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Impact of high iron intake on cognition and neurodegeneration
in humans and in animal models: a systematic review

Sonal Agrawal, Kiersten L. Berggren, Eileen Marks, and Jonathan H. Fox

Context: Accumulation of brain iron is linked to aging and protein-misfolding
neurodegenerative diseases. High iron intake may influence important brain health
outcomes in later life. Objective: The aim of this systematic review was to examine
evidence from animal and human studies of the effects of high iron intake or pe-
ripheral iron status on adult cognition, brain aging, and neurodegeneration. Data
Sources: MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical
Trials, and OpenGrey databases were searched. Study Selection: Studies investi-
gating the effect of elevated iron intake at all postnatal life stages in mammalian
models and humans on measures of adult brain health were included. Data
Extraction: Data were extracted and evaluated by two authors independently,
with discrepancies resolved by discussion. Neurodegenerative disease diagnosis
and/or behavioral/cognitive, biochemical, and brain morphologic findings were
used to study the effects of iron intake or peripheral iron status on brain health.
Risk of bias was assessed for animal and human studies. PRISMA guidelines for re-
porting systematic reviews were followed. Results: Thirty-four preclinical and 14
clinical studies were identified from database searches. Thirty-three preclinical stud-
ies provided evidence supporting an adverse effect of nutritionally relevant high
iron intake in neonates on brain-health-related outcomes in adults. Human studies
varied considerably in design, quality, and findings; none investigated the effects
of high iron intake in neonates/infants. Conclusions: Human studies are needed to
verify whether dietary iron intake levels used in neonates/infants to prevent iron de-
ficiency have effects on brain aging and neurodegenerative disease outcomes.

INTRODUCTION

Iron proteins have key roles in normal brain function
and the processes of brain development, including neu-

rogenesis, myelination, synaptic development, and en-
ergy and neurotransmitter metabolism.1–3 The large

amount of iron required to perform these functions is

acquired from blood, mainly during periods of rapid

brain growth.4 In adult life, iron uptake by the brain still
occurs, though at levels significantly lower than those

during development.5 Iron levels in the brain can be al-
tered by peripheral iron levels and iron nutrition.

Effects of iron nutrition on the brain have been studied
extensively in iron deficiency, the leading nutrient
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deficiency worldwide.6 Iron deficiency during both de-

velopment and adulthood results in diverse effects on
neural function.7–9 In contrast, the effects of high pe-

ripheral iron status on the brain are poorly understood.
The widespread use of iron-fortified foods, such as milk

replacers, other beverages, and solid foods, as well as
iron supplements has decreased the prevalence of defi-
ciency in all age groups in many populations. However,

iron-augmented diets also have the potential to increase
iron intake above levels needed to prevent deficiency.10

Brain aging and protein-misfolding neurodegenera-
tive diseases such as Alzheimer disease, Parkinson disease,

Huntington disease, and amyotrophic lateral sclerosis
share some common mechanisms.11 Older age is the

greatest risk factor for the accumulation of misfolded pro-
teins that typifies the earliest stages of Alzheimer disease

and Parkinson disease.12 Therefore, Alzheimer disease and
Parkinson disease may represent pathologic extensions of

normal processes of brain aging. Protein misfolding, pro-
tein accumulation, and neurodegeneration are also core

features of Huntington disease and amyotrophic lateral
sclerosis.13,14 Accumulation of iron in the brain occurs

with human aging, and iron levels correlate with cognitive
function.15,16 Iron accumulation in the brain also occurs

with Alzheimer disease, Parkinson disease, Huntington
disease, and amyotrophic lateral sclerosis.17–20 Alzheimer

disease, Parkinson disease, and amyotrophic lateral sclero-
sis most commonly manifest as sporadic diseases.11 They

are modeled in mice by mimicking the less-common ge-
netic forms of the human disease and/or by using toxi-

cants.21–23 Huntington disease is caused by a single gene,
and several genetic mouse models exist.24

