or 100 µM CDDP for 24 h were 12.1,
23.2, and 31.4%, respectively, maximal fractions of LDH release in NRK-52E-OGC cells
similarly incubated were 23.1, 41.2, and 50.8%, respectively.
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Figure 1. Time and concentration dependence of CDDP-induced LDH release. Confluent, wild-type
NRK-52E (NRK-52E-WT) (A) and confluent, NRK-52E cells overexpressing the OGC carrier (NRK-
52E-OGC) (B) were incubated in 24-well cell culture plates for up to 24 h with 0, 10, 50, or 100 µM
CDDP. LDH activity was measured in both culture medium and total cells. Values are means ± SEM
of percent LDH release for 4 individual incubations for controls (0 µM) and 3 individual incubations
for cells incubated with 10, 50, or 100 µM CDDP. a,b,c = Significantly different (p < 0.05) from 0-µM
control for 10, 50, and 100 µM CDDP, respectively, at the same time point.

2.2. CDDP-Induced Apoptosis

Susceptibility of NRK-52E cells to CDDP-induced cytotoxicity was further studied by
assessing cell cycle status by flow cytometry (Figure 2). As with LDH release, NRK-52E-
OGC cells exhibited a significantly higher amount of apoptosis than NRK-52E-WT cells
incubated with the same concentrations of CDDP. Although the extent of apoptosis was
higher at all concentrations of CDDP, the exemplary plots shown for cells incubated with
100 µM CDDP (Figure 2A,C) show the greater degree of cell death most clearly. Whereas
NRK-52E-WT cells incubated with 100 µM CDDP for 8 h or 24 h still exhibited a large
proportion of cells in the G0/G1 and S phases of the cell cycle, the NRK-52E-OGC cells
similarly incubated with CDDP exhibited almost no detectable cells in the G0/G1 and S
phases of the cell cycle with virtually all cells being sub-G1, meaning that they are almost
all undergoing apoptosis. Indeed, as shown in Figure 2B, the fractions of NRK-52E-WT
cells incubated for 24 h with 10, 50, or 100 µM CDDP undergoing apoptosis were 9.3, 15.4,
and 45.0%, respectively. In contrast, as shown in Figure 2D, the fractions of NRK-52E-OGC
cells similarly incubated with CDDP that were undergoing apoptosis were 18.1, 48.5, and
94.3%, respectively. Of note, the total amount of cell death as indicated by LDH release
and apoptosis in NRK-52E-OGC cells incubated with 50 or 100 µM CDDP are >100%,
suggesting that a proportion of the cells detected by propidium iodide staining and flow
cytometry and designated as sub-G1 are likely necrotic.



Int. J. Mol. Sci. 2022, 23, 1993 4 of 13

Int. J. Mol. Sci. 2021, 22, x  4 of 14 
 

 

and 94.3%, respectively. Of note, the total amount of cell death as indicated by LDH re-

lease and apoptosis in NRK-52E-OGC cells incubated with 50 or 100 µM CDDP are > 100%, 

suggesting that a proportion of the cells detected by propidium iodide staining and flow 

cytometry and designated as sub-G1 are likely necrotic. 

 

Figure 2. Time and concentration dependence of CDDP-induced cell cycle changes. Confluent, wild-

type NRK-52E cells (NRK-52E-WT) and confluent, NRK-52E cells stably overexpressing OGC 

(NRK-52E-OGC) were preincubated for 24 h on 35-mm dishes with media containing 1 mM GSH 

and were then incubated for up to 24 h with either media (= 0 µM) containing 20 µM GSH or media 

containing 10, 50, or 100 µM CDDP in the presence of 20 µM GSH. Cells were harvested by tryp-

sin/EDTA treatment, washed in sterile PBS, fixed overnight in ethanol, and then stained with pro-

pidium iodide and analyzed by flow cytometry with a Becton Dickinson FACSCalibur flow cytom-

eter. (A) Exemplary FACS analysis of NRK-52E-WT cells treated with 100 µM CDDP. (B) Time- and 

concentration-dependent apoptosis induced by CDDP in NRK-52E-WT cells. (C) Exemplary FACS 

analysis of NRK-52E-OGC cells treated with 100 µM CDDP. (D) Time- and concentration-depend-

ent apoptosis induced by CDDP in NRK-52E-OGC cells. For panels B and D, a,b,c = Significantly 

different (p < 0.05) from 0-µM control for 10, 50, and 100 µM CDDP, respectively, at the same time 

point.  

