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This review aimed to arrange the process of a systematic review of genome-wide association studies in order 
to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching 
and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, 
and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–
Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, in-
cluding dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. 
The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect 
size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate 
related factors of heterogeneities. 
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INTRODUCTION

Malignant neoplasm, or cancer, is one of the most prevalent 
chronic diseases, which develops as a result of a somatic muta-
tion. Advancing from this theory, a personalized medicine is cur-
rently gaining traction for the diagnosis and treatment of cancer 
[1], and such trends call for the synthesis of evidence related to 
genome-wide epidemiology [2].

With the advances in genetic technologies, the subjects of anal-
yses in studies aiming to discover disease-related genomes have 
changed into chromosomal abnormalities, allelic heterogeneity, 
and single nucleotide polymorphisms (SNPs). According to these 
changes, linkage analysis studies, genetic association studies 
(GTAS), and genome-wide association studies (GWAS) has been 

currently ongoing [2,3].
However, a phenomenon known as the “winner’s curse,” which 

is characterized by low replicability of results, has been appear-
ing in follow-up studies on genes that were previously associat-
ed with a particular disease through genome-wide epidemiolo-
gy studies [4-6]. Population stratification, diverse testing meth-
ods, and insufficient sample sizes have been implicated in this 
phenomenon [7-9], all of which constitute the rationale for the 
meta-analysis of genome-wide epidemiology studies [10-12].

This review introduces the process of a genome-wide meta-
analysis (GWMA), which involves a meta-analysis of findings 
of GWAS that investigate the SNPs associated with a particular 
disease [13]. Particularly, this study presents an example of a 
meta-analysis in practice, in an attempt to inspire further GWMA 
studies in Korea. 

PROCESS OF GENOME-WIDE META-ANALYSIS 

The general procedures of a GWMA introduced by previous 
studies [10,12-17] could be divided into five steps as shown in 
Table 1. Two features that distinguish GWMA from traditional 
systematic reviews are the Hardy-Weinberg equilibrium (HWE) 
test in step 3 for a quality evaluation of the selected literature 
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and the use of genetic models for meta-analyses in step 4. 
Here, we present the study by Song et al. [18], which exam-

ined the association between Fc receptor-like 3-169 C/T poly-
morphism and rheumatoid arthritis in Asians, to describe the 
process of HWE testing and summary effect size calculating us-
ing a statistical program. The study selected 15 articles with a 
pooled sample of 22,312 individuals (11,170 cases + 11,142 
controls). The selected articles were divided into three races 
(Asians, Europeans, and Native North Americans) for subgroup 
analysis. The polymorphic genotypes for the meta-analysis were 
CC, CT, and TT. We introduce the commands used on STATA 
version 14.2 (StataCorp, TX, USA) and interpret the results. 

Step 1: searching and selection
The search for GWAS articles involves different sources and 

keywords from those used for a search of general systematic re-
views. We recommend the use of data sources on the organized 
tables by Casado-Vela et al. [19], Ramasamy et al. [20], and Wal-
lace et al. [21]. Keywords such as ‘genetics, alleles, and polymor-
phisms’ are some medical subject headings regarding genome-
wide epidemiology [22]. 

We recommend the use of the flow chart suggested by Sagoo 
et al. [12] for the literature selection process following the elec-
tronic search. 

Step 2: extraction of related information
The sets of information extracted from the selected GWAS 

articles are needed for the evaluation of the validity of each ar-
ticle in the next step. Items for evaluating the validity of GWAS 
articles have been suggested by Attia et al. [4], de Bakker et al. 
[14], Ramasamy et al. [20], and Khoury et al. [23]. Considering 
that GWMA results are applied to patient treatments, we strong-
ly recommend the use of the items suggested by Attia et al. [4]. 
The organization of tables is recommended by the suggestions 
of Sagoo et al. [12].

If the quality of each of the selected genetic epidemiology 
studies must be assessed, the assessment checklist provided as 
supplementary data in the study by Thakkinstian et al. [24] or 
the checklist suggested on the “Strengthening the Reporting of 
Genetic Association Studies” by Little et al. [25] may be used. 

Step 3: evaluation of validity 
One critical aspect of validity assessment for GWMA findings 

is the satisfaction of HWE assumption. HWE states that the fre-
quencies of genes and genotypes remain in equilibrium over 
generations under limited conditions [3]. For example, given 
that the frequencies of two alleles, called A and a, of a gene are 
p and q, respectively, where p+q=1, the frequencies of the gen-
otypes AA, Aa, and aa are p², 2pq, and q², respectively, where 
p²+2pq+q²=1. Using this equation, we can predict the frequen-
cy of a genotype with a known allele frequency.

The subjects of HWE testing depend on the study design. In 
a cohort study or cross-sectional study, HWE should be tested 
on the entire study population. On the other hand, HWE is only 
tested on the control group in a case-control study because the 
case group may not confirm to the HWE if the genotype is as-
sociated with a disease. Studies that deviate from the HWE should 
be excluded from step 4, and their meanings should be investi-
gated in step 5 through a sensitivity analysis. 