There is evidence from human and animal studies
that iron dysregulation is one factor that contributes to

the neurodegeneration associated with Alzheimer dis-
ease, Parkinson disease, Huntington disease, and amyo-

trophic lateral sclerosis.25 In health, iron homeostatic
mechanisms maintain not only appropriate iron ab-

sorption and tissue levels but also cellular and subcellu-
lar location and molecular associations. Dysregulation
of these processes results in increased production of re-

active oxygen species, resulting in molecular damage,
mitochondrial dysfunction, and cell death.26 Despite ev-

idence of a contributory role of iron in brain aging and
neurodegeneration, the role of elevated iron intake as a

modifier of these processes is poorly understood.15–20

Given the increasing life expectancy and the resulting

increased prevalence of neurodegenerative diseases,11 it
is particularly important to understand the effects of

high iron intake at various life stages on brain aging.
Recommended Dietary Allowances for iron have

been developed to prevent iron deficiency, and upper lim-
its were established to avoid short-term adverse effects.27

Possible effects of long-term iron intake above the

Recommended Dietary Allowance on cognition, brain ag-

ing, and neurodegenerative processes are not understood.
Furthermore, there is evidence that some populations are

iron replete and have elevated iron stores.28 The aim of
this study was to use the methods of systematic review to

investigate the effects of high iron intake or high periph-
eral iron status on adult cognition and outcomes of
protein-misfolding neurodegenerative diseases in both an-

imal models and humans. The findings support a role of
high iron intake as a negative modifier of brain health in

adults. They also highlight gaps in understanding both the
mechanisms involved and the translatability of findings in

animal models to humans.

METHODS

Review protocol

The systematic review was undertaken in accordance with
PRISMA (Preferred Reporting Items for Systematic re-

views and Meta-Analyses) guidelines.29 A checklist ensur-
ing adherence to PRISMA guidelines is shown in Table S1

in the Supporting Information online. A written protocol
was not used.

Information sources

The following electronic databases were searched:

MEDLINE, Scopus, CAB Abstracts, the Cochrane
Central Register of Clinical Trials, and OpenGrey. A

computerized literature search was conducted to iden-
tify studies that had been published up to June 28, 2016.

Search strategies are shown in Appendix S1 in the
Supporting Information online.

Study eligibility criteria

Study inclusion and exclusion criteria and research

questions were developed using the PICOS (population,
intervention, comparators, outcome, study design)
model. Included were studies investigating the effect of

elevated iron intake at all postnatal life stages in mam-
malian models and humans on measures of adult brain

health. Neurologic status in animal models is evaluated
using a number of outcomes that include cognitive test-

ing; biochemical measurement of markers linked to
neurodegeneration, such as brain iron accumulation,

neurotransmitter levels, and oxidative stress markers;
and brain morphometry. Therefore, animal studies with

diverse outcome measures were included. Human stud-
ies included were those that estimated former or cur-

rent levels of iron intake or peripheral measures of iron
status and their effect on brain iron, cognition, and/or

the onset of neurodegenerative disease in adults. Details
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of the inclusion and exclusion criteria are provided in
Table 1.

Assessment of risk of publication bias in
preclinical studies

Comparing the number of studies reporting negative
findings in the unpublished versus the published literature

is one way to assess publication bias. Risk of publication
bias was assessed by one author (S.A.). The Society for

Neuroscience’s online database is a collection of abstracts
presented at annual meetings; the years 2007–2015 were

searched. Relevant abstracts were evaluated for the pres-
ence of positive or negative findings but were not included

as part of the review. Permission was obtained from the
Society for Neuroscience to access this private database.

Risk of bias

The quality of the included papers was assessed at the

study level. For animal studies, 7 indicators of quality
adapted from the National Research Council’s Institute

for Laboratory Animal Research were used30,31: (1) ran-
dom allocation of treatment, (2) allocation concealment,

(3) blinding, (4) stated inclusion/exclusion criteria, (5) test
animal details, (6) every animal accounted for, and (7)

conflict of interest statement and funding source. Human
cohort and case–control studies were analyzed using tools

from the Critical Appraisal Skills Program, while cross-
sectional studies were assessed using tools modified from

those recommended by the Agency for Healthcare

Research and Quality.32 The criteria were assessed inde-
pendently by two reviewers (S.A. and J.H.F.); discrepan-

cies were resolved by discussion.

