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Abstract

Acute respiratory infection (ARI) and diarrhoea are two major causes of child morbidity and

mortality in Bangladesh. National and regional level prevalence of ARI and diarrhoea are

calculated from nationwide surveys; however, prevalence at micro-level administrative units

(say, district and sub-district) is not possible due to lack of sufficient data at those levels. In

such a case, small area estimation (SAE) methods can be applied by combining survey

data with census data. Using an SAE method for the dichotomous response variable, this

study aims to estimate the proportions of under-5 children experienced with ARI and diar-

rhoea separately as well as either ARI or diarrhoea within a period of two-week preceding

the survey. The ARI and diarrhoea data extracted from Bangladesh Demographic and

Health Survey 2011 are used to develop a random effect logistic model for each of the indi-

cators, and then the prevalence is estimated adapting the World Bank SAE approach for the

dichotomous response variable using a 5% sample of the Census 2011. The estimated

prevalence of each indicator significantly varied by district and sub-district (1.4–11.3% for

diarrhoea, 2.2–11.8% for ARI and 4.3–16.5% for ARI/diarrhoea at sub-district level). In

many sub-districts, the proportions are found double of the national level. District and sub-

district levels spatial distributions of the indicators might help the policymakers to identify the

vulnerable disaggregated and remote hotspots. Particularly, aid industries can provide

effective interventions at the highly vulnerable spots to overcome the gaps between micro

and macro level administrative units.

Introduction

Diarrhoea and acute respiratory infection (ARI) are recognized as important causes of global

child morbidity and mortality. Pneumonia (a form of ARI) and diarrhoea remain major causes

of child death. The impact of these two diseases is about 29% of all under-5 child deaths causes

loss of 2 million young lives each year [1]. Pneumonia alone accounts for about 16% of these
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young child deaths. The number of deaths due to pneumonia can be reduced by the early diag-

nosis and treatment of ARI. The integrated Global Action Plan for Pneumonia and Diarrhoea

(GAPPD) aims to reduce mortality from pneumonia and diarrhoea among under-5 children

to fewer than 3 per 1000 and 1 per 1000 live births respectively by 2025 [2]. The United Nation

(UN) has set a target under the third sustainable development goal (SDG) to end the epidemics

of water-borne diseases and other communicable diseases by 2030 (target 3.3) to achieve the

SDG target of ending preventable deaths of under-5 children to reduce child mortality to

below 25 per 1,000 live births (target 3.2). Recently WHO reported that under-5 child mortal-

ity rates reduced to 41 per 1000 live births in 2016 from 93 per 1000 live births in 1990, how-

ever still now every day on an average 15,000 children die before reaching their fifth birthday

[3]. About half of these under-5 child deaths can be prevented through simple and cost-effec-

tive interventions at proper time.

As per GAPPD, the solutions to tackle pneumonia and diarrhoea do not require major

advances in technology since existing interventions have already proven its effectiveness. Chil-

dren are dying because the provided services are not enough to meet the demand and children

at higher risk are not being reached. Use of effective interventions such as exclusive breastfeed-

ing for the first 6 months, proper life-saving treatment for the children with suspected pneu-

monia and providing oral rehydration therapy to the children with diarrhoea are sufficient to

achieve these goals [2]. Thus, identifying the children at greatest risk, hardest to reach and

most neglected, and targeting them with interventions of proven efficacy will enable us to

close the gap, and ultimately to end the heavy toll of preventable child deaths.

The prevalence of ARI and diarrhoea at national and divisional levels are usually estimated

from a nationwide household survey. In Bangladesh, such nationwide data on ARI and diar-

rhoea information are collected through household surveys conducted by the Bangladesh

Bureau of Statistics (BBS), and through the Demographic and Health Survey (DHS). Diarrhoea

and ARI data are collected by asking mothers whether their children experienced a diarrhoea

episode or ARI symptom during two weeks preceding the survey. According to the seven Ban-

gladesh DHS (BDHS) surveys from 1993 to 2014, the prevalence rates of diarrhoea and ARI

have been improved in Bangladesh throughout 1990–2010, however, there was no steady

declining trend. The prevalence of diarrhoea was around 20% for the period of 1993–2004

with a decline only in 1996 (about 13%); however, the rate was found stable at around 5% in

the later surveys. For ARI, there was a somewhat steady decline in the prevalence over the

period except in 2007, when the rate was unexpectedly jumped to about 10% [4]. In the last

2014 BDHS, the episodes of ARI and diarrhoea were found around 5% for both cases [4],

while the rates were 6% and 5% respectively in 2011 BDHS [5]. The distribution of diarrhoea

and ARI prevalence at division level also does not show any specific declining trends [4–10].

Collection of survey data at different time-periods may be one of the reasons, which suggest

some seasonal effects in the prevalence. An approximate declining trend in both diarrhoea and

ARI prevalence are observed only for Rajshahi (and also Rangpur) division during 1993–2014

period. Interestingly, water-prone divisions Chittagong, Barisal and Sylhet were most likely

vulnerable to diarrhoea and ARI diseases in most of the surveys. Although division level esti-

mates of diarrhoea and ARI prevalence are estimable from the survey data, those at disaggre-

gated levels (such as district and sub-district) are not estimable solely from the survey data due

to the limited number of observations at the desired micro level. Consequently, the govern-

ment cannot find the disaggregated hotspots highly vulnerable to ARI and diarrhoea. Identify-

ing such hotspots might help the aid industries concerned targeting efficient interventions.

