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Abstract 

Purpose:  Routinely collected administrative data is widely used for population-based research. However, although 
clinically very different, atrial septal defects (ASD) and patent foramen ovale (PFO) share a single diagnostic code 
(ICD-9: 745.5, ICD-10: Q21.1). Using machine-learning based approaches, we developed and validated an algorithm to 
differentiate between PFO and ASD patient populations within healthcare administrative data.

Methods:  Using data housed at ICES, we identified patients who underwent transcatheter closure in Ontario 
between October 2002 and December 2017 using a Canadian Classification of Interventions code (1HN80GPFL, 
N = 4680). A novel random forest model was developed using demographic and clinical information to differentiate 
those who underwent transcatheter closure for PFO or ASD. Those patients who had undergone transcatheter closure 
and had records in the CorHealth Ontario cardiac procedure registry (N = 1482) were used as the reference standard. 
Several algorithms were tested and evaluated for accuracy, sensitivity, and specificity. Variable importance was exam-
ined via mean decrease in Gini index.

Results:  We tested 7 models in total. The final model included 24 variables, including demographic, comorbidity, 
and procedural information. After hyperparameter tuning, the final model achieved 0.76 accuracy, 0.76 sensitivity, and 
0.75 specificity. Patient age group had the greatest influence on node impurity, and thus ranked highest in variable 
importance.

Conclusions:  Our random forest classification method achieved reasonable accuracy in identifying PFO and ASD clo-
sure in administrative data. The algorithm can now be applied to evaluate long term PFO and ASD closure outcomes 
in Ontario, pending future external validation studies to further test the algorithm.
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Introduction
Affecting up to 25% of adults, patent foramen ovale 
(PFO) is a condition that results from the post-partum 
persistence of a passage, the foramen ovale, in the atrial 
septum [1–3] PFO increases the risk of a number of 
adverse clinical outcomes including cryptogenic stroke 
[1, 4]. The current standard of care for selected crypto-
genic stroke patients with PFO is a transcatheter closure 
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(TC) procedure, where a double disk occlusion device is 
implanted into the septum [5, 6]. Due to its minimally 
invasive nature and support from randomized controlled 
trials (RCTs) for decreasing the risk of repeat stroke and 
other adverse cardiovascular outcomes, implantation of 
transcatheter devices is widely considered to be a safe, 
effective, and economical option for PFO closure [1, 4, 7, 
8]. Given that much of the widespread implementation 
of transcatheter closure is based upon RCTs, there is a 
growing interest in the evaluation of long-term post-clo-
sure outcomes using population-level observational data 
[9, 10].

Administrative health data provides a rich source of 
population-level information [11]. Routinely collected for 
billing and other administrative purposes, health admin-
istrative data contains demographic, procedural, and 
diagnostic data, typically coded based on International 
Statistical Classification of Diseases (ICD), and allow for 
a cost-effective means to study health care delivery, qual-
ity, costs, effectiveness and safety [10–14]. However, the 
use of healthcare administrative databases for research 
comes with the caveat that there is a lack of granularity 
in clinical detail [10, 11]. This results in challenges with 
describing and differentiating some conditions of interest 
relying solely on diagnostic or procedural codes [10, 11]. 
Such is the case with PFO; it shares the same ICD diag-
nostic code with atrial septal defects (ASD) (ICD-9 code 
745.5 and ICD-10 code Q21.1), and in Ontario the same 
Canadian Classification of Interventions (CCI) code for 
closure via percutaneous intervention (1HN80GPFL), 
despite differences in clinical characteristics, indications 
to close both defects, and the device technologies to 
carry out these procedures [10, 11]. While PFO is con-
sidered a variant of normal structure, ASD results from 
abnormal development or damaging of the septum pre-
mium during embryological development [10]. Individu-
als with ASD tend to present with more comorbidities, 
which leads to comparatively less functionality; it is not 
uncommon for individuals to discover they have a PFO 
only after they have experienced a cryptogenic stroke 
[11, 15]. Furthermore, the lack of differentiation between 
these two patient groups becomes further problematic 
when taking into consideration the vast difference in 
prevalence; ASD is estimated to be present in approxi-
mately 0.05% of the population, compared to up to 25% 
for PFO [11].