Data extraction and synthesis

Study characteristics and data were extracted and evalu-

ated by two authors independently (S.A. and J.H.F.),
with discrepancies resolved by discussion. Meta-

analysis was not possible because of the heterogeneous
nature of the studies and the varied outcomes. Papers

were grouped into 4 themes: preclinical studies of the
effect of high iron intake on outcomes related to behav-

ior and brain aging (Table 2)33–51; preclinical studies of
the effect of high iron intake on outcomes related to

neurodegenerative disease (Table 3)52–66; human nutrition
studies assessing the association between iron intake

and brain outcomes (Table 4)67–72; and human stud-
ies assessing the association between peripheral iron

status and brain outcomes (Table 5).73–80 Qualitative
synthesis of the included studies was completed

within and across the 4 themes. All findings reported
in Tables 2, 3, 4, and 5 are statistically significant un-

less otherwise stated.

RESULTS

Description of the included studies

A PRISMA flow chart showing papers included and ex-

cluded at each step is shown in (Figure 1). A total of

Table 1 PICOS criteria for inclusion and exclusion of studies
Category Inclusion criteria Exclusion criteria

Participants Animal studies: mammals
Human studies: all races and both sexes

Animal studies: nonmammalian species
Human studies: hemochromatosis or neurologic

disease diagnosis before determination of iron
status or intake level

Intervention Animal studies: oral administration of iron supplements
or high-iron diets

Human studies: iron supplementation or estimation of
iron intake or peripheral iron status at any age

Parenteral administration of iron
Toxic level of iron supplementation in animals
Studies of effects of maternal iron intake on progeny
Studies of iron supplementation in the context of

deficiency
Comparator Control group for iron intake in animal and human

experimental studies
Human studies: sex and age matched, absence of

neurologic disease, lower natural iron intake or lower
peripheral iron status

None

Outcomes Animal studies: behavior, brain biochemistry, and
neuropathology

Human studies: development of neurodegenerative
disease, markers of brain iron status, cognition

Animal and human studies: outcomes measured in
preadults

Study design Experimental animal studies
Human studies: randomized controlled nutritional

studies, all types of observational studies
English language
Dated up to June 2016

Meta-analyses, reviews, gray literature, short commu-
nications, abstracts, and case reports
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2531 potentially relevant articles were identified. After

screening titles and abstracts, 129 papers were identified
for full-text evaluation. After reviewing, 81 papers were

excluded. Of the 48 included papers, 34 described pre-
clinical studies. Nineteen of these focused primarily on

behavioral and age-related outcomes (Table 2), and 15
focused on outcomes related to neurodegenerative pro-

cesses (Table 3). Fourteen studies were conducted in
humans: 6 assessed associations between iron nutrition

and brain outcomes (Table 4), and 8 assessed associa-
tions between peripheral iron status and brain out-

comes (Table 5).

Assessment of risk of publication bias

After searching meeting abstracts from 9 years of the

Society for Neuroscience’s database, 5 studies were
found that addressed the role of elevated nutritional

iron intake in neurodegenerative processes, all in

animal models. All 5 abstracts described adverse effects

of elevated iron intake on brain outcomes.

Assessment of risk of bias in the included studies

Assessments of preclinical studies are presented in
Tables 2 and 3. Assessments of clinical studies are pre-

sented in Tables 6 and 7.