2.3. CDDP-Induced Changes in Cellular Morphology 

Morphology of NRK-52E-WT cells (Figure 3) and NRK-52E-OGC cells (Figure 4) in-

cubated for up to 24 h with 0, 10, 50, or 100 µM CDDP shows the time- and concentration-

dependent effects of CDDP on cellular structure and density. Differences between WT 

Figure 2. Time and concentration dependence of CDDP-induced cell cycle changes. Confluent, wild-
type NRK-52E cells (NRK-52E-WT) and confluent, NRK-52E cells stably overexpressing OGC (NRK-
52E-OGC) were preincubated for 24 h on 35-mm dishes with media containing 1 mM GSH and were
then incubated for up to 24 h with either media (=0 µM) containing 20 µM GSH or media containing 10,
50, or 100 µM CDDP in the presence of 20 µM GSH. Cells were harvested by trypsin/EDTA treatment,
washed in sterile PBS, fixed overnight in ethanol, and then stained with propidium iodide and
analyzed by flow cytometry with a Becton Dickinson FACSCalibur flow cytometer. (A) Exemplary
FACS analysis of NRK-52E-WT cells treated with 100 µM CDDP. (B) Time- and concentration-
dependent apoptosis induced by CDDP in NRK-52E-WT cells. (C) Exemplary FACS analysis of
NRK-52E-OGC cells treated with 100 µM CDDP. (D) Time- and concentration-dependent apoptosis
induced by CDDP in NRK-52E-OGC cells. For panels B and D, a,b,c = Significantly different (p < 0.05)
from 0-µM control for 10, 50, and 100 µM CDDP, respectively, at the same time point.

2.3. CDDP-Induced Changes in Cellular Morphology

Morphology of NRK-52E-WT cells (Figure 3) and NRK-52E-OGC cells (Figure 4)
incubated for up to 24 h with 0, 10, 50, or 100 µM CDDP shows the time- and concentration-
dependent effects of CDDP on cellular structure and density. Differences between WT and
OGC cells are not apparent at the earlier time points but are more evident at the 8- and 24-h
time points. At these time points, a higher proportion of NRK-52E-OGC cells incubated
with CDDP appeared to be rounded and raised from the culture surface as compared to
NRK-52E-WT cells similarly incubated with CDDP or there was a more obvious formation
of pyknotic or oddly shaped cells.
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Figure 3. Morphology of NRK-52E-WT cells incubated with CDDP. Confluent, wild-type NRK-52E
cells (NRK-52E-WT) were incubated for up to 24 h with 0, 10, 50, or 100 µM CDDP. Photomicrographs
were obtained on a Zeiss Triple Laser-Scanning confocal microscope at an initial magnification of
196×. Bar = 5 µm.
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Figure 4. Morphology of NRK-52E-OGC cells incubated with CDDP. Confluent, NRK-52E cells
overexpressing OGC (NRK-52E-OGC) were incubated for up to 24 h with 0, 10, 50, or 100 µM CDDP.
Photomicrographs were obtained on a Zeiss Triple Laser Scanning confocal microscope at an initial
magnification of 196×. Bar = 5 µm.



Int. J. Mol. Sci. 2022, 23, 1993 6 of 13

2.4. Effects of CDDP on Total Cellular GSH Concentrations

Assessment of total cellular GSH concentrations (Figure 5) confirms that NRK-52E-
OGC cells contain approximately double the concentration of GSH as NRK-52E-WT cells.
The interesting finding was that despite the markedly higher concentrations of GSH in the
NRK-52E-OGC cells as compared to those in the NRK-52E-WT cells at time 0 (12.8 ± 1.1
vs. 6.42 ± 0.44 nmol/mg protein, respectively), the fraction of the decrease in GSH con-
centration with increasing CDDP incubation concentration was much greater in those
cells as compared to the NRK-52E-WT cells (decreased by 80.4% in NRK-52E-OGC cells
incubated for 24 h with 100 µM CDP vs. decreased by 57.9% in NRK-52E-WT cells similarly
incubated).
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Figure 5. Time and concentration dependence of effects of CDDP on total cellular GSH concentration.
Concentrations of total cellular GSH were determined in cells grown on collagen-coated T-25 flasks.
After detachment at the indicated times by brief treatment with trypsin/EDTA, GSH content was de-
termined by ion-exchange high-pressure liquid chromatography after derivatization with iodoacetic
acid and 1-fluoro-2,4-dinitrobenzene. Results are means ± SEM of measurements from 3 separate
cell cultures for NRK-52E-WT cells (A) and NRK-52E-OGC cells (B). a,b,c = Significantly different
(p < 0.05) from 0-µM control for 10, 50, and 100 µM CDDP, respectively, at the same time point.