A few district-level studies on diarrhoea prevalence are found in the literature. In a cross-

sectional study covering seven vulnerable districts of Bangladesh which are prone to cyclone,

flood, and salinity (Bagerhat, Barguna, Cox’s Bazar, Faridpur, Khulna, Satkhira, and Sirajganj),
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10.3% under-5 children (95% CI 9.16–11.66) experienced with diarrhoea in 2012 during the

preceding month of interview [11]. Though they have district-specific data, they did not report

district-specific estimates of diarrhoea prevalence. No study has also been found conducted at

the sub-district or lower administrative units. Most of the studies conducted by the Interna-

tional Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR’B) are related to environ-

mental and clinical risk factors of different types of diarrhoeal diseases [12, 13]. Using BDHS

data, there are studies on modelling diarrhoea or ARI prevalence based on the logistic or logis-

tic mixed model for determining their risk factors [14, 15], not for prediction purpose since

information of the risk factors are not available in the census data.

Since districts and sub-districts are ignored in the sampling design for the nationally repre-

sentative household survey, the estimates of diarrhoea and ARI prevalence or any other target

parameters are not estimable at these levels. The BDHS 2011 data covers all the 64 districts but

only 396 out of 544 sub-districts. Since the sample sizes both at district and sub-district levels

are too small to have efficient estimates, the design-based direct estimates are not reasonable

to use [16]. Consequently, the policymakers are unable to do their plan focusing on the district

or its lower administrative hierarchies. Small area estimation (SAE) is a statistical technique to

obtain estimates of a target parameter with better precision for disaggregated administrative

units of a country. The basic idea of the SAE method is to model survey data statistically [16].

Such modelling may include use of a recent census or administrative data. Survey data consist

of the target variable and a regression model is specified with some explanatory variables

which are common in both survey and census data.

The SAE methods are broadly two types based on the availability of the explanatory infor-

mation. If unit-level explanatory variables (such as children level variables used in this study)

are available for all the population units (or a sample of the census), SAE methods use unit-

level models such as nested error regression model [17]. While if area-level aggregate statistics

extracted from census or any administrative data source are available, area-level SAE methods

apply area-level models such as Fay-Herriot model [18]. One of the major problems of area-

level methods is that the estimated standard errors are assumed known, though there are

always a significant number of small areas (say here sub-districts) with unreliable standard

errors since they are calculated based on small sample sizes. Also for some small areas, the esti-

mates with their standard errors are not available due to zero observations. In addition, area-

level model-based SAE method can be used for estimating the prevalence only at that level or

its higher-level (such as division level). However, it is not possible to estimate prevalence at

lower administrative units like sub-district. The unit-level SAE method has advantages for

avoiding the two abovementioned problems and so a unit-level SAE approach has been fol-

lowed to estimate the prevalence of the considered health indicators in this study.

The World Bank has been utilising a unit-level SAE method known as ELL after the authors

Elbers, Lanjouw, and Lanjouw [19] for poverty and nutrition mapping in many developing

countries including Bangladesh [20, 21]. The basic idea of the ELL methodology is to develop a

regression model using a continuous response variable (such as per capita consumption

expenditure, weight-for-age Z-score) from survey data and apply it to a census or administra-

tive data source. Since the variable of interest for diarrhoea or ARI prevalence is dichotomous

(whether a child has experienced with diarrhoea or not during a period) instead of continuous,

the ELL methodology cannot be implemented without modification. However, the basic idea

can be implemented after developing a generalized linear mixed model (GLMM), more specif-

ically, a random effect logistic model for the dichotomous response variable [22, 23, 24, 25].

The SAE methods based on GLMM model have been applied to estimate district-level institu-

tional births [23] and unmet need for contraception [24] in Ghana, and disaggregated (district

and sub-district) level diarrhoea prevalence in Nepal [25]. The main difficulty is to develop a
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proper GLMM model incorporating the available survey data with a recent census or adminis-

trative data for a country. Another problem arises in developing a proper logistic model when

the outcome is less frequent among the study population [26]. In this study, developing a

proper (mixed effect) logistic model with sufficient explanatory variables was difficult since the

occurrence of diarrhoea (also for ARI) was found only for about 5% children in the BDHS

2011 data.

Recently Das, Chandra and Saha [27] conducted an SAE study on district-level diarrhoea

prevalence in Bangladesh employing an area-level SAE method. District-specific direct esti-

mates of diarrhoea prevalence with their standard errors were calculated based on the design-

based direct estimator using the data of BDHS 2014. These direct estimates were used as the

response variable and some district-specific variables collected from the Census 2011 reports

were used as the explanatory variables. Though division-level diarrhoea prevalence can be cal-

culated from these district-level estimates, it is not possible to estimate sub-district-specific

diarrhoea prevalence. For estimating sub-district level diarrhoea prevalence, sub-district-spe-

cific (or lower administrative level) Fay-Herriot model is required to develop that might be dif-

ficult due to lack of efficient direct estimates and their standard errors (which are assumed

known in the area-level model) at that level. Thus, the main aim of this study is to estimate the

prevalence of ARI and diarrhoea for under-5 children at district and sub-district levels using a

unit-level SAE technique for the dichotomous response variable. In addition, the aims include

estimating the proportion of children suffering from at least one of the two indicators during

the 2-week period (hereafter refereed as ARI/diarrhoea) at disaggregated levels. Finally, disag-

gregated level spatial distributions of all the three indicators are mapped to highlight the most

vulnerable hotspots. The rest of the paper is set up as follows. Section 2 describes survey and

census data used in this study; Section 3 describes a design-based direct estimator and a

model-based SAE estimator for binary response variable based on the ELL method; Section 4

illustrates the fitted models, spatial distribution of the prevalence, and explores the characteris-

tics of the considered SAE estimator; and concluding remarks are given in Section 5.