Preclinical studies of the effect of high iron intake on
behavior, brain aging, or neurodegeneration in
neonates or adults

Fifteen studies used a mouse model and 19 a rat

model. Five of the studies assessed the effect of ele-
vated iron intake in genetic models of adult-onset neu-

rodegenerative disease,55,56,59,64,66 while the remainder
studied aging or neurodegenerative processes in wild-

type animals. All studies assessed the effect of elevated

Table 4 Human nutrition studies assessing the association between iron intake and brain outcomes
Reference Study design Population Evaluation of dietary iron and

outcomes
Main findings

Anderson et al.
(1999)72

Case–control 103 newly diagnosed PD
patients and 156 controls;
WA, USA

In-person interview about diet,
covering most of adult life.
Risk of PD

Iron intake was not related
to increased PD risk

Powers et al.
(2003)71

Case–control 250 newly diagnosed PD
patients and 388 age- and
sex-matched controls; WA,
USA

In-person interview about diet,
covering most of adult life.
OR for risk of development
of PD for each quartile of
dietary factor

Subjects in highest quartile
of iron intake had in-
creased risk of PD com-
pared with those in lowest
quartile (OR 1.7)

Powers et al.
(2009)70

Case–control 420 patients (median age 69 y)
and 560 age-, sex-, and
ethnicity-matched controls
(median age, 71 y); USA

In-person interview about diet,
covering most of adult life.
Logistic regression used to
determine OR for the devel-
opment of PD for each level
of dietary factor

Men in highest quartile of
iron intake had increased
risk of PD compared with
those in lowest quartile
(OR 1.82)

Logroscino et al.
(2008)69

Cohort 47 406 men and 46 947
women, all health
professionals; USA

FFQ every 4 y of study.
Outcome of PD as
determined by neurologist

Increased intake of nonheme
iron but not total iron is a
risk for PD (relative
risk ¼ 1.27 and 1.1,
respectively)

Hernandez Mdel
et al. (2015)68

Cohort 1063 healthy, older,
community-dwelling men
and women, mean age 73 y;
UK

Self-reported food question-
naire validated in older
adults. Brain iron deposits
determined by MRI in brain-
stem, white matter, thala-
mus, basal ganglia, and
cortex. Blood iron markers
ferritin and transferrin
determined

Iron intake did not correlate
with blood or brain iron
measurements. Brain iron
deposits did not correlate
with blood iron
measurements

Hagemeier et al.
(2015)67

Cohort 190 healthy men and women,
mean age 43 y, USA

Historic (3 y) nutritional
questionnaire assessing
consumption of iron, cal-
cium, vegetables, dairy,
and red meat. Brain iron
determined by MRI in basal
ganglia, thalamus, and
substantia nigra

Trend toward increased brain
iron with iron supplemen-
tation (P ¼ 0.075). Effects
were dependent on sex

Abbreviations: FFQ, food frequency questionnaire; MRI, magnetic resonance imaging; OR, odds ratio; PD, Parkinson disease.
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neonatal iron intake. Levels of daily iron supplementa-

tion ranged from 2.5 to 120 mg/kg over a period of 3
to 8 days. All studies except one45 provided evidence

of adverse effects of increased neonatal iron intake on
neurologic outcomes. Many of the studies assessed be-

havioral outcomes only. Sixteen studies evaluated mo-
tor outcomes such as open-field and/or rota-rod

endurance. Of these, 13 found altered motor behav-
iors,41–43,46,52–57,60–62 and 3 did not.33,45,66 Results

from memory-based tests such as novel object recogni-
tion and/or radial-arm maze were presented in 13

studies.33,35–37,40–42,44–46,48–50

Brain regional biochemical analyses in the 34 pre-
clinical studies most frequently investigated oxidative

stress, neurochemical markers, or iron levels. Markers
of brain oxidative stress, including malondialdehyde

and protein carbonyls, were increased in 9 stud-
ies34,49,55–58,63–65; the 1 study that assessed glutathione

levels found no change.66 Six studies assessed the effects

of neonatal iron intake on brain neurochemistry out-

comes. Three of these studies reported decreased striatal
dopamine in adult animals,53,57,63 while 2 found no ef-

fect on dopamine.60,62 One study demonstrated de-
creased striatal acetylcholinesterase activity,44 and

another found no effect on striatal serotonin.57 Ten
studies reported increased brain iron after neonatal

supplementation.41,42,46,52,54,56,60–63 Iron levels were ele-
vated in the substantia nigra in 3 of 3 studies, in the

