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Role of the hippocampal CA1 region 
in incremental value learning
Yeongseok Jeong1, Namjung Huh2, Joonyeup Lee1,2, Injae Yun   1, Jong Won Lee2, Inah Lee3 & 
Min Whan Jung1,2

It is generally believed that the hippocampus plays a crucial role in declarative memory—remembering 
facts and events—but not in gradual stimulus-response association or incremental value learning. Based 
on the finding that CA1 conveys strong value signals during dynamic foraging, we investigated the 
possibility that the hippocampus contributes to incremental value learning. Specifically, we examined 
effects of inactivating different subregions of the dorsal hippocampus on behavioral performance of 
mice performing a dynamic foraging task in a modified T-maze. A reinforcement learning model-based 
analysis indicated that inactivation of CA1, but not dentate gyrus, CA3, or CA2, impaired trial-by-trial 
updating of chosen value without affecting value-dependent action selection. As a result, it took longer 
for CA1-inactivated mice to bias their choices toward the higher-reward-probability target after changes 
in reward probability. Our results indicate, contrary to the traditional view, that the hippocampus, 
especially CA1, might contribute to incremental value learning under certain circumstances.

Several lines of evidence indicate that different types of memory are served in parallel by distinct neural sys-
tems. The hippocampus is known to play a crucial role in declarative memory—remembering facts and events—
and the striatum is in charge of gradual stimulus-response association or habit learning1–5. From the standpoint 
of reinforcement learning (RL) theory, the dorsolateral striatum has been proposed to mediate model-free RL 
(or incremental value learning based on experienced outcomes), whereas the hippocampus has been proposed 
to contribute to model-based RL (or knowledge-based value learning) based on its role in remembering facts 
and events and simulating hypothetical episodes6–9. As such, it is commonly assumed that the hippocampus 
is involved in learning facts and events, but not in gradual stimulus-response association or incremental value 
learning based on actually experienced outcomes.

We have shown previously that the CA1 region of the rat hippocampus conveys value signals in a dynamic 
foraging task that is well described by a model-free RL algorithm7. Surprisingly, CA1 value signals were as strong 
as value signals found in those brain areas that are thought to be involved in value-based decision making, 
such as the striatum and orbitofrontal cortex (OFC)10,11. These results are unexpected from the currently pre-
vailing views on the neural underpinning of multiple memory systems1–5 and model-free versus model-based 
RL6–9,12. However, that the hippocampus processes value signals does not necessarily indicate its involvement 
in or requirement for value learning. In general, neural activity correlated with certain task variables does not 
warrant requirement of a given brain area for performing the task. For example, even though hippocampal 
neurons show strong responses to a conditional stimulus predicting an aversive event during a classical condi-
tioning task13–18, hippocampal lesions do not impair performance in a conventional delay conditioning task19–24. 
Therefore, the hippocampus may represent value-related information in case for situations where model-based 
RL is required. Alternatively, contrary to the traditional view, the hippocampus may contribute to incremental 
value learning based on actually experience outcomes (i.e., model-free RL) under certain circumstances. In this 
study, to dissociate these possibilities, we examined effects of inactivating different hippocampal subregions 
on choice behavior of mice in a dynamic foraging task. We found that selective inactivation of CA1, but not 
dentate gyrus (DG), CA3, or CA2, impairs value learning without affecting value-dependent action selection. 
Our results indicate that the hippocampus, especially CA1, may contribute to incremental value learning in a 
dynamic foraging situation.
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Results
Choice behavior.  Mice harboring a CaMKIIa-Cre (n = 11), RGS14-Cre (n = 11), Grik4-Cre (n = 11), or Rbp4-
Cre (n = 11) construct were used for selective inactivation of CA1, CA2, CA3, or DG, respectively. The mice were 
trained to perform a dynamic two-armed bandit (TAB) task in a modified T-maze (Fig. 1a). Water reward was 
delivered with different probabilities (72 versus 12%) at two target locations, and reward probabilities changed 
across four blocks of 140–180 trials without any sensory cues (Fig. 1b). Hence, the mice had to keep track of 
the history of past choices and their outcomes in order to make optimal choices in this task. The mice were 
trained in the task for 14–21 d after injecting an adeno-associated virus (AAV) carrying DIO-hM4Di-mCherry 
into the dorsal CA1 (CaMKIIa-Cre mice), CA2 (RGS14-Cre mice), CA3 (Grik4-Cre mice), or DG (Rbp4-Cre mice; 
Fig. 1c and Supplementary Fig. S1). These mice were then tested with dimethyl sulfoxide (DMSO; vehicle) or 
clozapine-N-oxide (CNO; 5 mg/kg) injection (i.p.) on alternate days for 20 d. During the experimental sessions 