Data description

Diarrhoea and ARI data used in this study are extracted from the BDHS 2011 survey. The

main reasons for using BDHS 2011 (instead of recent BDHS 2014) is its concurrency with the

Census 2011 and also the hierarchy of the administrative units are available down to sub-dis-

trict (sub-districts are not available in the BDHS 2014). The data of BDHS 2011 are collected

following a two-stage stratified sampling design by covering all 7 divisions, 64 districts, and

396 (out of 544) sub-districts. In the BDHS 2011, ARI and diarrhoea information are available

for a total of 8341 children [5].

Full census data of Bangladesh is unavailable for academic purposes; however, a 5% sample

of the full census data is available from the BBS. Socio-demographic characteristics such as

age, sex, education, schooling, employment, disability and housing characteristics such as

house type, source of drinking water, and household sanitation are available in the census

data. A number of contextual variables at district and sub-district levels are created using the

individual and household level data of the 5% census data. In the model specification, these

contextual variables are used in addition to those variables at children level common in both

survey and census data. The contextual variables used in the model development for capturing

the variation at the district and sub-district levels are shown in S1 and S2 Tables. In model

development, two-way interactions of residence, division, sex, and age are utilized to develop

the best models. The interaction of division and residence also covers the sampling design of

the BDSH.
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The structure of administrative units and the distribution of children in BDHS 2011 and

Census 2011 are shown in Table 1. The mean and minimum number of children at district

(137 and 15) and sub-district (22 and 1) levels indicate that reliable estimates are not possible

from the BDHS survey at these disaggregated levels, particularly at the sub-district level. Since

the BDHS data is collected through cluster sampling design and cluster-specific multilevel

models are considered to be developed, cluster-specific information are also examined. Table 1

shows that the mean number of children at the cluster level in the survey is higher than that in

the census data. As per the definition of enumeration area (EA) which is the cluster in the sur-

vey, an EA/cluster consists of on average 110–120 households. In the survey, 30 households

were covered from each of the sampled clusters, while 5% of the 110–120 households are

selected in the 5% census data. As a consequence, the cluster-specific mean number of under-5

children is very low in the considered census data.

The number of children experienced with diarrhoea is found zero for about three-fifths

clusters (351 out of 600), for ARI and ARI/diarrhoea the proportions are respectively 50.1%

and 32.3% (301 and 194 out of 600). These practical issues would be problematic for develop-

ing an appropriate multilevel logistic model. This issue is discussed in the model development

section.

Statistical methodology

Let the occurrence of an outcome for kth child belonging to jth cluster of ith area is denoted by

yijk, which takes value 1 if the child experienced the outcome (say diarrhoea) preceding the last

two weeks of the survey date and 0 if the child did not experience the outcome. The target is to

calculate division, district and sub-district level proportions of under-5 children who experi-

enced a target outcome during the period. Since the survey data is representative at the divi-

sion level, design-based direct estimator might provide unbiased and consistent estimates at

the division level but not at the other two disaggregate levels. Therefore, an appropriate SAE

estimator has been applied for estimating proportions at all three levels. The design-based

direct estimator and a unit-level SAE estimator for binary response variable are briefly

explained in the following two sub-sections.

Design-based direct estimator

The Horvitz-Thompson estimator for estimating mean and total of a super-population in a

stratified sample is utilized to obtain design-based direct estimates of target parameter for

small areas using the response values available in the survey data. The design-based direct esti-

mator (denoted by DIR) for the target proportion Pi for the area i is

P̂DIR
i ¼

X

k2si
wikyik; i ¼ 1; . . . ;D

where wik ¼ w�ik=
X

k2si
w�ik is normalized survey weights for kth child belonging ith district with

X

k2si
wik ¼ 1 and w�ik is the survey weight (inverse of the inclusion probability). Following

Table 1. Structure of administrative units and children in the Census 2011 and BDHS 2011.

5% of 2011 Census 2011 BDHS

Division Zila Upzila EA Division Zila Upzila EA

Administrative Units 7 64 544 291669 7 64 396 600

Mean Children U5 107415 11749 1382 3 1250 137 22 15

Minimum Children U5 43026 2504 41 1 977 15 1 1

https://doi.org/10.1371/journal.pone.0220164.t001
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Särndal et al. [28], the design-based variance of the direct estimator P̂Dir
i can be approximated

by,

varðP̂DIR
i Þ �

X

k2si
wikðwik � 1Þðyik � P̂

DIR
i Þ

2
:

This direct estimator is design-unbiased but based on the non-representative area-specific

sample data. Consequently, the direct estimator becomes unreliable due to area-specific small

sample size and also for some areas with no sample data. Though all the districts are covered

in BDHS 2011 data, sample sizes for a significant number of districts are very small since only

a few clusters are covered for those districts. Also for some districts, the number of children

experienced with an outcome (say, diarrhoea) is found zero, which provides zero prevalence

and zero standard error. The model-based SAE methods that ‘borrow strength’ via statistical

models overcome these practical issues for calculating reliable small area estimates [29].

Model-based SAE estimator

Suppose pijk = P(yijk = 1) represents the probability of having diarrhoea for kth child belonging

to jth cluster of ith area. The first target is to develop a nested-error logistic regression model

which is a special case of the generalized linear mixed model (GLMM) as

logitðpijkjxijk; uijÞ ¼ log½pijk=ð1 � pijkÞ� ¼ xTijkβþ uij

where xijk is vector of explanatory values, β is vector of regression parameters, and uij corre-

sponds to cluster-specific random errors respectively. The random errors are usually assumed

to be independent and identically distributed with mean zero and constant variance ðs2
uÞ. The

regression parameters β and variance component s2
u can be estimated via the restricted maxi-

mum likelihood method. The regression model can be extended to a higher level (such as area-

specific effect), however the ELL methodology assumes heterogeneity at cluster-level rather

than target area-level [19]. For estimating the target parameters with their root mean squared

error (RMSE), the estimated regression coefficients, variance components, residuals, and the

explanatory information for all the under-5 census children are used as input in a parametric

or non-parametric bootstrap procedure of the ELL method. The basic steps of the parametric

or non-parametric bootstrap procedure are briefly explained following Das and Haslett [30].