basal ganglia in 6 of 7 studies, and in the cerebral cortex
in 1 of 8 studies. Two studies found no effect of neona-

tal iron supplementation on iron levels in the striatum
and cortex.55,66 Six studies used quantitative pathology
to evaluate morphometric changes in the brain; these

demonstrated significantly decreased neuronal numbers
or neuronal cell body atrophy in specific brain re-

gions.55,56,63–66 Overall, significant adverse effects of
neonatal iron intake on morphologic or biochemical

outcomes in specific brain regions were found in the

Table 5 Human studies assessing the association between peripheral iron status and brain outcomes
Reference Study type Population Peripheral iron measures and

brain outcome(s)
Main findings

Gao et al. (2008)79 Cross-sectional 2000 men and women, >65 y,
rural areas; China

Plasma iron
Cognitive assessment

Plasma iron was not corre-
lated with cognitive scores

Lam et al. (2008)80 Cross-sectional 1451 men and women, all
ambulatory, mean age 75 y;
USA

Plasma iron
Cognitive assessment

Low and high (men) or high
(women) plasma iron asso-
ciated with poorer perfor-
mance in a battery of
cognitive tests

Milward et al.
(2010)77

Cohort 800 community-dwelling
adults, >60 y; Australia

Serum iron, transferrin satura-
tion, and ferritin measured
twice, 9 y apart

Cognitive assessment in year 9

No relationships found
between iron measures
and cognitive scores

Schiepers et al.
(2010)78

Cohort 818 adults, 50–70 y (mean
age 60 y); Netherlands

Total serum iron, total iron-
binding capacity, transferrin
saturation, and ferritin

Cognitive assessment
Measurements taken at base-

line and 3 y

Peripheral iron measures
were not associated with
cognitive outcomes

Umur et al.
(2011)75

Cross-sectional 87 nursing home residents,
>65 y, both sexes, no
neurologic diagnoses;
Turkey

Serum iron, transferrin satura-
tion, and ferritin

Mini-mental status
examination

Mild CI was associated with
significantly higher serum
iron (98%), ferritin (58%),
and transferrin saturation
(107%)

Mueller et al.
(2012)76

Case–control 19 controls, 11 cases of stable
mild CI, 7 cases of progres-
sive CI, and 19 cases of early
dementia; mean age �78 y;
USA

Serum copper and nonheme
iron

Cognitive testing every 6 mo
for 5 y

Ratio of serum copper to
nonheme iron increased
during the progression
from mild CI to Alzheimer
disease. No change in
nonheme iron

Andreeva et al.
(2013)74

Cohort 4959 men and women,
35–60 y; France

Hemoglobin determined in
year 1; serum ferritin deter-
mined in years 1 and 6

Cognitive outcomes evaluated
at year 13

Lower serum ferritin was as-
sociated with better out-
comes of some cognitive
measures in pre- and peri-
menopausal women

Blasco et al.
(2014)73

Cross-sectional 23 obese and 20 nonobese
individuals, both sexes,
mean age �49 y; Spain

Regional liver and brain iron
measured by MRI R2*
relaxation

Obese individuals had signifi-
cantly increased regional
liver and brain iron load

Abbreviations: CI, cognitive impairment; MRI, magnetic resonance imaging.
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substantia nigra (11 of 11 studies), the basal ganglia
(16 of 18 studies), the hippocampus (11 of 12 studies),

and the cerebral cortex (6 of 13 studies). Two studies,
in addition to assessing the effects of increased iron

intake in neonates, also evaluated the effect of elevated
iron intake in adult life; no effects in young adult or

aged wild-type and Huntington disease mice were
found.55,66

Figure 1 Flow diagram of the literature search process.
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Human studies assessing the correlation between iron
nutrition or iron status markers and brain outcomes