3. Discussion

The current study focused on two factors in the interaction between CDDP and the
renal proximal tubular cell, namely, mitochondria and GSH status. Previous work of
ours identified the two anion carriers, the DCC and OGC, that are responsible for the
critical mitochondrial pool of GSH [57]. As redox regulation [12–19,21–24,34–40] and
mitochondrial function [4–6,12,29,30,33,40,47] are critically involved in the mechanism
of proximal tubular cytotoxicity caused by CDDP, we hypothesized that increasing the
mitochondrial and cellular concentrations of GSH could be protective. We had previously
shown that overexpression of either the DCC [58] or OGC [59] in a rat proximal tubular cell
line, NRK-52E cells, significantly protected these cells from injury due to an oxidant, tBH,
and a mitochondrial toxicant, DCVC, that acts by both oxidative stress and formation of a
reactive electrophile. Although NRK-52E cells exhibit many properties of the in vivo rat
proximal tubule, these cells exhibit relatively low expression and activity of mitochondrial
and plasma membrane GSH transporters [60]. This limitation in the WT cell line is actually
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advantageous as it provides a low baseline against which cells that overexpress any of
these transporters can be compared. Another study of ours [61] in primary cultures of
rat proximal tubular cells derived from the remnant kidneys of uninephrectomized rats
showed that overexpression of the DCC or OGC reverted these cells from a hypertrophied,
pro-oxidant state to more normally functioning proximal tubular cells with a diminished
state of oxidative stress.

CDDP causes proximal tubular cell death by multiple pathways, including autophagy,
apoptosis, and necrosis [34,41–46]. We assessed the ability of a range of concentrations of
CDDP to cause proximal tubular cell death by either necrosis (LDH release; Figure 1) or
apoptosis (cell cycle analysis by propidium iodide staining and flow cytometry; Figure 2).
Our rationale for choosing the concentrations to which the NRK-52E cells were exposed
was three-fold. First, plasma levels of CDDP in patients on a chemotherapy regimen
with CDDP have been reported to be between 1.9 and 11 µM [62–66]. Second, studies of
ours in primary cultures of human proximal tubular cells found that a concentration of
20 µM CDDP exhibited little or no cytotoxicity whereas a concentration of 90 µM CDDP
was moderately cytotoxic [66]. Finally, mammalian kidneys can accumulate CDDP to
concentrations as much as fivefold higher than those in plasma [5,6,28]. Accordingly, we
incubated the two types of NRK-52E cells with 10, 50, or 100 µM CDDP to obtain a range
of cytotoxicity from low to moderate. NRK-52E-WT cells exhibited minimal increases in
LDH release (<15%) through 24 h at 10 µM, and moderate increases in LDH release of
approximately 20% and 30% at 24 h with 50 µM and 100 µM CDDP, respectively. In contrast,
the NRK-52E-OGC cells exhibited moderate LDH release (~20%) at 24 h with 10 µM CDDP,
moderate LDH release (~20%) at 4 h with 100 µM CDDP, and high amounts of LDH release
(>40%) at 8 h and 24 h with 100 µM CDDP and 24 h with 50 µM CDDP.

A similar disparity in the susceptibility of the two NRK-52E cell lines was observed
with cell cycle analysis. Whereas all three concentrations of CDDP produced moderate
increases in the proportion of sub-G1 cells after 8 h (15–20%) and 24 h (25–45%) in the WT
cells, CDDP produced much greater increases in sub-G1 cells at all time points from 4 h to
24 h. Both 50 and 100 µM CDDP caused more than 80% of the cells to undergo apoptosis
by 24 h in the OGC-overexpressing cells. As noted above, some of the cells identified as
sub-G1 are possibly necrotic as the total fraction of cells indicated as “dead” (i.e., necrotic +
apoptotic) was >100%. Analysis of cellular morphology (Figures 3 and 4) also suggested a
higher degree of cell damage in NRK-52E-OGC cells, especially at the later time points.