Step 1: fit random effect logistic model to obtain regression coefficients β̂ with their estimated

variance-covariance matrix v̂ðβ̂glsÞ, and cluster-specific residuals with the variance compo-

nent ŝ2
u.

Step 2: generate regression parameters β� from a suitable sampling distribution say the multi-

variate normal distribution Nðβ̂gls; v̂ðβ̂glsÞÞ;

Step 3: generate cluster-specific random errors (except the children level) from a suitable

parametric distribution such as Nð0; ŝ2
uÞ or t-distribution. In case of a non-parametric

bootstrap procedure, draw cluster-specific random errors by resampling via simple random

sampling with replacement (SRSWR) from their empirical distribution (i.e., from the esti-

mated cluster-specific sample residuals stored in Step 1);

Step 4: generate bootstrap response values p�ijk using the generated regression parameters and

the cluster-specific random errors. The generated response values p�ijk are then aggregated

to estimate the area-specific parameter of interest, say, P�i ¼ N � 1
i

XCi

j¼1

XNij

k¼1
p�ijk where Ni

and Nij are area and cluster-specific number of under-5 census children.
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The steps 2–4 are iterated for a large number of times say B = 500 and then the mean and

the standard deviation of these B estimates are considered as the final estimates and their

RMSEs respectively as

P̂ELL
i ¼ B� 1

XB

b¼1
P�i and rmse

ELL
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� 1
XB

b¼1
ðP�i � P̂ELL

i Þ
2

q

:

This estimator is denoted by ELL in the text since the estimator is developed based on the

ELL approach but used for a binary response variable. In the original development of ELL

method for a continuous response variable, heteroscedasticity has been considered at the unit-

level (say, children). If the response variable is weight-for-age Z-score, this heteroscedasticity

issue can be employed. Since the response variable is binary, the heteroscedasticity at the unit-

level is not considered here.

Results

Fixed-effect logistic models (referred to as GLM) and random intercept logistic models

(referred to as GLMM) are developed using children demographic characteristics, household

characteristics, place of residence, regional settings and some contextual variables. The final

selected models for these three health indicators are shown in S1 Table. The final models with

their corresponding inputs are utilized in the ELL approach to estimate the proportions of

each health indictor with their RMSEs and coefficients of variation (CVs). Table 2 shows that

cluster-specific two-level GLMM models perform better than the fixed-effect GLM model in

terms of AIC, Likelihood Ratio Test (LRT), and area under the ROC curve (referred to as

AUC) for each of the three child health indicators. The AUC values indicate that the GLMM

can classify children health status more correctly than the GLM in all cases; particularly for

ARI, about 73% of children are correctly classified.

Although the cluster-specific random errors are assumed to follow the normal distribution,

the normality assumption is not satisfied for diarrhoea and ARI separately, however, the nor-

mality assumption is approximately satisfied for ARI/diarrhoea (see Q-Q plots in S1 Fig). The

distribution of clusters with zero prevalence (58.1% and 50.2% respectively for diarrhoea and

ARI) may be one of the reasons for such non-normal distribution of residuals obtained from

the models of diarrhoea and ARI prevalence. Although the residual distributions are found

non-normal, their variances are found approximately homogeneous (see distributions of resid-

uals in S1 Fig). To avoid the impact of non-normal residuals, non-parametric bootstrap proce-

dure assuming constant variance of residuals are employed in the prediction of these health

indicators.

Table 2. Summary statistics and diagnostics of the fitted logistic (GLM) and random intercept logistic (GLMM) models for diarrhoea, ARI, and ARI/diarrhoea

prevalence, BDHS 2011♀.

Indicators n P Model AIC logLik σ2
u LRT of H0 : σ2

u ¼ 0 AUC (%)

Diarrhoea 8341 21 GLM 3111.8 -1534.9 - χ2: 3.7120 54.86

GLMM 3110.1 -1533.0 0.1687 p-value: 0.0215 71.55

ARI 8341 22 GLM 3680.2 -1818.1 - χ2: 6.2343 61.11

GLMM 3676.0 -1815.0 0.1921 p-value: 0.0063 72.26

ARI/Diarrhoea 8341 21 GLM 5371.6 -2664.8 - χ2: 2.7519 58.41

GLMM 5370.8 -2663.4 0.0791 p-value: 0.0448 65.78

♀ n = sample size, p = # of covariates, s2
u = cluster-level variance component, LRT = likelihood ratio test, AUC = Area under the receiving operating characteristics

curve.

https://doi.org/10.1371/journal.pone.0220164.t002
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To examine the performance of the SAE estimator at the higher administrative levels, divi-

sion level estimates are estimated and compared with the estimates calculated by the design-

based DIR estimator. The bar plots with 95% confidence interval (CI) shown in Fig 1 (plots

Fig 1. Prevalence of diarrhoea, ARI, and ARI/diarrhoea (plots (a), (c), (e) respectively) among under-5 children at division level in Bangladesh with their 95% CI and

also their coefficient of variations (CV) (plots (b), (d), (f) respectively) estimated by the direct (light grey bars) and ELL (grey bars) estimators.

https://doi.org/10.1371/journal.pone.0220164.g001
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(a), (c) and (e)) indicate that the ELL estimator provides very similar estimates as the DIR esti-

mator at division level, however the ELL estimator shows higher accuracy measured by CV (in

%). The bar plots of CVs by division in Fig 1 (plots (b), (d) and (f)) show that the ELL estimator

provides considerably lower CVs than the DIR estimator for most of the divisions except

Dhaka and Chittagong division, where the number of sampled children is considerably higher

than the other divisions. The 95% CI lines also show that the DIR estimator provides higher

confidence interval for most of the divisions due to higher standard errors.