In past attempts to separate PFO from ASD patient 
populations, the identification of PFO patients hinged 
primarily on a history of ischemic stroke within one year 
prior to the PFO closure (see Additional file  1: Appen-
dix A for the summary of past attempts). A study by 
Merkler et  al. utilized a more comprehensive classifica-
tion method of isolating patients with PFO from other 

congenital heart diseases [8]. Patients were only included 
if there was a record of a TIA or ischemic stroke within 
one year prior to and during admission for PFO clo-
sure [8]. In addition, records with a rehabilitation diag-
nostic code (ICD-9: V57), trauma (ICD-9: 800–804 or 
850–854), or intracerebral (ICD-9: 431) or subarachnoid 
(ICD-9: 430) hemorrhages were excluded [8]. Overall, 
two of the four identified studies used validated algo-
rithms to identify stroke, TIA or congenital heart disease, 
but none were used to differentiate PFO and ASD specifi-
cally (Additional file 1: Appendix A). This study aimed to 
develop and validate a random forest classification algo-
rithm to separate PFO and ASD patient populations with 
records of transcatheter closure within Ontario admin-
istrative data and enhance the use of administrative 
databases in future long-term outcome studies for these 
populations.

Methods
Health administrative data sources
This study utilizes a repository of Ontario’s administra-
tive health databases housed at the ICES [14]. ICES is an 
independent, non-profit research institute whose legal 
status under Ontario’s health information privacy law 
allows it to collect and analyze health care and demo-
graphic data, without consent, for health system evalua-
tion and improvement. These datasets were linked using 
unique encoded identifiers and analyzed at ICES. Since 
all Ontario residents are covered through a single-payer 
insurance system for physician, hospital-based care and 
home care services, and drugs for residents 65  years 
of age and older, healthcare encounters can be linked 
across systems through individual health card numbers 
and each resident receiving a unique ICES Key Number 
(IKN) [16]. Population-based ICES data sources linked 
for this analysis include the Canadian Institute for Health 
Information’s Discharge Abstract Database and Same 
Day Surgery database (CIHI-DAD/SDS), which report 
all hospital visits dated back to 1988, the CIHI National 
Ambulatory Care Reporting System (NACRS), which 
reports hospital and community-based ambulatory care 
visits starting from the year 2000, and the Ontario Health 
Insurance Plan (OHIP) database reporting outpatient 
physician services since 1991. The use of data in this 
project was authorized under Sect.  45 of Ontario’s Per-
sonal Health Information Protection Act, which does not 
require review by a Research Ethics Board.

Cohort creation
Our study cohort comprised of all Ontario residents 
18  years of age and older who had a transcatheter clo-
sure procedure for ASD or PFO closure recorded in 
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CIHI-DAD/SDS (CCI code 1HN80GPFL) between Octo-
ber 2002 and December 2017.

Reference standard database
CorHealth Ontario’s cardiac registry was selected as the 
reference standard [17, 18]. The CorHealth cardiac reg-
istry captures select clinical data on all cardiac proce-
dures performed in Ontario catheterization laboratories 
[17, 18]. Two distinct fields in the catheterization labo-
ratory data indicate if the procedure was a PFO closure 
(Yes/No) or an ASD closure (Yes/No), and were used in 
our study to identify if the procedure was closure of PFO, 
ASD, both or neither [19]. The index event date for each 
patient in the study sample was the date of the procedure.

If patients had multiple interventions, only the first 
intervention was kept for this analysis. Patient records 
were excluded from the study dataset if their ICES Key 
Number (IKN) was missing, invalid, or repeating, if their 
gender code was missing or invalid, if the patient was not 
a resident of Ontario, or if at the time of intervention, the 
patient was younger than 18 years of age. Records Cases 
labeled as having both PFO and ASD or neither diagno-
ses were excluded from the building of this classification 
algorithm.

Algorithm variable selection and definitions
Variables extracted from ICES data were considered 
for inclusion into our algorithm to identify PFO cases 
based on clinical relevance and review of the literature. 
Please see Additional file  1: Appendix B for the full list 
of variables and their respective codes. Patient demo-
graphic information was captured through sex and age 
group. All of the following variables were reported dur-
ing a 5-year lookback period prior to TC. History of 
stroke and TIA were available as dichotomous variables 
(i.e. presence/absence or yes/no flags) and total number 
of stroke or TIA events. An overall Charlson Comorbid-
ity Index score was also retrieved from ICES [20]. Other 
comorbidities were defined ICD-based yes/no flags only. 
Healthcare utilization was captured by intervention 
codes reported during index admission, and any history 
of admission for ASD, PFO, or other congenital heart dis-
eases (CHD) 5 years prior to closure.