The key question that arises from these data is: What is the mechanism underlying
the greater susceptibility of OGC-overexpressing cells to CDDP? The obvious difference
between the two cell lines is their mitochondrial and cellular GSH status. Stable overex-
pression of the OGC in NRK-52E cells resulted in approximately a 75% and 400% increase
in the initial rate of mitochondrial GSH uptake with 5 mM and 10 mM GSH, as compared
to WT cells [59]. In the present study, total cellular concentrations of GSH were measured
over a period of 24 h in cells incubated with 0, 10, 50, or 100 µM CDDP (Figure 5). Although
the direct effect of OGC overexpression is expected to be an increase in mitochondrial
GSH concentrations, NRK-52E-OGC cells exhibited approximately two-fold higher total
cellular GSH concentrations than NRK-52E-WT cells. A likely explanation for the increase
in total cellular GSH concentration is an upregulation of the glutamate-cysteine ligase,
which is the rate-limiting enzyme responsible for the initial step in GSH synthesis in the
cytoplasm [67]. With stable mitochondrial OGC overexpression, large amounts of cytoplas-
mic GSH are transported into mitochondria, resulting in lower concentrations of GSH in the
cytoplasm. With the feedback inhibition of the glutamate-cysteine ligase diminished due
to the marked decrease in cytoplasmic GSH, an increase in expression and activity could
occur, thereby resulting in a significant increase in cytoplasmic and hence total cellular
GSH concentrations.

Despite the higher total cellular concentrations of GSH in the NRK-52E-OGC cells, the
fractions by which these concentrations decreased with increasing incubation time and
increasing CDDP concentration were greater than those in the NRK-52E-WT cells. Thus,
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the higher total cellular, and presumably mitochondrial, GSH concentrations were not
protective against CDDP-induced cytotoxicity. Moreover, despite the two cell types having
similar concentrations of GSH at later incubation times, the NRK-52E-OGC cells exhibited
a higher amount of necrotic and apoptotic cells than the NRK-52E-WT cells. This suggests
that overexpression of the mitochondrial OGC protein may result in increased susceptibility
to CDDP by a process other than just the mitochondrial or cellular GSH concentrations.

A recent review on the mechanisms of CDDP resistance in cancer cells by
Devarajan et al. [68] highlighted one mechanism by which cancer cell resistance develops
that involves increased formation of reactive oxygen species, subsequent increased expres-
sion of the transcription factor nuclear factor-erythroid factor 2-related factor 2 (Nrf2), and
subsequent induction of the two subunits of γ-glutamyl-cysteine synthetase, which in turn
results in increased concentrations of GSH. In cancer cells, Devarajan et al. [68] concluded
that this ultimately results in increased detoxification of CDDP. It would appear that in renal
proximal tubular cells, however, the ultimate result of increased cellular concentrations
of GSH is not increased detoxification, but rather, increased bioactivation. The markedly
higher concentrations of GSH in the OGC-overexpressing cells may also result in increased
accumulation of CDDP, which is something that needs to be investigated further. This
finding would seem to be consistent with the work of Hannigan and colleagues [48–53]
regarding the role of GSH conjugation in renal bioactivation of CDDP. Although the role
of the CCBL in this bioactivation process has been questioned [56], the protective effect
of inhibition of the GGT-dependent metabolism of the CDDP-GSH conjugate has been
confirmed in multiple studies by multiple groups. This fact is, therefore, consistent with
GSH conjugation of CDDP playing a role in its bioactivation rather than its detoxification.