The division level prevalence of diarrhoea and ARI estimated by the ELL estimator indicate

that the children who live in Chittagong division are highly vulnerable to both indicators

(about 6.5% and 7.5%respectively), followed by those who live in Sylhet and Barisal divisions

are vulnerable to diarrhoea (6.4%) and ARI (6.8%) respectively. The bar plot of ARI/diarrhoea

indicator shows that children of these three divisions (12.4% for Chittagong, 12.3% for Sylhet,

and 10.7% for Barisal) are highly vulnerable compared to those living in other divisions. The

children of Khulna division have a lower prevalence of diarrhoea (about 4.0%), however they

are more affected by ARI (about 6.4%). On the other hand, children of Dhaka division are

equally vulnerable to the occurrence of diarrhoea (5.1%) and ARI (5.4%). Consequently, the

bar plot corresponds to ARI/diarrhoea indicates that about 10% children living in Dhaka and

Khulna divisions have experience with either ARI or diarrhoea. The prevalence of all three

indicators are very similar for the children of Rajshahi and Rangpur divisions.

The district-level prevalence of diarrhoea, ARI and ARI/diarrhoea estimated by the ELL

estimator are plotted against those prevalence estimated by the DIR estimator for assessing the

unbiasedness of the ELL estimator. The bias diagnostic plots with the y = x (dotted) lines and

regression (solid) lines shown in Fig 2 (plot (a) for diarrhoea, (c) for ARI and (e) for ARI/diar-

rhoea) indicate that the ELL estimator provides approximately unbiased estimates compared

to the DIR estimates. The bias diagnostic plots indicate that the ELL estimates shrink to the

average estimates than the DIR estimates do. The main reason might be high prevalence esti-

mated by the DIR estimator for some districts with small number of children and also zero

prevalence (for diarrhoea and ARI) for some districts. For comparing the accuracy of the dis-

trict-level prevalence estimated by the ELL and the DIR estimators, the CVs of estimated diar-

rhoea, ARI and ARI/diarrhoea prevalence are plotted against the district index ordered by the

number of children in Fig 2 (plots (b), (d), and (f) respectively). The plots for CVs indicate that

the ELL estimator provides considerably lower CVs (red triangles) than those of DIR estimator

(black circles) as expected. The CVs for DIR estimates are not available for the districts with

zero prevalence. This is an advantage of the SAE method, which provides estimates with accu-

racy for those areas having no information in the sample data. The summary statistics of the

district-level prevalence indicate that the diarrhoea prevalence varied within 2.69–8.03%, ARI

prevalence within 4.26–8.92%, and ARI/diarrhoea 7.71–13.73% (please see Table 3). Maxi-

mum CVs for the district-level prevalence are estimated as 20.81%, 18.25%, and 12.10%

respectively, which indicate that the accuracies of the estimated prevalence are reasonably well.

Since the survey data covers only 396 out of 544 sub-districts and sub-district-specific sam-

ple sizes are too small, only the ELL estimator is applied to calculate sub-district-specific preva-

lence. Summary statistics of the estimated sub-district level prevalence of diarrhoea, ARI and

ARI/diarrhoea shown in Table 3 indicate that sub-district level prevalence vary within 1.38–

11.31% for diarrhoea, 2.21–11.83% for ARI and 4.27–16.45% for ARI/diarrhoea. It is observed

that about 25% sub-districts have more than about 6.0% and 7.0% prevalence of diarrhoea and

ARI respectively; while about 75% sub-districts have more than 9.0% prevalence of ARI/diar-

rhoea. Sub-district level estimates are also efficient based on the CV estimates, of which 75%

are below 17% for diarrhoea, 14% for ARI and 11% for ARI/diarrhoea.
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For identifying the vulnerable hotspots of the considered three child morbidity indicators,

district and sub-district level maps of Bangladesh are generated using the corresponding esti-

mates calculated by the ELL estimator. For each indicator, the maps are constructed using

Fig 2. Bias diagnostic plot with y = x line (dashed) and regression line (solid) for estimated prevalence of diarrhoea, ARI, and ARI/diarrhoea among under-5 children at

district level in Bangladesh (plots (a), (c), (e) respectively) by the ELL estimator and the corresponding coefficient of variations (CV) against the district index ordered by

the number of total children (plots (b), (d), (f) respectively) estimated by the direct (black circle) and ELL (red triangle) estimators.

https://doi.org/10.1371/journal.pone.0220164.g002
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seven-shaded colours based on the same scale for both district and sub-district level maps.

Maps in Fig 3 show the spatial distributions of diarrhoea prevalence at district and sub-district

levels. District-level map shows that the districts of north-western (Rangpur region), western

Table 3. Summary statistics of the estimated diarrhoea, ARI, and ARI/diarrhoea prevalence among under-5 children at district and sub-district level with their esti-

mated root mean squared errors (RMSE) and coefficient of variation (CV%) using ELL estimator.