Random forest classification
Random forest models are made up of several decision 
trees, a non-parametric and supervised machine learning 
approach that may be used for both regression and classi-
fication tasks [21–23]. Decision trees are constructed by 
recursively splitting data based on simple rules learned 
from the input variables provided from a given dataset of 
interest [21–23]. With random forest models, each indi-
vidual decision tree therein analyzes a different sample of 

the data, and then all trees “vote” as an ensemble what a 
given observation should be categorized as, in this case 
whether a patient has undergone transcatheter closure 
for a PFO or an ASD [21–23].

A random forest method was chosen because it is non-
parametric and builds upon the positive attributes of the 
popular decision tree method such as providing implicit 
feature selection, and decreased sensitivity to outli-
ers compared to other classification techniques such as 
logistic or linear regression [21, 23, 24]. Given the novel 
nature of this classification model, minimal a priori fea-
ture selection was preferred. Furthermore, by combining 
the results of multiple individual decision trees, it follows 
that a combination of all resultant outputs may result in 
a higher predictive accuracy than each constituent tree 
alone, especially with complex and high-dimensional 
data [23, 24]. The combination of this majority voting 
approach on sub-samples of the data is known as boot-
strap aggregating, or bagging [21, 24]. Bagging decreases 
the likelihood of overfitting and improves model gen-
eralization by decreasing outlier influence and model 
variance [21, 24]. This then provides a unique advantage 
when encountering high-dimensional data with complex 
interactions [23, 24].

All versions of the classification model were run in R 
using the randomForest package with 500 trees generated 
within each random forest [25]. To assess model perfor-
mance, the reference standard was randomly sampled 
and split 40/60 into a training and a test set. Performance 
measures were compared between test and training sets 
to assess models for degree of overfitting, i.e., if training 
values were much higher than test values. Overall model 
performance was based on test accuracy, sensitivity, and 
specificity.

Variable importance was assessed through a mean 
decrease in Gini index. The Gini index indicates a level 
of partition “purity” which the random forest model uses 
to determine its classifications [21, 23, 24]. The higher the 
mean decrease in Gini for a given variable, the less likely 
it is that variable will lead to misclassified patients across 
all constructed trees [21, 23, 24]. Variable importance 
scores were compared among covariates to determine 
their relative ranking.

The final model was chosen once performance meas-
ures were optimized via hyperparameter tuning of mtry 
and the decision threshold. Mtry is a hyperparameter 
that pertains to the randomness of the forest, namely 
how many of the variables are considered at each split 
[26]. To determine the correct value, a grid search was 
run with the caret package, where a linear search was 
performed for a vector of candidate mtry values, and the 
value resulting in the highest accuracy was used for the 
final model [27]. The classification threshold, at default 
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set at 0.5, reflects the probability required for an obser-
vation, in this case a patient in the CorHealth dataset, to 
be classified as ASD or PFO [28]. Different values for this 
threshold were attempted until the resultant tuned model 
performance was optimized.

As a sensitivity analysis, model performance was also 
compared to prior classification methods, using the same 
reference data and performance measures, by designat-
ing patients who had experienced an ischemic stroke, a 
hemorrhagic stroke, or a TIA within 1 year of closure as 
PFO patients, and the rest as ASD patients, without using 
any machine learning methods. Please refer to Additional 
file 1: Appendix C for a reproducible example of utilized 
code with simulated data.

Descriptive statistics of classified cohort
Following classification of patients by the random for-
est model as having undergone ASD or PFO transcath-
eter closure, the clinical and demographic characteristics 
were descriptively summarized in R by counts and per-
centages using the tableone package [29]. Clinical and 
demographic characteristics were compared between 
groups through chi-squared tests, with a significance 
level of p = 0.05.

Results
Study cohort creation
There were 4680 transcatheter closures performed in 
Ontario between April 1st, 2002 and December 31st, 
2017 based on the CIHI-DAD/SDS database. After 
excluding any records of repeat closures (n = 104), non-
Ontario residents, or those with invalid sex or IKN 
(n = 12), those less than 18  years of age (n = 1190), and 
any other records not having an ASD or PFO diagnosis 
from the CorHealth cardiac registry (n = 1892), our refer-
ence data comprised of 1482 patients (Fig. 1).