Figure 1.  Behavioral performance. (a) The modified T-maze used for mice. The mice were allowed to choose 
freely between two targets (blue circles) that delivered water reward in a probabilistic manner. Thick black solid 
and red dashed lines denote locations of sliding doors and photobeam sensors, respectively. Calibration bar, 
10 cm. (b) The choice behavior of a mouse during one example session. The probability of choosing the left 
target (PL) is plotted in moving average of 10 trials (gray curve). The black curve represents choice probability 
predicted by an RL model. Tick marks denote trial-by-trial choices of the mouse (upper, left choice; lower, right 
choice; red tick, rewarded trial; green tick, unrewarded trial). Each session consisted of four blocks of trials 
with different combinations of reward probabilities. Vertical lines denote block transitions and numbers on 
top indicate reward probabilities used in this example session. (c) Example brain sections stained with DAPI 
(blue) showing DIO-hM4Di-mCherry expression. (d) The relationship between log choice ratio (ordinate) and 
log reinforcement ratio (abscissa) under DMSO (control) condition is shown for each animal group. Each data 
point was obtained by analyzing steady-state behavioral data during one block of trials. (e) Average regression 
coefficients (mean ± SEM across animals) from a logistic regression model showing the effects of past rewards 
on the animal’s current choice under DMSO condition. Positive coefficients indicate the animal’s tendency to 
make the same choice that was rewarded in recent trials.
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with DMSO injection, all animals showed biased choices towards the higher-reward-probability target typically 
within ~15 trials after a block transition (Fig. 1b), so that the mouse’s choice behavior during the steady state (see 
Methods) was consistent with the generalized matching law25 (Fig. 1d). A logistic regression analysis revealed that 
the mouse’s choice was influenced by past choice outcomes in all animal groups (Fig. 1e).

Chemogenetic inactivation of hippocampal subregions.  To confirm inactivation of the intended 
brain areas by CNO injection, we examined physiological effects of CNO injection in a separate group of animals 
(CaMKIIa-Cre, n = 3; RGS14-Cre, n = 4; Grik4-Cre, n = 2; Rbp4-Cre mice, n = 4). These mice were injected with 
AAV carrying DIO-hM4Di-mCherry into the dorsal CA1, CA2, CA3, or DG, implanted with eight tetrodes in 
the target areas, and allowed to move freely on a pedestal during the experiment (Supplementary Fig. S2). CNO, 
but not DMSO, injection suppressed neural activity in all tested subregions (paired t-test, CA1, DMSO, n = 12 
units, t(11) = 0.030, p = 0.977; CNO, n = 23, t(22) = 4.797, p = 8.6×10−5; CA2, DMSO, n = 17, t(16) = −0.921, 
p = 0.371; CNO, n = 16, t(15) = 4.979, p = 1.6×10−4; CA3, DMSO, n = 11, t(10) = −0.024, p = 0.981; CNO, 
n = 11, t(10) = 3.172, p = 0.010; DG, DMSO, n = 7, t(6) = −1.539, p = 0.175; CNO, n = 12, t(11) = 2.616, 
p = 0.024; Fig. 2).

Figure 2.  CNO-induced suppression of hippocampal neuronal activity. (a) Experimental scheme. (b) Examples 
showing effects of DMSO or CNO injection on CA1 neuronal activity. Time 0 indicates the time of resuming 
unit recording after DMSO/CNO injection (i.p.) at −10 min. Neuronal activity began to be suppressed ~25 min 
following CNO injection. (c) Group data. Mean unit discharge rates 0–10 min before (Base) and 40–50 min after 
(Test) DMSO or CNO injection (mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, paired t-test). Only putative 
pyramidal and granule cells were included in the analysis.
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Effects of CNO on RL model parameters.  We examined effects of CNO on the animal’s choice behav-
ior using a simple RL model (Q-learning model; Eqs 3 and 4)26. All mice showed biased choices towards the 
higher-reward-probability target after block transition, and their choice behavior was well captured by the model 
(Fig. 1b). In each trial, the Q-learning model selects a target based on relative values of two targets and updates 
value of the chosen target based on reward prediction error (the difference between expected and actual out-
comes)26. The Q-learning model contains two free parameters: learning rate (α), which determines the extent to 
which reward prediction error overrides old value information, and inverse temperature (β), which determines the 
degree of value-dependent action selection (or randomness in action selection). The learning rate was significantly 
decreased following CNO compared with DMSO injections in CaMKIIa-Cre mice (paired t-test, t(10) = 4.355, 
p = 0.001), but not in the other animal groups (RGS14-Cre, t(10) = −0.107, p = 0.917; Grik4-Cre, t(10) = 0.355, 
p = 0.730; Rbp4-Cre, t(10) = 0.730, p = 0.482; Fig. 3a,b). CNO injection had no significant effect on the inverse 
temperature in any animal group (CaMKIIa-Cre, t(10) = −1.471, p = 0.172; RGS14-Cre, t(10) = 0.485, p = 0.638; 
Grik4-Cre, t(10) = 1.480, p = 0.170; Rbp4-Cre, t(10) = −1.675, p = 0.125; Fig. 3c,d). Similar results were obtained 
when we used several variants of the Q-learning model (Eqs 5 and 6; Supplementary Fig. S3). CNO injection 
slightly increased trial duration in all animal groups, but it could not account for the CNO effect on learning rate 
in CaMKIIa-Cre mice (Supplementary Fig. S4). These results indicate that inactivation of CA1, but not the other 
hippocampal subregions, impaired value updating process without affecting value-dependent action selection.