Fourteen studies fulfilled the inclusion criteria in assess-
ing the potential correlation between iron nutrition or

peripheral markers of iron nutrition and brain-related
outcomes. Six studies had the primary purpose of exam-

ining the association between estimates of iron intake
and brain iron accumulation or risk of Parkinson dis-

ease.67–72 Of these, 2 cohort studies looked for associa-
tions between iron intake and brain iron deposits. One

was a large study in the United Kingdom that failed to
find a correlation between recent iron intake and mag-

netic resonance imaging (MRI) measures of brain iron
deposition in healthy older individuals.68 Another

smaller study in the United States in middle-aged indi-
viduals demonstrated a trend (P ¼ 0.075) toward in-

creased MRI-measured brain iron with iron
supplementation.67 Four studies investigated possible

associations between iron intake and Parkinson dis-
ease.69–72 Three of these had a case–control design and

recruited study subjects from the state of Washington,
USA. The initial smaller study did not find an associa-

tion between iron intake over most of adult life and the
risk of Parkinson disease.72 Two subsequent larger stud-

ies provided some evidence of an association between
increased iron intake and risk of Parkinson disease.70,71

The fourth study had a cohort design and was very large
(94 353 subjects).69 The authors concluded that in-

creased nonheme iron intake is a risk factor for
Parkinson disease, especially when ascorbate deficiency

is present.
Eight studies had the primary purpose of determin-

ing the presence of associations between peripheral iron
status and cognitive or other brain outcomes.73–80 Four

of these had a cross-sectional design.73,75,79,80 Three of
these reported significant associations of iron levels
with brain outcomes.73,75,80 One large study of 1451

older individuals in the United States reported that high
plasma iron levels correlated with poorer cognitive out-

comes in both men and women.80

A much smaller study of 87 nursing home residents

in Turkey reported that high serum iron, ferritin, and
transferrin saturation were correlated with mild cogni-

tive impairment.75 Another small Spanish study of 23
obese and 20 nonobese middle-aged individuals found

that MRI-measured brain and liver iron was elevated in
obese individuals.73 One study of 2000 elderly individ-

uals from rural areas of China reported no correlation
between plasma iron and cognitive scores.79 Three stud-

ies used a cohort design.74,77,78 A study of 800 older
adults in Australia found no correlation between serum

iron, transferrin saturation, or ferritin levels and cogni-
tive outcomes.77 One French study of 4959 middle-agedTa
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individuals reported associations between lower serum

ferritin and better cognitive outcomes, but only in pre-
and perimenopausal women.74 A Netherlands-based

study of 818 middle-aged and older individuals found
no evidence of an association between peripheral mea-

sures of iron and cognitive performance.78 Finally, a
case–control study of 37 older individuals in the United
States found that serum nonheme iron did not increase

during the progression from mild cognitive impairment
to Alzheimer disease.76

DISCUSSION

This systematic review examined evidence from animal

and human studies that investigated whether high iron
intake or markers of iron status correlated with cogni-

tive decline or the onset/progression of neurodegenera-
tive disease. Almost all the animal studies assessed the

effects of elevated iron intake in neonatal life on out-
comes in early to late adult life. These studies over-

whelmingly demonstrated adverse effects of high
neonatal iron intake on diverse behavioral, brain mor-

phologic, and biochemical outcomes. In striking con-
trast, none of the human studies assessed the effects of

high iron intake in early life on adult cognitive or brain
iron outcomes.

There is substantial evidence that early-life envi-
ronmental factors, including nutrition, influence brain

development, which may then impact susceptibility to
brain aging or neurodegenerative processes in later

life.81 Since brain iron accumulation is linked to aging
and neurodegenerative processes, it is important to un-

derstand the effects of high iron intake at various life
stages on the human brain. Preclinical studies evaluated

the effects of neonatal iron intake on outcomes related
to behavior and aging processes (Table 2) and on neu-

rodegenerative processes in wild-type and genetically
modified animals (Table 3). None of the studies fulfilled

all the methodological criteria for quality. Although the
strength of many studies was weakened by underreport-
ing of methodological details, all but 1 preclinical

study45 (Table 2) provided evidence that elevated iron
intake in early life adversely affects cognition in adult

rodents. Although outcomes in early adult life were
studied most frequently, iron supplementation did in-

crease brain regional iron levels, a marker of brain ag-
ing.15,16 Studies focused on neurodegenerative disease