4. Materials and Methods
4.1. Materials

Restriction enzymes for PCR, other enzymes (e.g., DNA polymerases and T7 RNA
polymerase), and plasmids were purchased from New England Biolabs (Beverly, MA,
USA), Promega (Madison, WI, USA), and Gibco-BRL/Life Technologies (Gaithersburg,
MD, USA). PCR primers were custom synthesized by Integrated DNA Technology, Inc.
(Coralville, IA, USA). Cloning vectors (pGEM-T Easy and pRESET, pcDNA3.1/V5-His-
TOPO) were purchased from Promega and Invitrogen (Carlsbad, CA, USA). Materials for
gel electrophoresis (SDS, acrylamide, and agarose buffers) were purchased from Bio-Rad
(Hercules, CA, USA) or Sigma-Aldrich (Milwaukee, WI, USA). ProBond nickel-chelating
resin was purchased from Invitrogen. NRK-52E cells (catalog no. CRL-1571) and cell
culture medium (catalog no. 30-2002; Dulbecco’s modified Eagle’s medium with 4 mM
L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, and 1.0 mM
sodium pyruvate), and 10% (w/v) bovine calf serum were purchased from the American
Type Culture Collection (Manassas, VA, USA). Antibodies to the His6-fusion protein was
purchased from Invitrogen or QIAGEN (Valencia, CA, USA). Double-distilled, deionized
water was used for all experiments. CDDP was purchased from Sigma-Aldrich (catalog
no. P4394). Stock solutions were soluble in aqueous solutions with application of heat. All
other chemicals and reagents were purchased from commercial vendors and were of the
highest purity available.

4.2. Amplification of Rat Kidney Mitochondrial OGC cDNA by RT-PCR

Rat kidney mitochondrial OGC cDNA was amplified and expressed in E. coli as
previously described [59]. A brief overview of the procedure is presented here. Total rat
kidney RNA was reverse transcribed and amplified with forward and reverse primers
based on the complete cDNA sequence (1149 bp) for the heart mitochondrial OGC protein
from the Norway rat (GenBank accession no. NM_022398). RT-PCR was conducted, the
product was loaded onto an agarose gel, the gel was stained with ethidium bromide, and
the bands were visualized under UV light. The 1149-bp product was ligated into a T-A
cloning vector (pGEM-T Easy) for transformation. The sequence of the PCR product was
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confirmed by automated DNA sequencing. The full-length cDNA for rat kidney OGC
was subcloned into the pRSET T7 expression vector for high-level expression in E. coli as a
His6-fusion protein. The OGC-His6 fusion protein was obtained from the inclusion body
fraction and was further purified by passage over a nickel-chelating resin.

4.3. Culture and Transfection of NRK-52E Cells

NRK-52E-WT and NRK-52E-OGC cells were cultured on collagen-coated polystyrene
T-25 culture flasks, 35-mm dishes, or in 24-well plates, depending on the experiment, with
Dulbecco’s modified Eagle’s medium containing 4% (w/v) L-glutamine, 1.5 g/L sodium
bicarbonate, 4.5 g/L glucose, 1 mM sodium pyruvate, and 10% (v/v) bovine calf serum in
an atmosphere of 5% CO2, 95% air at 37◦C. On reaching confluence (5–9 days), subcultures
were prepared by a 15-min treatment with 0.02% EDTA, 0.05% trypsin, and cells were
replated at a density of 4 × 104 cells/cm2. NRK-52E cells overexpressing the rat OGC
protein were generated as previously described [59]. Briefly, plasmid DNA was purified
and the cDNA was subcloned into the pcDNA3.1/V5-His-TOPO vector. Stable transfection
was achieved with FuGENE 6 from Roche Applied Science (Indianapolis, IN, USA). Stable
transfectants were selected with Geneticin (G418) and protein expression was verified with
the antibody to His6-fusion proteins and Western blot analysis.

4.4. Assay of Cellular Necrosis by LDH Release

Cells were incubated in 24-well plates for up to 24 h. At the indicated times, aliquots
from extracellular media and those from cells solubilized with Triton X-100 were obtained
for measurement of LDH activity. Activities were measured spectrophotometrically at
340 nm as NADH oxidation after addition of pyruvate and NADH. Percentage of LDH
release was calculated by the formula:

% LDH release = (LDH activity in media/(LDH activity in media
+ LDH activity in cells)) × 100%

(1)