Effects of CNO on choice behavior.  The results of the model-based analysis indicate that CA1-inactivated 
mice are slower in updating action values in the present task. To test whether this is reflected in the animal’s 
behavioral performance, we assessed effects of CA1 inactivation on the proportions of rewarded trials (P(R)) and 
higher-reward-probability target choices (P(H)). An analysis of all trials together showed no significant difference 
in these measures between CNO and DMSO conditions in CaMKIIa-Cre mice (paired t-test, P(R), t(10) = 0.699, 
p = 0.500; P(H), t(10) = 0.481, p = 0.641). Significant differences were found, however, when we separately exam-
ined behavioral performances during early and late trials after block transition. It would be advantageous to 
rapidly update values shortly after block transition (dynamic state) because subjective values (estimated reward 
probabilities) and objective values (true reward probabilities) are likely to differ largely during this phase. By 
contrast, slow value learning would not be deleterious to choice behavior during late trials after block transi-
tion (steady state) because objective values stay the same during this phase and subjective values will eventually 
catch up with objective values even with slow value learning. Both P(R) and P(H) were significantly lower under 
CNO than DMSO conditions during the dynamic state (see Methods, 8.2 ± 2.3 trials/block, mean ± SD) (P(R), 
t(10) = 2.492, p = 0.032; P(H), t(10) = 2.789, p = 0.019), but not during the steady state (26.5 ± 4.7 trials/block, 
mean ± SD) (P(R), t(10) = −0.932, p = 0.373; P(H), t(10) = −1.661, p = 0.128; Fig. 4a,b,d,e). Consistent with these 
findings, it took longer for CaMKIIa-Cre mice to reverse preferential target choice after block transition (see 

Figure 3.  Effects of hippocampal subregional inactivation on learning rate and inverse temperature. (a) 
Learning rates (α) under DMSO and CNO conditions (mean ± SEM across animals). (b) Normalized change 
in learning rate ((αCNO − αDMSO)/αDMSO), shown for each animal (gray circles). The black circles and error bars 
denote mean and SEM across animals. (c,d) Inverse temperature (β). The same format as in (a,b). **p < 0.01 
(paired t-test).
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Methods for the definition of reversal) under CNO compared to DMSO conditions (10.1 ± 0.7 and 8.2 ± 0.7 trials, 
respectively, mean ± SEM; paired t-test, t(10) = −2.923, p = 0.015; Fig. 4c,f). Inactivating CA2, CA3 or DG had 
no significant effect on P(R) (paired t-test, t(10) < 1.407, p-values > 0.190), P(H) (t(10) < 1.754, p-values > 0.110), 
or the number of trials to reach the reversal criterion (t(10) < 1.614, p-values > 0.138; Supplementary Fig. S5). 
These results indicate that it takes longer for CA1-inactivated mice to bias their choices toward the higher- 
reward-probability target after block transition.

Analysis results related to episodic control of behavior.  That our results are well described by an 
RL model does not necessarily indicate the animal’s choice behavior was based on a simple RL-like process. We 
performed additional analyses to examine the possibility that the CA1 inactivation effects can be explained by 
an alternative process than a value-updating role of CA1. First, we tested the possibility that the animals relied 
on episodic sequences rather than an RL-like process for their choice behavior in our task. In other words, the 
animals may have repeated a previously rewarding choice without concerning values of the two targets. A model 
comparison indicated that the RL model (Q-learning model; Eqs 3 and 4) outperforms a model relying on epi-
sodic control of choice behavior (episodic RL model27; Eqs 8 and 9) in explaining the animal’s choice behavior in 
the TAB task (Supplementary Table S2).

Also, for a more direct test for episodic control, we examined the dependence of the animal’s choice on a spe-
cific pattern of past choices and their outcomes (i.e., a specific episode). If the animal’s choice was based on past 
episodes rather than value learning, then the influence of a specific episode on the animal’s choice would not be 
affected by block transition. Otherwise, it will vary across a block transition. For this analysis, we examined the 
probability to repeat the previous target choice (Pstay) following a given episode during 10 trials before and after 
a block transition. This analysis was performed separately for one-, two- and three-trial episodes, which consist 
of 4, 16 and 64 different choice-outcome combinations, respectively. As shown by examples in Fig. 5a–c, Pstay 
differed before and after a block transition for the majority of episodes. For a group analysis, we selected those 
episodes whose frequency differences between before and after a block transition were smaller than 50% of the 
total frequencies to avoid biased sampling from either before or after a block transition. We then pooled Pstay data 
of all equal-length episodes from a given animal group according to their last choice and computed the slopes of 
the logistic regression. The slopes were significantly positive for all lengths of episode in which the last choice was 
the higher-reward-probability target after block transition (paired t-test, t(3) > 4.961, p-values < 0.016) except 
the two-trial episode under DMSO treatment (t(3) = 3.055, p = 0.055). Conversely, the slopes were significantly 
negative for all lengths of episode in which the last choice was the lower-reward-probability target after block 

Figure 4.  Effects of CA1 inactivation on choice behavior. (a,b) Proportions of rewarded trials (P(R)), (a) and 
higher-reward-probability target choices (P(H)), (b) are shown for all (Total), dynamic-state (Dynamic), and 
steady-state (Steady) trials (mean ± SEM across 11 CaMKIIa-Cre mice). (c) The number of trials to reach 
the reversal criterion (see Methods) after block transition (mean ± SEM across 11 CaMKIIa-Cre mice). (d,e) 
Normalized changes in P(R) and P(H) ((P(R)CNO − P(R)DMSO)/P(R)DMSO and (P(H)CNO − P(H)DMSO)/P(H)DMSO, 
respectively) shown for each animal (gray circles). (f) Normalized change in the number of trials to reach 
reversal criterion ((TrialCNO − TrialDMSO)/TrialDMSO) shown for each animal (gray circles). The black circles and 
error bars denote mean and SEM across animals. *p < 0.05 (paired t-test).
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transition (t(3) > 3.654, p-values < 0.036) except the two-trial episode under CNO treatment (t(3) = −2.956, 
p = 0.060). Furthermore, the regression slope differed significantly between the episodes with different last 
choices (choosing the higher- versus lower-reward-probability target after block transition) for all comparisons 
(t(3) > 4.112, p-values < 0.026; Fig. 5d–f). These results indicate that episodic control of choice behavior is limited 
in explaining the animal’s choice behavior in the current task.