Level Indicator Statistics Min Q1 Mean Median Q3 Max SD

District Diarrhoea Prevalence (%) 2.69 3.79 4.67 4.87 5.69 8.03 1.25

RMSE × 1000 3.84 4.29 5.15 5.42 6.21 9.02 1.35

CV (%) 7.97 9.53 10.89 11.41 12.78 20.81 2.50

ARI Prevalence (%) 4.26 5.44 6.07 6.15 6.74 8.92 0.99

RMSE × 1000 4.38 5.28 5.78 6.17 6.44 10.64 1.48

CV (%) 7.51 8.50 9.34 10.16 11.08 18.25 2.46

ARI/Diarrhoea Prevalence (%) 7.71 9.52 10.32 10.56 11.44 13.73 1.37

RMSE × 1000 6.16 7.24 7.86 7.96 8.51 11.06 1.05

CV (%) 5.85 6.85 7.47 7.62 8.20 12.10 1.18

Sub-district Diarrhoea Prevalence (%) 1.38 3.57 4.66 4.91 5.96 11.31 1.70

RMSE × 1000 3.93 4.80 6.01 7.36 8.36 27.80 3.77

CV (%) 8.08 11.07 13.32 15.61 16.85 45.35 6.91

ARI Prevalence (%) 2.21 5.21 6.04 6.05 6.79 11.83 1.34

RMSE × 1000 4.57 5.91 6.82 7.86 9.04 21.30 2.91

CV (%) 7.27 9.85 11.36 13.64 14.22 43.33 6.30

ARI/Diarrhoea Prevalence (%) 4.27 8.96 10.37 10.37 11.85 16.45 2.08

RMSE × 1000 6.05 7.94 9.14 10.11 11.27 28.25 3.28

CV (%) 5.66 7.67 8.89 10.17 10.77 28.58 4.05

https://doi.org/10.1371/journal.pone.0220164.t003

Fig 3. District and sub-district level hotspots of diarrhoea prevalence among under-5 children of Bangladesh (black and white borderlines refer

respectively to division and district areas while no border for sub-districts).

https://doi.org/10.1371/journal.pone.0220164.g003
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(Rajshahi region) and western-south (Khulna region) parts have comparatively lower diar-

rhoea prevalence compared to those districts of northern (Mymensingh region), north-eastern

(Sylhet region), south-eastern (Chittagong region) and coastal regions of Barisal division.

More specifically, the highest diarrhoea prevalence is found in Cox’s Bazar (8%) and the lowest

in Joypurhat district (3%). Interestingly, “Chapai Nawabganj” district lying in the very western

part is highly vulnerable to diarrhoea prevalence, though its neighbouring districts are least

vulnerable.

The sub-district level map exactly shows the main micro-level hotspots of diarrhoea preva-

lence. The highly vulnerable sub-districts with a prevalence of more than 7.0% are mostly in

the Sylhet and Chittagong regions, which are highly prone to floods every year. However, it is

observed that there are some sub-districts with higher diarrhoea prevalence (say, more than

8%) belong to the districts with lower diarrhoea prevalence (say, less than 5%) in the district-

level map (for example Jiban Nagar sub-district in Chuadanga district). The map clearly shows

for which sub-districts, a district is vulnerable to diarrhoea. For example, only two sub-districts

of Chapai Nawabganj district are the main hotspots for its higher diarrhoea prevalence.

The district and sub-district level prevalence of ARI are mapped in Fig 4. The district-level

map identifies Chandpur, Comilla, Feni, Noakhali and Lakshmipur districts of Chittagong divi-

sion, Khulna district of Khulna division and Jhalokathi district of Barisal division as the highly

vulnerable districts for ARI (�7.5% prevalence). While the sub-district level map shows the

hotspots with 7.5–12.0% ARI prevalence not only belonged in the above-mentioned districts

but also with other districts lying mostly in the whole coastal southern part of Bangladesh.

Also, the children of Hill Tracts area of Chittagong division (mainly some sub-districts of Kha-
grachari and Rangamati districts) are highly vulnerable to ARI prevalence than to diarrhoea

prevalence. Both district and sub-district level maps show hotspots with ARI prevalence of

Fig 4. District and sub-district level hotspots of ARI prevalence among under-5 children of Bangladesh (black and white borderlines refer respectively

division and district areas while no border for sub-districts).

https://doi.org/10.1371/journal.pone.0220164.g004
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6.5–7.5% are scattered all over the country except the central region of the country, more spe-

cifically the sub-districts surrounding the capital city Dhaka.

The district-level distribution of ARI/Diarrhoea prevalence shown in Fig 5 reveals very sim-

ilar distribution as for the diarrhoea prevalence. Consequently, there are some tendencies that

the sub-districts vulnerable from diarrhoea were also vulnerable from ARI/diarrhoea (such as

Halishahar, Teknaf, Companiganj, Ramu, and Ukhia sub-districts; please see S2 File). The sub-

district level map indicates that a significant number of sub-districts particularly from Sunam-
ganj, Sylhet, Brahmanbaria, Narshingdi, Noakhali, Chittagong, Cox’s Bazar, Potuakhali and

Bhola districts have more than 12% ARI/diarrhoea prevalence. Overall, the highly vulnerable

districts/sub-districts are distributed in the right half of the country except the hill tracts sub-

districts (Khagrachari, Rangamati and Bandarban districts) of Chittagong region. The children

of Chapai Nawabganj district along with its two sub-districts (exceptional in the eastern part

of the country) are found suffering from both diarrhoea and ARI/diarrhoea but not from ARI

separately.

The estimated prevalence of diarrhoea, ARI, and ARI/diarrhoea among under-5 children at

district (Zila) and sub-district levels with their 95% CI are given in S1 and S2 Files respectively.