Variables for classification
Clinical and demographic characteristics of the study 
cohort are presented in Table  1 and in more detail in 
Additional file  1: Appendix D. PFO and ASD patients 
were represented almost equally, with a slightly higher 
proportion of ASD population (PFO = 697, ASD = 785 
patients). ASD patients were older and had more females 
than PFO patients. Among other differences in comor-
bidities, the proportion of patients with prior ischemic 
stroke events within 5  years of TC was higher in those 
with a PFO (39.5%) than in ASD (3.70%) patients.

Before a final model was chosen and hyperparam-
eters were tuned, many variable permutations were 
tested among 7 models in total, and modified based 
on model performance, with moderate performance 

overall ranging between 0.72 and 0.76 for accuracy, 
0.51–0.64 for sensitivity, and 0.75–0.89 for specificity. 
Variables with highly skewed data, i.e. rare among this 
population, were excluded in some model versions. 
The final model, model 7 with tuned hyperparameters, 
contained 24 variables, of which all were dichotomous 
(yes/no) categorical variables except for age group 
(with total 13 age groups), Charlson comorbidity index 
(a numeric score), and total number of ischemic stroke 
and TIAs (Table  2). After hyperparameter tuning, 
model 7 achieved a test accuracy of 0.76, test sensitiv-
ity of 0.76, and test specificity of 0.75. Please see Addi-
tional file 1: Appendix E for detailed descriptions of all 
models, including both the final model and all remain-
ing tested models.

Variable importance
For the final model, both age group (~ 35% mean 
decrease in Gini) and the count of ischemic strokes 
in the 5  years prior to closure (~ 30% mean decrease 
in Gini) contributed the most to the partitioning of 
the data (Fig.  2). Of all individual intervention codes, 
the code indicating a test for pulmonary artery pres-
sure measurement had the highest mean decrease in 
Gini index. Charlson comorbidity index, history of 
migraines, and sex contributed the most to the accu-
racy of this model compared to the other variables.

Fig. 1  Exclusions from original ICES data linkage of transcatheter 
closures from CIHI-DAD/SDS to create study cohort (reference 
standard)
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Model performance and comparison to traditional method
After selecting the best-performing version of the 
model, model 7, sensitivity was improved further 
through hyperparameter tuning of mtry and the classi-
fication threshold, with some cost to the specificity. The 
results of the final random forest model, its improved 
tuned version, and the performance of the traditional 
classification method are summarized in Table 3. For all 

versions of the random forest model, the majority had a 
moderate accuracy, low sensitivity, and high specificity 
(Table 3, Additional file 1: Appendix E). The traditional 
model, not using machine learning methods, also had 
a moderate but lower accuracy score (0.68), and a high 
specificity (0.96), but a very low sensitivity (0.36) com-
pared to both the tuned and untuned final random for-
est model (Table 3).

Table 1  Demographic, Clinical Characteristics and secondary interventions of study cohort

Ontario residents 18 years of age and older who had a transcatheter closure procedure for PFO or ASD between October 2002 and December 2017 (N = 1482) in the 
CorHealth Registry and CIHI Discharge Abstract Database and Same Day Surgery Database

AF atrial fibrillation, CAD coronary artery disease, CHD congenital heart disease, CHF congestive heart failure, COPD chronic obstructive pulmonary disease, DVT deep 
vein thrombosis, HTN hypertension, NEC not elsewhere classified by CCI/CCP codes, TIA transient ischemic attack
1 Small cells (≤ 6 patients) were suppressed to comply with ICES privacy policies
2 The 10 most frequent intervention codes beyond transcatheter closure

PFO (n = 697) ASD (n = 785) P-value

Demographics
Sex (Female) ‒ n (%) 305 (43.8) 498 (63.4)  < 0.001

Age group ‒ n (%)  < 0.001

 18–60 542 (77.8) 540 (68.8)

 > 60 155 (22.2) 245 (31.2)

Clinical characteristics
Ischemic stroke (total number ≥ 1)—n (%) 275 (39.5) 29 (3.7)  < 0.001