4.5. Flow Cytometry Analysis of Cell Cycle

Both WT and OGC NRK-52E cells were grown on 35-mm culture dishes until approxi-
mately 80–90% confluence. Cells were pretreated for 24 h with 1 mM GSH and were then
treated for up to 24 h with either media (=0 µM or control) or various concentrations of
CDDP in the presence of 20 µM GSH. Procedures for preparation of samples for analysis of
cell-cycle status by flow cytometry were as previously described [58,59]. After harvesting,
fixation in ethanol, and staining with propidium iodide, samples were analyzed by flow cy-
tometry using a Becton Dickinson FACSCalibur flow cytometer (Becton Dickinson, San Jose,
CA, USA). Analyses were performed with 20,000 events per sample using the ModFit LT
version 2 for Macintosh data acquisition software package (Verity Software; distributed
by Becton Dickinson, San Jose, CA, USA). Fractions of apoptotic cells were determined by
analysis of sub-G1 (subdiploid) peaks whereas other phases of the cell cycle (G0/G1, S, and
G2/M) were also calculated.

4.6. Confocal Microscopy

To obtain photomicrographs of NRK-52E cells treated with various concentrations of
CDDP, cells were grown on collagen-coated, 35-mm culture dishes and were viewed with a
Zeiss Triple-Laser Scanning confocal microscope (LSM30) (Carl Zeiss AG, Jena, Germany).
Initial magnification was 196×.

4.7. Measurement of Total Cellular GSH Content by HPLC

Cellular content of GSH in cells grown on T-25 flasks was determined by ion-exchange
high-pressure liquid chromatography using a Waters µBondapak amine column (Waters
Corporation, Milford, MA, USA) after derivatization of samples with iodoacetic acid and
1-fluoro-2,4-dinitrobenzene according to previously described methods [69,70]. Derivatives
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were detected by absorbance at 365 nm and were compared to authentic standards. Assay
limit of detection was 50 pmol.

4.8. Data Analysis

Results are expressed as means ± SEM of measurements from the indicated number
of cell preparations. Statistical analysis was done using GraphPad Prism software version
9 (GraphPad Software, San Diego, CA, USA). Significant differences between mean values
of controls and treated samples were first assessed by a one-way or two-way analysis of
variance. When significant F values were obtained with the analysis of variance, the Fisher’s
protected least-significance t-test was performed to determine which means were signifi-
cantly different from one another, with two-tail probabilities < 0.05 considered significant.

5. Conclusions

The findings from the present work illustrate the principle that approaches or mecha-
nisms that are typically thought of as being cytoprotective may actually have the opposite
effect in specific cases. With CDDP, part of the rationale to hypothesize that enhancement
of the cellular concentrations of a major thiol antioxidant would be protective is based
on the extensive data showing that CDDP generates reactive oxygen species, produces
oxidative stress, and causes disturbances in renal mitochondrial function. The unique
aspects of CDDP handling and metabolism by the kidneys, however, likely account for
the finding that significant enhancement of mitochondrial and total cellular GSH enhance
CDDP-induced cytotoxicity. These unique aspects likely include formation of a CDDP-
GSH conjugate, and its transport and further metabolism by renal enzymes of the classic
mercapturic acid pathway. Additional measurements of CDDP metabolites and cellular
or mitochondrial accumulation of either CDDP or Pt may provide some further insight
into the nephrotoxicity of CDDP. The importance of this lies in the continued clinical use of
CDDP in cancer chemotherapy and the dose limitations caused by CDDP side effects, of
which nephrotoxicity is prominent.

In summary, the present work clearly shows the following: (i) Stable overexpression
of the OGC results in significantly greater amounts of time- and concentration-dependent
necrotic cell injury due to CDDP, as shown by LDH release (Figure 1). (ii) Stable overex-
pression of the OGC results in significantly greater amounts of time- and concentration-
dependent apoptosis due to CDDP, as shown by propidium iodide staining and flow
cytometry (Figure 2). (iii) NRK-52E cells that stably overexpress the OGC exhibited a
modestly greater extent of morphological damage from CDDP (Figures 3 and 4). (iv) De-
spite higher total cellular concentrations of GSH than NRK-52E-wild-type cells, NRK-52E
cells overexpressing the OGC exhibited more pronounced decreases in these concentra-
tions of GSH after exposure to CDDP. (v) The greater amount of cell death exhibited by
NRK-52E-OGC cells vs. NRK-52E-WT cells occurred with the same concentrations of GSH,
suggesting that other processes besides just mitochondrial GSH transport were responsible.
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