Analysis results related to model-based RL.  Second, we examined the possibility that CA1 contributes 
to behavioral performance in the present task through its role in model-based RL6–9,12,28, in which values can be 
updated without actually experiencing choice outcomes, rather than model-free RL in which value are updated 
only through actually experienced outcomes. In the present task, a model-based RL algorithm that estimates 
the time of reversal would be advantageous over a model-free RL algorithm. The animals may have learnt that 
reward probabilities change in ~40 trials and used this information in adjusting choice behavior. If so, then the 
probability of choosing the lower-reward-probability target is expected to increase toward the block transition. 
To test this possibility, we performed a logistic regression analysis examining the probability of choosing the 
lower-reward-probability target during 10 trials before block transition using all choice data of a given animal 
group under DMSO or CNO condition. We found no significant tendency to increase the probability of choosing 
the lower-reward-probability target as a function of the number of trials before a block transition in any animal 
group under either DMSO or CNO condition (Fig. 6). These results argue against the animal’s estimating the time 
of reversal in the current task.

Analysis results related to behavioral inhibition.  Finally, we tested whether the CA1 inactivation 
effects can be explained by the proposed role of CA1 in ‘behavioral inhibition’29,30 rather than valuation. We 
considered several types of behavioral inhibition. First, CA1 may play a role in inhibiting hasty choices so that a 

Figure 5.  Analysis results related to episodic control of choice behavior. (a–c) Examples showing the 
probability to repeat the previous choice (Pstay) following a specific pattern of past choices and their outcomes 
during 10 trials before and after a block transition (trial 0). Circles represent Pstay following one type of episode 
during DMSO sessions of a particular animal group (five-trial moving average) and lines were determined by 
logistic regression. Filled and open circles denote episodes where the last choice corresponds to the higher- and 
lower-reward-probability target, respectively, after block transition. Shown are Pstay following [(+, 0)] (filled 
circle) and [(−, 0)] (open circle) (one-trial episode in CaMKIIa-Cre mice), (a) [(+, 0) (+, 1)] (filled circle) and 
[(−, 0) (−, 1)] (open circle) (two-trial episode in Grik4-Cre mice), (b) and [(+, 0) (+, 0) (+, 0)] (filled circle) 
and [(−, 0) (−, 0) (−, 0)] (open circle) (three-trial episode in Rbp4-Cre mice), (c) where ‘+’ and ‘−’ denote 
choosing the targets with higher and lower reward probabilities after block transition, respectively, and ‘1’ and 
‘0’ indicate positive and negative outcomes, respectively. The slopes of the logistic regression were significantly 
different from zero as indicated by p-values. (d–f) Group data. Shown are mean (±SEM across different animal 
groups) slopes of the logistic regression for all equal-length episodes where the last choice corresponds to the 
higher (filled bar)- or lower (open bar)-reward-probability target after block transition under DMSO or CNO 
condition (d, one-trial; e, two-trial; f, three-trial episodes). *p < 0.05, **p < 0.01, ***p < 0.001 (paired t-test).
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choice becomes more value-dependent. That inverse temperature (β) did not change significantly by CA1 inacti-
vation (Fig. 3c,d) argues against this possibility. Second, CA1 may suppress simple win-stay-lose-switch behavior. 
CNO injection decreased, rather than increased, the proportions of win-stay and lose-switch and this effect was 
significant only during the dynamic state (paired t-test, dynamic state, t(10) = 2.442, p = 0.035 and t(10) = 2.241, 
p = 0.049, respectively; steady state, t(10) = −0.248, p = 0.810 and t(10) = −0.238, p = 0.817, respectively; all tri-
als, t(10) = 1.342, p = 0.209 and t(10) = 0.331, p = 0.748, respectively; Fig. 7a,b), arguing against this possibility. 
Third, CA1 may inhibit the natural tendency to alternate choices31,32. A logistic regression analysis (Eq. 2) indi-
cated that the alternation tendency did not change following CNO injection (choice effect of t-1 trial, paired t-test, 
t(10) = 1.137, p = 0.282; Fig. 7c). Finally, CA1 may inhibit the tendency to choose the previously more rewarding 
target. This possibility was tested by adding an additional term to the base model (choice bias toward the pre-
vious high-value target; Eq. 7). CNO injection had no significant effect on this term (paired t-test, t(10) = 1.348 
p = 0.522). We also examined the choice bias toward the first high-value target for a given session (Eq. 7) and 
found no significant effect of CNO injection on this term, either (t(10) = 0.533, p = 0.782; Fig. 7d). These results 
do not support a behavioral inhibition role of CA1.