The most popular test to verify the HWE is the chi-squared 
test [26], a statistical technique that compares the observed val-
ues from a group with estimated values based on the assump-
tion of HWE. In other words, it assesses the degree of deviation 
of observed values from the estimated values. A p-value of less 
than 0.05 is considered statistically significant and is interpreted 
to be a violation of the HWE.

For HWE analysis of case-control studies in the STATA soft-
ware, genotypic counts of the case and control groups should 
be listed following the <genhwcci>  command. For example, in 
Table 1 of the article by Song et al. [18], the genotypic counts 
for TT, TC, and CC in one of the 15 studies (Han et al. [27]) were 
132, 180, and 65 in the case groups and 51, 133, and 114 in 
the control groups, respectively. Figure 1 shows the results of 
entering <genhwcci 132 180 65 51 133 114, binvar label (TT, 
TC, CC)>  into the software. ‘binvar’ requests that standard er-
rors from a binomial distribution are reported, and ‘label’ re-
quests that results are presented according to the genotype. The 
p-value in the chi-square test for the control group was 0.257, 
which indicates that it does not violate the HWE. 

Step 4: meta-analyses by types of genetic model
In a C/T polymorphism where C is dominant and T is reces-

sive, there are five possible types of genetic models: dominant 
(CC+CT vs. TT), recessive (CC vs. CT+TT), homozygote con-
trast (CC vs. TT), heterozygote contrast (CC vs. CT), and allelic 
contrast (C vs. T) [17,18,28.29].  

Add the frequencies for the case and control groups of each 
article according to each model before performing the meta-
analyses. For example, in the study by Han et al. [27], multiply 
CC and TT by two and add TC to each value for an allelic con-
trast (C vs. T) (Figure 1). In other words, the C for the case group 

Table 1. Five steps of conducting a genome-wide meta-analysis

Actions

Step 1 Searching and Selection
Step 2 Extraction of related information
Step 3 Evaluation of validity
Step 4 Meta-analyses by types of genetic model
Step 5 Evaluation of heterogeneity



3

Bae J-M et al.: GWMA using STATA

becomes 310 (=65 [CC]×2+180 [TC]), and T becomes 444 
(=132×2+180). By the same method, the C for the control 
group becomes 361 (=114×2+133), and T becomes 235 (=51× 
2+133). Apply this method to the remaining 14 articles, and per-
form the meta-analyses. 

For a frequency-based meta-analysis on STATA, use the <metan> 
command. Refer to Shim et al. [30] for creating a forest plot, cal-
culating summary effect size, calculating the I-squared value for 
an evaluation of heterogeneity, creating a funnel plot to assess 
publication bias, and applying options for the Egger or Begg 
test. Figure 2 is a forest plot obtained from a meta-analysis of 
an allelic contrast model with the data from Song et al. [18], us-
ing the command <metan case_C case_T control_C control_T, 
or randomi by(ethnicity)> . 

Step 5: evaluation of heterogeneity 
If heterogeneity is present, difference of race should be first 

considered [15,29], as differences in genetic pools may lead to 
heterogeneity among genome-wide epidemiology studies [4,31]. 

Hence, Song et al. [18] performed subgroup analyses by divid-
ing the subjects into three races: Asians, Europeans, and Native 
North Americans. In addition, differences in allele frequencies 
may also induce heterogeneity among studies [32].

If heterogeneity is determined to persist, a random effect mod-
el may be applied [33,34]. However, a meta-regression may be 
applied to identify the cause of the heterogeneity [29,35]. Me-
ta-regression is recommended only for analysis of ten or more 
articles, and its STATA command is <metareg>  [30]. 

CONCLUSION AND SUGGESTIONS

Two features that distinguish GWMA from the intervention 
meta-analyses are that GWMA uses HWE to verify the validity 
of a study and performs meta-analyses according to the five pos-
sible types of genetic models. 

If individual patient data, as opposed to the findings of the 
selected literature, are used, the STATA <metagen> command 

Figure 1. Results of Hardy-Weinberg equilibrium testing using the STATA ‘genhwcci’ command of Han et al. [27].
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may be used [36]. Furthermore, there may be a hypothesis in 
which the outcome variables are continuous and not dichoto-
mous. A case in point is the investigation of differences in bone 
density according to vitamin D receptor polymorphisms [17]. 
We plan to describe the process of GWMA involving continu-
ous outcome variables in a future article. In addition, we shall 
introduce genome search meta-analysis (GSMA), which was 
developed for meta-analysis for ordinal outcome variables [37], 
at another time. 

Currently, genome-wide epidemiology is evolving into sys-
tem epidemiology using multi-omics, including proteomics, me-
tabolomics, and epigenomics, in pursuit of precision medicine 
[19,38,39]. Amid this trend, GWMA is vital in that it can rein-
terpret existing studies and suggest future research directions. 
We hope this article provides inspiration for further studies. 
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Figure 2. A forest plot of an alleleic contrast model, using the STATA ‘metan’ command of Song et al. [18]. OR, odds ratio; NAN, North 
American Natives; CI, confidence interval. 
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