outcomes (Table 3) also provide evidence that neonatal
iron supplementation promotes age-dependent progres-

sive neurodegeneration in the substantia nigra, the
main area of brain degeneration in Parkinson dis-

ease.53,57,63–65 Preclinical studies investigating interac-
tions between neonatal iron nutrition and gene

mutations causing neurodegeneration showed evidenceTa
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of synergism between iron intake and genetic disease

factors, although the number of studies was small.55,64,66

These findings suggest that individuals with gene muta-

tions causing protein-misfolding neurodegenerative
diseases may have increased susceptibility to the adverse

effects of high iron intake in early life.
Exactly how the effects of neonatal iron intake in

mice translate to humans is unclear. The form and the

dose of iron supplementation are key factors affecting
the interpretation of preclinical studies. Soluble ferrous

succinate and insoluble iron carbonyl were used in the
included preclinical studies; both forms are used for hu-

man supplementation. There was considerable variation
in the daily dose of iron used in the neonatal iron sup-

plementation studies. The highest dose of 120 mg/kg
was used only with iron carbonyl, which has less bio-

availability than ferrous salts.82 This highest level of
supplementation in mice is estimated to result in an ap-

proximate 40-fold increase over the iron present in nat-
ural milk. Human infants fed iron-fortified formula

have an iron intake level of up to 14 mg/d, which is also
about 40-fold the intake level of breastfed in-

fants.41,63,83–85 Therefore, when translating iron dose on
a milligram-per-kilogram (mg/kg) basis from rodents

to humans, the highest levels of supplementation used
in the preclinical studies appear relevant to human

nutrition.
All of the included human studies assessed the ef-

fect of adult-life iron intake or iron status on brain out-
comes. These studies varied considerably in design,

size, and outcomes measures. Study qualities were gen-
erally good (Tables 6 and 7). However, not surprisingly,

results varied widely (Tables 4 and 5). Several of the hu-
man studies used Parkinson disease as their outcome,

which is not surprising, given the evidence of an associ-
ation between substantia nigra iron accumulation and

Parkinson disease.86 The most complete iron nutrition
study, based on the large number of subjects, the pro-

spective study design, and the repeated food question-
naire analysis performed every 4 years, was that of
Logroscino et al.69 (Table 4). These authors concluded

that increased nonheme iron intake is a risk for
Parkinson disease, especially when concurrent ascor-

bate deficiency is present. The literature searches con-
ducted for the present review, however, did not identify

any preclinical studies evaluating the effect of high iron
intake in adult life on Parkinson disease outcomes in

animal models. Preclinical studies that use varied out-
comes would inform the need for additional human

adult iron-nutrition studies assessing the risk for
Parkinson disease development. Most studies evaluating

the effects of peripheral iron status found evidence to
support an association with poorer outcomes (Table 5).

A weakness of the studies investigating blood iron

status is that comprehensive measures of peripheral

iron status were frequently not used. Furthermore, al-
though some studies accounted for confounding fac-

tors, many did not account for the presence of
inflammatory disease, which influences iron status.87,88

CONCLUSION

When the results of animal studies are combined, there

is moderately strong evidence that nutritionally relevant
levels of high iron intake during early postnatal life

have adverse effects on the adult brain. Future preclini-
cal studies could focus on improving the understanding
of how high neonatal iron intake impacts the brain in

adult life. Thus far, human studies of the effects of high
iron intake on cognition and risk of disease do not

strengthen these preclinical findings because they have
investigated the effects of iron intake only in adult life.

There are significant challenges, such as cost and time,
when conducting prospective studies to examine the ef-

fects of early-life high iron intake on adult cognition
and brain aging processes. Retrospective studies are also

challenging because of the potential for recall bias.
Nevertheless, the need for human studies in this area

is supported by the preclinical findings reported in
the literature. Human studies should assess factors

besides nutrition that influence iron status, such as
physiologic blood loss, gene polymorphisms, and the

presence of inflammatory disease processes to better
determine the role of iron nutrition on the outcomes

investigated.
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