Hemorrhagic stroke (total number ≥ 1)—n (%)  < 61  < 61 0.600

TIA (total number ≥ 1)—n (%) 67 (9.6) 15 (1.9)  < 0.001

Other CHD hospitalizations—n (%) 144 (20.7) 167 (21.3) 0.821

Peripheral embolism, pulmonary embolism, or DVT—n (%) 40 (5.7) 13 (1.7)  < 0.001

Dyslipidemia—n (%)  < 61  < 61 1.000

Thrombophilia—n (%)  < 61  < 61 0.918

Migraine—n (%) 81 (11.6) 31 (3.9)  < 0.001

Renal failure—n (%) 12 (1.7) 32 (4.1) 0.012

AF—n (%) 50 (7.2) 120 (15.3)  < 0.001

CAD—n (%) 114 (16.4) 166 (21.1) 0.022

CHF—n (%) 34 (4.9) 63 (8.0) 0.019

COPD—n (%) 93 (13.3) 97 (12.4) 0.625

Diabetes—n (%) 72 (10.3) 106 (13.5) 0.073

HTN—n (%) 258 (37.0) 302 (38.5) 0.601

Intervention codes2

Fluoroscopy, heart NEC without contrast—n (%) 20 (2.9) 26 (3.3) 0.734

Xray
 Thoracic cavity NEC—n (%) 41 (5.9) 17 (2.2)  < 0.001

 Intravenous contrast injection, coronary veins—n (%) 127 (18.2) 118 (15.0) 0.114

 Intraarterial contrast injection, pulmonary artery—n (%) 298 (42.8) 343 (43.7) 0.755

 Intracardiac contrast injection, pulmonary artery 39 (5.6) 10 (1.3)  < 0.001

Steady state respiratory function study—n (%) 134(19.2) 85 (10.8)  < 0.001

Heart capacity measurement, oxygen consumption technique—n (%) 123 (17.6) 129 (16.4) 0.581

Pressure measurement—n (%) 169 (24.2) 318 (40.5)  < 0.001

Ultrasound heart NEC, cardiac catheter inspection—n (%) 52 (7.5) 70 (8.9) 0.356

Heart and coronary artery ultrasound—n (%) 55 (7.9) 115 (14.6)  < 0.001
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Discussion
In this study, a random forest model was built by com-
bining a wide array of comorbidity and demographic 
information from health administrative data to clas-
sify patients as undergoing transcatheter closure of PFO 
or ASD. To our knowledge, it is the first study to utilize 
machine learning techniques to separate these patient 
groups in administrative data. Using the CorHealth 
cardiac registry as the reference standard, our model 
achieved an overall accuracy of 76% with balanced sen-
sitivity (76%) and specificity (75%), which is a much bet-
ter and more balanced classification performance than 
the traditional approach which identifies a TC for PFO or 
ASD based only on past history of stroke or TIA (accu-
racy 68%, sensitivity 36%, and specificity 96%).

Our random forest model identified several additional 
variables that can be used to improve the overall per-
formance of PFO and ASD classification. Although the 
final model ended up with a relatively large number of 
variables, comorbidities and intervention codes should 
be easily available in similar administrative databases. 
The specific intervention codes that were most common 
within this patient population may differ between differ-
ent administrative data systems, but should still be easily 
available as billable codes.

A different type of administrative data was used as the 
reference standard in our study due to its wide avail-
ability. CorHealth registry data is collected by hospitals, 
where all TC procedures are performed and includes 
funding for clinical abstractors, primarily for qual-
ity assurance and accountability rather than for bill-
ing purposes. Although ICES administrative databases 
had data available starting in 2002, CorHealth data was 

available only from 2008 to 2017. While the lack of over-
lap between 2002 and 2008 may have resulted in some 
loss of information, we believe that the available data 
provided sufficient information to train the classifica-
tion model. Furthermore, although reliability and valid-
ity checks are not routine for CorHealth data aside from 
identifying any missing data, the clinical richness and 
attention to distinguishing between TC for PFO and ASD 
makes it an acceptable reference standard to assess the 
accuracy of an administrative database algorithm.

With regards to the use of other administrative data-
bases, while the coding within CIHI-DAD has been 
found to be very accurate for procedural information and 
individual demographics, its quality is considerably more 
variable for coding of major diagnoses [30, 31]. They are 
also not reported for the purpose of research, and so may 
not describe clinical information to the degree of detail 
as may be desired by some research studies. In addi-
tion, ICES databases do not capture health care usage 
outside of Ontario [30, 31]. Although PFO and ASD do 
not have their own distinct ICD codes, most variables 
in this dataset used to build the random forest model, as 
with all administrative health data, hinge on the usage of 
ICD codes. Generally, diagnostic codes can carry a risk 
of inaccurate indication of true disease status, leading 
to potential misclassification bias [32]. Regardless of the 
personal knowledge of the individual entering the infor-
mation, the inherent structure of ICD codes may not 
allow the inclusion of important clinical details such as 
any underlying anatomic diagnoses or a history of inter-
ventions or surgeries that may be pertinent to long-term 
patient health outcomes [11]. Furthermore, there is little 
to no quality control to confirm accurate coding on the 