The characteristics of the ELL estimator for binary response variable are examined by plot-

ting the estimated prevalence and their estimated RMSEs against the sub-district wise total

number of children in Fig 6 (plot (a) and (b)). For diarrhoea and ARI/diarrhoea indicators, the

estimated prevalence tends to increase exponential with the number of under-5 children (blue

and green lines respectively), while the RMSEs are found to have exponential decreasing trend

but remains stable for larger sub-districts. For ARI, the smooth line of RMSE (red line) shows

an approximate flat U-shape curve with the number of children, however no specific pattern is

observed for the estimated prevalence of ARI against the size of the population. The estimated

Fig 5. District and sub-district level hotspots of ARI/diarrhoea prevalence among under-5 children of Bangladesh (black and white borderlines refer

respectively division and district areas while no border for sub-districts).

https://doi.org/10.1371/journal.pone.0220164.g005
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RMSEs are also plotted against the estimated prevalence to examine the ELL estimator (plot

(c) in Fig 6). For diarrhoea, the estimated RMSEs increase exponentially with the prevalence,

while the smooth lines of ARI and ARI/diarrhoea show approximately U-shape pattern. The

U-pattern suggest that the RMSEs decrease quickly up to a prevalence level (near about 5%

and 9% for ARI and ARI/diarrhoea respectively) and start to increase after that prevalence

level. The distribution of prevalence and their relationship with the number of under-5 chil-

dren may be one of the reasons for this U-pattern smooth line.

Kernel densities of the sub-district-specific prevalence of diarrhoea, ARI and ARI/diarrhoea

prevalence are plotted in Fig 7. The distribution of diarrhoea prevalence shows slightly positive

skewness (blue shaded area), while the distribution of ARI prevalence shows approximately

symmetric but a shape of t-distribution with some extreme prevalence on the right tail (red

shaded area). On the other hand, the distribution of ARI/diarrhoea shows slightly negative

skewness with very flat tail (green shaded area). These skewed distributions indicate that some

sub-districts have an unusually high prevalence of diarrhoea (more than 8%) and ARI (more

than 10%), while some districts have an unusually lower prevalence of ARI/diarrhoea (less

than 5%). Hasslet et al. [25] found such positively skewed distribution in the SAE study of diar-

rhoea prevalence in Nepal.

Discussion

Diarrhoea and ARI (in the form of pneumonia) are still two leading causes of child deaths not

only in Bangladesh but also globally. In Bangladesh, 15% and 6% of 119,000 total under-5 chil-

dren deaths were due to diarrhoea and pneumonia in 2015 [31]. Delay in seeking appropriate

care and lack of access to multiple sources for treatment are recognized as the underlying risk

factors for children death due to diarrhoea and pneumonia in Bangladesh [12,13]. Thus, the

government should focus on the effective interventions of proper life-saving treatment for the

children who are at great risk of pneumonia and diarrhoea to achieve the GDDP goals on

reducing child mortality due to ARI and diarrhoea. In this respect, identifying the hotspots of

childhood diarrhoea and ARI prevalence at the lower administrative units would be helpful for

the government. Taking proper initiative for providing the appropriate life-saving treatments

in those hotspots may reduce the mortality due to these two leading causes.

Fig 6. Relationship among the estimated prevalence of diarrhoea, ARI and ARI/diarrhoea among under-5 children at the sub-district level, their standard errors

(RMSEX1000), and the sub-district-specific population size (under-5 children).

https://doi.org/10.1371/journal.pone.0220164.g006
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This study aims to identify the hotspots of diarrhoea and ARI prevalence at two disaggre-

gate levels in Bangladesh through the application of an SAE method for the dichotomous

response variable. The application provides district and sub-district level prevalence of ARI,

diarrhoea, and ARI/diarrhoea episodes with their accuracy measures. The study findings con-

firmed that though the national and division level estimates of the three health indicators seem

very low, there are significant inequalities among districts and sub-districts. The inequality

increases when the aggregation level goes down to sub-district from division.

The comparison of the interactive maps of the three indicators at district level suggests that

children living in the southern and north-eastern parts of Bangladesh have higher tendency to

experience with the prevalence of diarrhoea and ARI related diseases compared to those chil-

dren living in the central, western and north-western parts. District-level maps indicate that

children of five districts (Sunamganj, Brahmanbaria, Narshindi, Noakhali and Cox’s Bazar) are

highly vulnerable to diarrhoea as well as ARI/diarrhoea, while only those of Noakhali district

are highly susceptible to all the three indicators. The sub-district level maps suggest that the

higher risk of occurring child morbidity was not restricted only to those sub-districts belong-

ing to the highly vulnerable districts but also in some districts with less vulnerability. For ARI,

Fig 7. Distribution of sub-district level diarrhoea, ARI, and ARI/diarrhoea prevalence in Bangladesh estimated by the ELL.B estimator.

https://doi.org/10.1371/journal.pone.0220164.g007
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moderate to highly vulnerable sub-districts are scattered all over the country with some excep-

tion in the central region.

A comparison between district and sub-district level maps helps in identifying those sub-

districts for which the prevalence of a specific district becomes higher (for example, three sub-

districts of Chapai Nawabganj have diarrhoea prevalence of more than 7%, while the other

sub-districts have prevalence below 4%). Das, Chandra and Saha [27] also found that Chapai
Nawabganj had significantly higher diarrhoea prevalence but it was not possible to say for

which sub-districts. Sub-district level prevalence of this study indicate that children of “Gomas-
tapur”, “Nawabganj Sadar” and “Shibganj” are more vulnerable to diarrhoea prevalence. It is

also observed that some districts with a very low prevalence of an indicator (say, diarrhoea)

have sub-districts with considerably higher prevalence (for example, diarrhoea prevalence for

Khagrachari district is only 5.3% but it has a sub-district (Manikchari) with prevalence of

10.1%).

The findings suggest that the ELL estimators for the three dichotomous response variables

are providing unbiased and consistent estimates compared to the direct estimator at both dis-

trict and sub-district level. One of the benefits of this ELL estimator is that an appropriate mul-

tilevel model developed at the most detailed level can be used for estimating target parameters

at the several higher aggregation levels. In this study, a suitable multilevel model for each of the

health indicators has been developed using the survey data and some contextual variables

extracted from the 5% census data, and then the prediction has been done using the children

level explanatory variables available in the Census data. If full census data can be used, the esti-

mator will be more consistent at the sub-district level and even the indicators can be estimated

at lower administrative units like Union and Mauza (respectively fourth and fifth levels). How-

ever, utilizing full census data of Bangladesh will be very tough to handle a mammoth dataset

from the perspective of academic researchers. National research institutes like BBS can take

initiatives to utilize the full dataset for getting more precise estimates of child morbidity at the

most-detailed administrative units.