Effects of OFC inactivation.  We also examined effects of inactivating the OFC in a separate group of 
CaMKIIa-Cre mice (n = 11) for a comparison with the effects of CA1 inactivation. The OFC and striatum are 
strongly implicated in value-based decision making6,33–35, and we chose to test OFC inactivation effects because 
our task involves spatial navigation and striatal inactivation is expected to cause motor impairments36. Histological 
examinations revealed that AAV2-hSyn-DIO-hM4Di-mCherry was expressed in the OFC (Fig. 8a). We confirmed 
inactivation of OFC neural activity by CNO in a separate group of mice (n = 2; paired t-test, DMSO, n = 7 units, 
t(6) = −0.428, p = 0.684; CNO, n = 7 units, t(6) = 3.775, p = 0.009; Fig. 8b). Neither learning rate nor inverse temper-
ature differed significantly between CNO and DMSO injection sessions in these animals (paired t-test, t(10) = 0.563, 
p = 0.586 and t(10) = 0.408, p = 0.692, respectively; Fig. 8c,d). CNO injection had no significant effect on P(R) (all 
trials, t(10) = 0.609, p = 0.556; dynamic state, t(10) = 0.025, p = 0.981; steady state, t(10) = 0.554, p = 0.592), P(H) (all 
trials, t(10) = 0.652, p = 0.529; dynamic state, t(10) = 0.254, p = 0.805; steady state, t(10) = 0.566, p = 0.584), or the 
number of trials to reach the reversal criterion (t(10) = 0.706, p = 0.496; Fig. 8e–g), either.

Discussion
Based on our previous finding that CA1 conveys strong value signals in a dynamic foraging task7, we exam-
ined effects of inactivating different subregions of the dorsal hippocampus on behavioral performance of mice 
in a dynamic foraging task that is well described by a model-free RL algorithm. We found that inactivation of 

Figure 6.  Analysis results related to model-based RL. Open circles indicate the probability of choosing the 
lower-reward-probability target during 10 trials before block transition, which was computed using all choice 
data of a given animal group under DMSO or CNO condition, and lines were determined by logistic regression. 
The slopes of logistic regression were not significantly different from zero as indicated by p-values.



www.nature.com/scientificreports/

8Scientific Reports |  (2018) 8:9870  | DOI:10.1038/s41598-018-28176-5

CA1, but not DG, CA3, or CA2, reduces learning rate (α) without changing randomness in action selection (β). 
Consistent with this finding, changes in the animal’s choice behavior were detectable only during early trials 
after block transition (dynamic state), when rapid value learning is required for adaptive adjustment of choice 
behavior. Such effects were not found in the other animal groups than CaMKIIa-Cre mice, which argues against a 
non-specific effect of CNO37. We have shown previously that CA1 value signals were stronger than its main input 
(CA3) and output (subiculum) structures in rats7,38. Others have shown that spatial firing is altered by reward39 or 
ventral tegmental area inactivation40 in CA1, but not in CA3. Furthermore, neurons with place fields near reward 
locations show a strong tendency to fire together during sharp-wave ripple events in CA139, but not in CA341. 
The presents study, along with these physiological studies, suggests a more important role of CA1 than other 
hippocampal subregions in reward-based learning and updating chosen value.

CNO injection did not prevent the mice from performing the task except making them slightly slower. In 
addition, CA1 inactivation affected choice behavior only during the dynamic state. These results argue against the 
possibility that impaired behavioral performance in CA1-inactivated mice is because spatial memory functions 
of CA1 are compromised. We also tested three alternative accounts for the role of CA1 in controlling choice 
behavior. First, we tested the possibility that CA1 contributes to the performance in the current task via its role in 
episodic control of behavior rather than value learning. Some studies have found positive correlations between 
episodic memory and value learning42–44, and these results were generally interpreted to show indirect contribu-
tions of the hippocampus to value learning via its role in episodic memory. In addition, a recent study has shown 
that choice behavior in a four-arm bandit task, in which human subjects were originally thought to employ a 
model-free RL45, was better described by an episodic RL algorithm42. We found, however, that a conventional 
RL (Q-learning) model better describes the animal’s choice behavior than an episodic RL model. Also, up to 
three-trial episodes, the influence of past episodes on the animal’s choice differed across a block transition. These 
results indicate that the animal’s choice behavior in our task cannot be fully accounted for by episodic control of 
choice behavior. Episodic RL is useful when task structure is complex and experience is very limited27,46. However, 
these conditions are unmet in the present task; our task structure is relatively simple with only two choice options 
and the animals were over-trained before subject to pharmacological tests.

Figure 7.  Analysis results related to behavioral inhibition role of CA1. (a,b) Proportions of win-stay and 
lose-switch are shown for all (Total), dynamic-state (Dynamic), and steady-state (Steady) trials. (c) Average 
regression coefficients from a logistic regression model (Eq. 2) showing the effects of past choices on the 
animal’s current choice. Negative coefficients indicate the animal’s tendency not to choose the same target. (d) 
Choice biases (Qpreference) toward the previous high-value target (Previous) and toward the first high-value target 
for a given session (First). Negative coefficients indicate the tendency to inhibit the choice bias. All graphs are 
mean ± SEM across 11 CaMKIIa-Cre mice. *p < 0.05 (paired t-test).
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Second, we tested the possibility of CA1 contribution to the current task via its role in model-based RL (CA1 
contribution to estimating the time of block transition). We found no evidence that the mice estimated the time of 
block transition in the current task. Third, we tested the contribution of CA1 to ‘behavioral inhibition’. This pro-
posal was based on the finding that mice lacking an NMDA receptor subunit in the DG and CA1 (Grin1ΔDGCA1) 
had intact spatial memory, but were impaired in selecting between alternative targets29,30. However, our results 
raise the possibility that these results might be because of deficits in correctly assigning values to alternative loca-
tions rather than impaired behavioral inhibition. Grin1ΔDGCA1 mice were impaired in learning to choose between 
two visually identical beacons in the water maze when the starting location was closer to the decoy beacon, but 
not when it was closer to the target beacon29,30. This result might seem to support the behavioral inhibition over 
the valuation hypothesis. However, such behavioral outcome may well result from an altered cost-benefit analysis; 
if the distance to travel is a relatively important cost and value learning is moderately impaired by CA1 NMDA 
receptor deletion, altered choice behavior may be particularly pronounced when the mice have to choose the 
farther target. In our task, CNO-induced changes in choice behavior of CaMKIIa-Cre mice are readily explained 
by impaired value learning, but not by impaired behavioral inhibition. Thus, at least for the current behavioral 
task, impaired value learning better explains the effect of CA1 inactivation than impaired behavioral inhibition. 
It is notable there have been similar theoretical debates on the role of the OFC in behavioral inhibition versus val-
uation47–50. Together, our analysis results are more consistent with a direct contribution of CA1 to value learning 
than its contribution to episodic control of choice behavior, model-based RL, or behavioral inhibition.