Table 2  Description and performance of final random forest model to identify PFO patients

*Emb. peripheral arterial embolism, pulmonary embolism, or deep vein thrombosis

Model Description Accuracy Sensitivity Specificity

Test Train Test Train Test Train

7 Demographics
    Age group
    Sex
Comorbidity flags (< 5 years)
    AF
    CAD
    CHF
    COPD
    DM
    HTN
  Migraine
  Other CHD admissions
  Emb.*

Stroke/TIA
  Number of events < 5 years prior to closure
   Ischemic stroke
   Hemorrhagic stroke
   TIA
Intervention codes
  Top 10 (yes/no)
Charlson comorbidity index

0.946 0.756 0.908 0.657 0.978 0.848

7 (tuned) Same variables as model 7 (above), but with hyperparameters tuned:
mtry = 3
Classification threshold cut-off = 0.38,0.62

0.918 0.757 0.896 0.751 0.936 0.763
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level of individual patients [11]. This can provide chal-
lenges in describing and differentiating pathologies of 
interest when based on ICD codes alone [10, 11].

Given these known challenges with administrative 
data, certain performance measures were chosen to make 
this model useful for a wide variety of purposes. The 
eventual intention of creating this classification model 

was to utilize it for studying long-term outcomes for both 
ASD and PFO patients, allowing for comparison between 
different health care sites, which has not been feasible 
thus far using administrative data. As such, classifica-
tion algorithms should target identifying both patient 
groups rather than prioritizing identification of one over 
the other. This is why sensitivity, specificity, and accuracy 

Fig. 2  Variable importance graph, based on mean decrease in Gini index

Table 3  Comparison of classification performance between the “traditional model”, versus the random forest model that considered 
additional variables

*Patients were assigned as a PFO based only on ‘any stroke or TIA within 1 year of closure’, and if not, they were assigned as ASD

Model Test accuracy Test sensitivity Test specificity

Traditional* 0.68 0.36 0.96

Final random forest model (original) 0.76 0.66 0.85

Final random forest model (tuned) 0.76 0.75 0.76
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were evaluated together rather than focusing on one spe-
cific measure. Typically, sensitivity is prioritized when the 
primary consideration is to identify true positives, even 
at the risk of including false positives [33]. This is done to 
enhance the inclusiveness of the model, and can improve 
the generalizability of the results [33, 34]. To balance this, 
and because it is inversely related to sensitivity, speci-
ficity is evaluated as well to identify true negatives [35]. 
Although positive predictive value is often prioritized 
when identifying a patient cohort, accuracy was chosen 
in this study as the overall measure of how well the model 
differentiated between transcatheter procedure done for 
PFO and ASD patients [36]. Because the correct identifi-
cation of both PFO and ASD patients were of chief inter-
est for this study, it was important to take into account 
not only overall performance of the model through accu-
racy, but also keep in mind the balance between sensitiv-
ity and specificity.

There are some limitations related specifically to the 
use of random forest for classification. Random for-
est models, like other means of predictive algorithmic 
modeling, are probability-based and data-driven. As 
such, although the modeling strategy may be transferred 
over to different settings, the specific model may not be 
directly applied, and so external validation is necessary 
prior to future usage [37, 38]. A second set of labeled 
data was unavailable for our study, so external validation 
was not possible in this case. Investigation of potential 
variable interactions could also provide an area for future 
work. Additionally, while the complexity of random for-
ests makes them a powerful data modeling tool, they 
are less easily interpretable than other models and so 
may not be as accessible in certain settings [37, 38]. This 
includes the lack of e.g. regression coefficients, however 
variable importance data output by the random forest 
model aids in interpretability and may operate in much 
the same way.

Conclusions
This study has demonstrated moderate accuracy of an 
administrative database algorithm to identify PFO or 
ASD diagnosis. Our random forest classification model 
found a history of stroke/TIA, as well as other comor-
bidities, improved the accuracy of determining whether 
transcatheter closure was performed on a PFO or ASD. 
External validation of our algorithm in other adminis-
trative databases or another reference standard is rec-
ommended to determine the generalizability of our 
algorithm.
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