As limitations of this study, two issues concerned the authors: normality issues of the clus-

ter-specific residuals and the shrinkage of the estimated target parameters to the average. The

shrinkage can be removed if more contextual variables at district and sub-district level can be

incorporated in the final model. The authors tried to improve the model by incorporating

such contextual variables, but the incorporated contextual variables are not found significant

in the final model. A bootstrap approach proposed by Carpenter, Goldstein, and Rasbash [32]

can be incorporated in the non-parametric bootstrap of ELL method to unshrink the small

area estimates. In further studies, the ELL estimator used in this study can be compared to the

estimator based on an area-level GLMM model developed at the target aggregation level such

as district or sub-district level. For sub-district level, the problem is that about 40% sub-dis-

tricts are not available in the survey data and so sub-district level random effects cannot be

used for prediction for all sub-districts as required in the empirical Bayes estimator described

in Molina and Rao [33] and Saei and Chambers [22] utilizing a GLMM model. Ultimately, a

synthetic type estimator like ELL will be required for those non-sampled sub-districts.

Though testing the validity of an SAE method is rare due to lack of appropriately detailed

data, the ELL method for continuous response variable has been validated by estimating a set

of predicted welfare estimates to their true values in the state of Minas Gerais, Brazil [34]. The

study findings show that the ELL approach can produce estimates of welfare, which were quite

close to their true values (calculated based on census response values). Such kind of validation

study for the binary response variable based ELL method used in this study can be conducted

in future using only the survey data where any health indicator variable (say, diarrhoea) is

available and the survey data structure permits to have sufficient number of observation at a
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particular lower administrative unit (say district). Das et al. [35] implemented an empirical val-

idation study for the binary response variable based ELL estimator by employing the ELL

approach to both height-for-age (HAZ) z-score as continuous response variable and indicator

variables (say, stunted: HAZ < -2.00 and severely stunted: < -3.00) by utilizing linear mixed

and GLMM models respectively for prediction purpose. Their study findings show that the

ELL-type estimator for the binary response variable provides reasonably consistent estimates

as the continuous response variable based standard ELL method. However, finding a good

GLMM model for the indicator like diarrhoea and ARI is tough due to lack of proper explana-

tory variables in the census data. This is also a major problem for the area-level model experi-

enced in recent SAE study on diarrhoea prevalence in Bangladesh [27]. As for example,

statistics on handwashing (a major determinant of diarrhoea) during diarrhoeal episodes in

children and adults cannot be extracted from any administrative source. In addition, the time

gap between survey and census year for implementing an SAE study could be an important

issue if there are not enough time-invariant variables available in the census data [36].

Children malnutrition status is highly correlated with their recent experience with the

occurrence of diarrhoea and ARI related diseases. Evidence from several child malnutrition

studies [37, 38] suggest that the children recently suffered from diarrhoea and ARI are more

likely to be either wasted (an indicator of acute malnutrition) or underweight (combination of

acute and chronic malnutrition). The national target of reducing wasting at 5% by 2025 [39]

will be achievable if the prevalence of ARI and diarrhoea can be reduced as well. Haslett, Jones

and Isidro [21] conducted a small area study on child undernutrition (underweight: lower

weight compared to age) in Bangladesh using the Child and Mother Nutrition Survey of Ban-

gladesh 2012 and full data of Census 2011. They found that the children living in the north-

eastern (Sylhet and Mymensingh regions) and the south-eastern (costal parts of Chittagong
region) parts of Bangladesh are vulnerable to both underweight and severely underweight

(Appendix D.3 of Haslett, Jones and Isidro [21]). These spatial distributions of underweight

and severe underweight seem comparable to the spatial distribution of ARI/diarrhoea gener-

ated in this study (map (b) in Fig 5). The comparison of these spatial distributions reveals the

inter-relationship between child undernutrition and the occurrence of recent diarrhoea and

ARI. Thus, the combination of this small area study on child diarrhoea and ARI prevalence

with the study of child undernutrition [21] might guide the stakeholders for taking proper ini-

tiatives at the lower administrative levels for reducing the vulnerability of child morbidity and

undernutrition simultaneously. The interventions at the lower administrative units can be fol-

lowed up so that the children in risk of severe diarrhoea and pneumonia can get the access to

life-saving treatment timely, which save the children as well as reduce the rate of child mortal-

ity due to diarrhoea and ARI.

Conclusions

Disaggregated level prevalence of ARI, diarrhoea, and ARI/diarrhoea within a period of two-

week preceding the survey among under-5 Bangladeshi children are estimated in this study

through the implementation of an SAE method for the binary outcome variable. The World

Bank ELL method has been adapted for a binary response variable by developing a random-

effects logistic model for each of the indicators. The estimated prevalence of each indicator sig-

nificantly vary at the considered district and sub-district levels; even the proportions are found

double the national level in some sub-districts. Spatial distributions of the indicators indicate

that children of southern and north-eastern regions are more susceptible to be experienced

with the occurrence of diarrhoea and ARI. The most disaggregated level maps suggest that vul-

nerable sub-districts spread over both highly and less vulnerable aggregated administrative
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units (say division and district), particularly higher prevalence of ARI are observed in all

regions except some sub-districts close to the capital city Dhaka. These disaggregated level sta-

tistics on ARI and diarrhoea prevalence might help the policymakers to identify the susceptible

hotspots, which in turn help the aid industries in effective interventions at the highly vulnera-

ble disaggregated administrative units.
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