Even though we found strong value signals in CA1, it was surprising to find significant effects of CA1 inactivation 
on the animal’s choice behavior, because other neural systems, especially frontal cortex-basal ganglia circuitry, have 
been strongly implicated in value-based decision making. Neural signals related to valuation and action selection 

Figure 8.  Effects of OFC inactivation. (a) Histological results. The extents of hM4Di expression are shown 
overlaid for all mice used for OFC inactivation (n = 11; coronal section views). Dark color indicates overlapping 
areas across animals. (b) CNO-induced suppression of OFC neuronal activity. (c,d) Effects of OFC inactivation 
on learning rate and inverse temperature. (e–g) Effects of OFC inactivation on choice behavior.
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have been found in widespread areas of the cortico-basal ganglia circuitry, and manipulations in the cortico-basal 
ganglia circuitry lead to altered choice behavior6,34,51–54. In addition, the hippocampus has been proposed to play 
a particularly important role in model-based rather than model-free RL through its roles in representing episodic/
semantic memories and simulating possible outcomes of future actions6–9,12. Nevertheless, we found significant effects 
of CA1 inactivation on value learning in a task that is well described by a model-free RL algorithm. Even though CA1 
inactivation decreased learning rate only moderately (~20% decrease), the inactivation effect was specific to and reli-
able within CA1-inactivated mice, and the effect was highly significant even with partial inactivation of dorsal CA1 
(hM4Di expression in CA1 was confined within septal 40% along the septo-temporal axis in all animals). In addition, 
the inactivation of the OFC had no significant effect on learning rate in the same task, suggesting a more important 
contribution of CA1 than the OFC in value learning in the present task. Collectively, our results indicate that the 
hippocampus, especially CA1, may play an important role in incremental value learning under certain circumstances. 
Additional studies are needed to determine the extent to which the hippocampus is engaged in value-based decision 
making and to elucidate how it interacts with other neural systems. Given the essential role of the hippocampus in 
spatial learning55, the hippocampus may play a particularly important role in learning values associated with spatial 
locations, whereas the OFC and striatum may be important for other types of value learning. For example, the OFC 
and striatum may play important roles in learning values of objects and actions, respectively3,35,56.

Our results may seem inconsistent with the reports that amnesic patients are intact in probabilistic classifica-
tion learning. Knowlton and colleagues57,58 have reported that diencephalic/hippocampal amnesic patients were 
impaired in the late stable phase (>50 trials), but not the early learning phase (first 50 trials) of probabilistic clas-
sification tasks, concluding intact probabilistic classification learning in amnesic patients. However, the amnesic 
patients showed substantially lower performance during the very early phase of the weather forecasting task (up 
to ~30 trials; see Fig. 2 of ref.57 and Fig. 2 of ref.58) which is a widely-used probabilistic classification task. These 
results may be related to our finding that CA1 inactivation induces transient deficits in choice behavior after block 
transition. Also, in a later study, human subjects with selective hippocampal damages were impaired at all phases 
of probabilistic classification tasks (weather forecasting and ice cream tasks)59. As such, it is controversial whether 
hippocampal amnesic patients are intact in probabilistic classification learning60,61. Moreover, numerous studies 
have shown that hippocampal amnesic patients are impaired in probabilistic reversal learning62–65. In rats, hip-
pocampal lesions had no effect on probabilistic odor discrimination66, but impaired probabilistic spatial discrim-
ination learning67. These results are consistent with our finding that CA1 inactivation impairs incremental value 
learning in a dynamic foraging situation. Note that the extent of hippocampal lesions/inactivation is likely to vary 
widely across studies. We only targeted the dorsal hippocampus in the present study, leaving the ventral hippocam-
pus intact. A complete inactivation of the entire CA1 (including the ventral CA1) may induce larger decreases in 
learning rate and behavioral performance in the dynamic foraging task, which remains to be determined.

It is currently unclear how CA1 might contribute to incremental value learning. Our previous study in rats7 
has shown that spatial firing of CA1 neurons is modulated by value, suggesting conjunctive representation of 
value and spatial information in CA1. It also has shown that all the signals necessary to update value of the chosen 
target (current location, reward value and actual outcome) converge in CA1 during ~2 s time window after a trial 
outcome, suggesting that CA1 may update value of the visited location based on these signals immediately after a 
trial outcome is revealed. Value can be represented in CA1 by changing synaptic weights, and dopamine may play 
a role in this process. CA1 receives dopaminergic projections68–70 that convey reward prediction error signals71–73. 
Furthermore, dopamine modulates synaptic plasticity in CA3-CA1 projections74–77, and dopaminergic manipu-
lations alter spatial firing of CA1 place cells40,78–80. Hence, although additional studies are needed to elucidate the 
neural mechanisms whereby value information influences the information processing in the hippocampus, CA1 
may update value when an animal visits a target location by changing synaptic weights in CA1 network based on 
converging signals of spatial location, value, and reward along with dopaminergic signals.

Methods
Animals.  Fifty-seven young (8–12 weeks old, 20–28 g) male mice were used for behavioral (n = 44) and 
physiological (n = 13) experiments targeting the hippocampus. CaMKIIa-Cre knockin (B6.Cg-Tg(Camk2a-cre)
T29-1stl/J, stock #005359, Jackson Laboratory; n = 14), RGS14-Cre knockin (STOCK Tg(Rgs14-cre)SR63Gsat/
Mmucd, stock #036535-UCD, MMRRC; n = 15), Grik4-Cre knockin (C57BL/6-Tg(Grik4-cre)G32-4Stl/J, 
stock #006474, Jackson Laboratory; n = 13), and Rbp4-Cre knockin (B6.FVB(Cg)-Tg(Rbp4-cre)KL100Gsat/
Mmucd, stock #037128-UCD; MMRRC; n = 15) mice were used to selectively inactivate CA1, CA2, CA3, or 
DG, respectively. RGS14, Grik4, and Rbp4 are selectively expressed in excitatory neurons of CA2, CA3, and DG, 
respectively81–83, but CaMKII is expressed in excitatory neurons of all hippocampal subfields and neocortex84. 
Hence, selective expression of hM4Di within CA1 was necessary for selective inactivation of CA1 (Fig. 1c and 
Supplementary Fig. S1). In addition to these hippocampal animals, 11 CaMKIIa-Cre mice were used to inacti-
vate the OFC. The mice were individually housed in their home cages and initially allowed free access to food 
and water with extensive handling for at least one week. They were then gradually water deprived so that their 
body weights were maintained at 80~85% of their free-feeding weight throughout the experiments. Experiments 
were performed in the dark phase of a 12-h light/dark cycle. All experiments were performed in accordance with 
protocols approved by the directives of the Animal Care and Use Committee of the Korea Advanced Institute of 
Science and Technology (Daejeon, Korea).

Behavioral task.  Mice (CaMKIIa-Cre, n = 22; RGS14-Cre, n = 11; Grik4-Cre, n = 11; Rbp4-Cre, n = 11) were 
trained to perform a dynamic TAB task in a modified T-maze (37 × 25 cm, width of track: 5 cm, 12-cm high walls 
along the entire track; elevated 20 cm from the floor; Fig. 1a) for 14–21 d following virus injection (see below). The 
task is essentially similar to the rat version of the dynamic two-armed task previously used in our laboratory7,10,11. 
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The maze contained five sliding doors to guide the animal’s navigation and five photobeam sensors to monitor 
the animal’s position in the maze. The mice were trained to navigate from the central stem to either goal site to 
obtain water reward (7 μl) and come back to the central stem via the lateral alley in each trial. Reward probability 
of a goal was constant within a block of trials, but changed across blocks without any sensory cues. Hence, the 
mice had to keep track of the history of past choices and their outcomes in order to make optimal choices in this 
task. Two combinations of reward probabilities (0.72:0.12 and 0.12:0.72) were alternated across four blocks of 
trials (Fig. 1b) and the reward probability combination for the first block was determined pseudo-randomly. The 
number of trials in each block was 35 plus a random number drawn from a geometric mean of 5 (maximum set 
at 45; 40.0 ± 5.1 trials per block and 160.1 ± 5.1 trials per session; mean ± SD).

Chemogenetic inactivation.  For behavioral testing, the mice (n = 55) were anesthetized with isoflurane 
(1–1.5% [vol/vol] in 100% oxygen), and two burr holes (diameter, 0.5 mm) were made bilaterally. A bolus of 0.5 µl 
of virus (AAV2-hSyn-DIO-hM4Di-mCherry, UNC vector core) was injected in each hemisphere at the following 
coordinates to inactivate different hippocampal subregions or the OFC (relative to bregma and brain surface in 
mm): CaMKIIa-Cre mice (CA1), −1.94 AP, ±1.4 ML, and −1.15 DV; RGS14-Cre mice (CA2), −2 AP, ±2.4 ML, 
and −1.5 DV; Grik4-Cre mice (CA3), −1.94 AP, ±2.1 ML, and −2 DV; Rbp4-Cre mice (DG), −1.94 AP, ±1 ML, 
and −1.9 DV; and CaMKIIa-Cre mice (OFC), 2.0 AP, ±1.5 ML, and −1.75 DV. The virus was injected at the rate 
of 0.1 µl/min in each hemisphere, and the injection needle was held in place for 10 min after virus injection. The 
mice were tested in the TAB task 40 min following CNO (5 mg/kg) or DMSO injection (i.p., 12 μl each, diluted in 
385 μl PBS) in each daily session.

Physiological effects of CNO injection were tested in a separate group of mice (n = 15). AAV2-hSyn-DIO- 
hM4Di-mCherry virus was injected into the intended region (CA1, CA2, CA3, DG, or OFC) unilaterally (left or 
right, counterbalanced across animals) in the same manner as described above, and an array of eight microdrives 
each controlling one tetrode was implanted targeting the virus-injected area. Following 5–7 d of recovery from 
surgery, tetrodes were advanced gradually to the intended recording area with the animal allowed to move freely 
on a pedestal (diameter, 12 cm). Once stable unit signals were obtained for at least 30 min, unit signals were fur-
ther recorded for >60 min with CNO (5 mg/kg) or DMSO injection (i.p., 12 μl each, diluted in 385 μl PBS) in each 
daily session. Unit signals were amplified with the gain of 10,000, filtered between 0.6–6 kHz, digitized at 32 kHz 
and stored on a personal computer using a Cheetah data acquisition system (Neuralynx; Bozemann, MT, USA). 
When unit recordings were completed, small marking lesions were made by passing an electrolytic current (20 
μA, 10 s, cathodal) through one channel of each tetrode and electrode tracks and marking lesions were verified 
histologically according to a standard procedure85. Recoding locations were determined based on the history of 
electrode advancements and histologically-confirmed electrode tracks and lesion sites (Supplementary Fig. S2). 
All images were obtained (10x) with a Zeiss Axio Scan.Z1 slide scanner (Zeiss, Jena, Germany). Units with mean 
discharge rates >5 Hz (putative interneurons) were excluded from the analysis.

Determination of dynamic state, steady state, and reversal criterion.  The animal’s choice data 
were subjected to 7-trial moving average. The dynamic state was until the proportion of higher-reward-probability 
target choices (P(H)) exceeded 70% of the maximum value after block transition, and the steady state was 
after exceeding 90% of the maximum value in each block. The reversal criterion was when the proportion of 
higher-probability-target choices exceeded 70% of the steady-state value.

Matching law.  Steady-state behavioral data was analyzed to test their conformity to the generalized matching 
law as follows25:

=










C
C

b R
R

,
(1)

L

R

L

R

a

where CL(or CR) and RL(or RR) are choice frequency and reinforcement frequency for the left (or right) goal, 
respectively. The coefficients a and b are the sensitivity to the reinforcement ratio and a bias term, respectively.

Logistic regression analysis.  Effects of previous choices and their outcomes on the animal’s goal choice 
were estimated using the following logistic regression model10,86:
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where pL(i) (or pR(i)) is the probability of selecting the left (or right) goal in the i-th trial. The variables RL(i) (or 
RR(i)) and CL(i) (or CR(i)) are reward delivery at the left (or right) goal (0 or 1) and the left (or right) goal choice 
(0 or 1) in the i-th trial, respectively. The coefficients rj

r  and rj
c denote the effect of past rewards and choices, 

respectively, and r0 is a bias term.

Reinforcement learning model.  We used the Q-learning model26 to analyze choice behavior of mice. In 
the Q-learning model, action values (Qa(t)) were computed in each trial as the following:

α α= + = − +
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where α is the learning rate, R(t) represents the reward in the t-th trial (1 if rewarded and 0 otherwise) and a 
indicates an action (left or right goal choice).

Actions were chosen according to the softmax action selection rule, in which choice probability varied as a 
graded function of the difference in action values (QL(t) − QR(t)), as the following:

β
=

+ − −
P t

Q t Q t
( ) 1

1 exp( ( ( ) ( ))) (4)L
L R

where PL(t) is the probability to choose the left goal, β is the inverse temperature that defines the degree of ran-
domness in action selection.

We also examined several variants of the Q-learning model (base model or model 1). The model 2 contained a 
choice bias (bias toward the left or right goal choice) term as an additional variable to the base model. The model 
3 contained separate learning constants for positive and negative outcomes (i.e., rewarded and unrewarded trials, 
respectively). The model 4 contained a stay bias (bias to repeat the previous choice) as an additional variable to 
the base model. All three models can be expressed by the following equations:

if a = a(t),
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where αpos and αneg are learning rates for rewarded and unrewarded trials, respectively, and γ is the penalty term 
for repeating the same choice. Actions were chosen according to the softmax action selection rule as the following:
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where b is a bias term for selecting the left target. The following constraints were applied to these parameters for 
different models: model 2, αpos = αneg, γ = 0; model 3, b = γ = 0; model 4, αpos = αneg, b = 0. The results of model 
comparison are shown in Supplementary Table S1.
To test a role of CA1 in behavioral inhibition29,30, an additional term (Qpreference) was added to the base model as 
the following:

if the preferred target is the left goal,
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where Qpreference is a bias term for the preferred target. It was defined in two different ways. First, the preferred 
target was the target (left or right) chosen ≥80% during the last 10 trials. Once set, it was maintained until the 
alternative target becomes the preferred target. Second, the preferred target was defined as the first target chosen 
≥80% during a run of 10 trials. The bias term was set to zero at the outset of each session until the preferred target 
was first determined. In practice, the preferred target is equivalent to the high reward-probability target in the 
previous block (first definition) or in the first block (second definition).
Model parameters were estimated for each animal using choice data across all sessions based on a maximum 
likelihood procedure87.

Episodic RL model.  We used a sampling model27,42 as an episodic RL model. In each trial, the probability to 
obtain a reward by taking a particular action ‘a’, =Q t rewardP( ( ) )a

sample , was computed by sampling the same 
action trials in the past as the following:

if a = a(t)
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where αsample is a decay constant of the sampling model. Actions were chosen according to the softmax action 
selection rule as the following:
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where Q t( )a
sample  is 1 (or 0) if rewarded (or unrewarded).

Statistical analysis.  Statistical significance of a regression coefficient was tested based on a t-test. Paired 
t-tests were used to compare choice-related variables under DMSO and CNO injection conditions (within-subject 
comparisons). All statistical tests were based on two-tailed tests. A p value < 0.05 was used as the criterion for a 
significant statistical difference. Data are expressed as mean ± SEM unless noted otherwise.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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