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A B S T R A C T

This article considers the optimal control of the SIR model with both transmission and treatment uncertainty.
It follows the model presented in Gatto and Schellhorn (2021). We make four significant improvements on the
latter paper. First, we prove the existence of a solution to the model. Second, our interpretation of the control
is more realistic: while in Gatto and Schellhorn (2021) the control 𝛼 is the proportion of the population that
takes a basic dose of treatment, so that 𝛼 > 1 occurs only if some patients take more than a basic dose, in our
paper, 𝛼 is constrained between zero and one, and represents thus the proportion of the population undergoing
treatment. Third, we provide a complete solution for the moderate infection regime (with constant treatment).
Finally, we give a thorough interpretation of the control in the moderate infection regime, while Gatto and
Schellhorn (2021) focused on the interpretation of the low infection regime. Finally, we compare the efficiency
of our control to curb the COVID-19 epidemic to other types of control.
1. Introduction

This article extends the analysis of the model presented in [1].
In that article the authors gave analytical expressions for the optimal
proportion of infected to undergo treatment in a pandemic. Analytical
approaches allow to better understand the form of the solution com-
pared to numerical approaches, which are currently more prevalent in
this domain. It was possible for the authors to find formulae because
of the type of objective function they chose. Rather than minimize an
expected value of the number of infected or the cumulated number of
infected (under a constraint on the dispersion of the results), we chose
to minimize the expected value of a convex increasing function of the
number of infected at the horizon. The quadratic utility function is
a special case of the latter, and we indeed show results for a whole
family of functions, called isoelastic functions. Each function in this
family is characterized by a single parameter, called the risk-aversion
parameter, and varying this parameter as we shall see enables us to
better understand how the optimal control depends smoothly on the
level of aversion to risk, where risk is understood as the probabilistic
uncertainty of the result. In contradistinction, the optimal control of
deterministic epidemiological models is often of the bang–bang type
(see for instance [2,3]). Several authors, such as [3–6] use Pontryagin’s
maximum principle. Some authors (e.g., [7]) use dynamic program-
ming. Laarabi et al. [8] use the same framework, but add delay. The
literature on the control of stochastic epidemiologic models tends to
be more sparse and more recent. A variety of models and numerical

∗ Corresponding author.
E-mail addresses: yujia.ding@cgu.edu (Y. Ding), Henry.Schellhorn@cgu.edu (H. Schellhorn).

methods has been proposed: Markov chain [9], backward SDE solved
by the 4-step scheme [10], simulated annealing [11], stochastic pro-
gramming [12], genetic algorithms [13]. Wang et al. [14] consider
time-varying parameters.

The contributions of this article are fourfold. First, we prove ex-
istence of a solution. Second, whereas in [1] the optimal control 𝛼
has the interpretation of the proportion of the population that takes
a basic dose of treatment, so that 𝛼 > 1 occurs only if a proportion of
the population takes more than a basic dose of treatment. In the low
infection regime part of our paper, 𝛼 is constrained to be between zero
and one, and represents thus the proportion of the population undergoing
treatment. The latter interpretation is much more realistic, as it is
uncommon to ration treatment. Third, we provide a complete solution
for the moderate infection regime (with constant treatment). The final
improvement is a thorough numerical analysis and sensitivity analysis
of the moderate infection regime, while [1] focused exclusively on the
interpretation of the control in the low infection regime. This enables us
to discover some errors in the second-order term of the solution in [1],
which we correct here. Finally, we compare the efficiency of our control
to curb the COVID-19 pandemic to other types of control. Our optimal
control is, as expected, superior to a full control (or no control), in terms
of expected utility. It is clearly superior in the case of low infection, but
the benefit is less pronounced in the case of moderate infection. There
are two possible reasons for that. First, we included only few terms in
the analytic series of the optimal control. Adding more terms would
have yielded slightly better results. More importantly, the quality of
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the treatment available to COVID-19 patients in the US in 2020 was
probably not sufficient to make a difference if the number of infected
had climbed to more than 1%.

The structure of the article is as follows. In Section 2 we briefly
introduce the model in [1], and provide a proof of existence of the
solution. In Section 3, we show our results for the low infection regime.
In Section 4, we extend and analyze the solution in the moderate infec-
tion regime. Section 5 shows our experimental results when applying
our methodology to the COVID-19 in the US in 2020. We draw the
conclusion in Section 6.

2. A stochastic SIR model with treatment uncertainty

Let 𝑆, 𝐼 , 𝑅 be the proportions of susceptible, infected, and out of
nfection (recovered, and dead), respectively. Let 𝛽 be the transmission

rate and 𝜇 be the death rate.
In the SIR model, the rate of decrease 𝑑𝑆

𝑑𝑡 of the proportion of
susceptible is equal to the constant transmission rate 𝛽 time 𝑆𝐼 . As
in [1], we add a term 𝜎𝑆

√

𝑆𝐼 𝑑𝐵1
𝑑𝑡 , where 𝑑𝐵1

𝑑𝑡 is white noise, in order
o model the error in the transmission rate:
𝑑𝑆
𝑑𝑡

= −𝛽𝑆𝐼 + 𝜎𝑆
√

𝑆𝐼
𝑑𝐵1
𝑑𝑡

nfected patients are either treated or not treated against the disease. In
oth cases they either recover or die. We denote by 𝜇0 (𝜇1) the constant

death rate without (with) treatment and by 𝐾(𝑡) the recovery rate of the
treatment. The optimal policy 𝛼 is a progressively measurable process
hat represents the proportion of the infected population that receives
reatment, thus 𝛼(𝑡) ∈ [0, 1]. This constraint is an important addition to
he model in [1]. Depending whether the individual is treated or not,
here are then four different ways for an infected individual to exit the
ool of infected:

• not treated and recover
• not treated and die
• treated and recover
• treated and died.

hus, the ‘‘out of infection rate’’ will be:
𝑑𝑅(𝑡)
𝑑𝑡

= (1 − 𝛼(𝑡))𝐼(𝑡)𝐾0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

not treated and recover

+ (1 − 𝛼(𝑡))𝐼(𝑡)𝜇0
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
not treated and die

+ 𝛼(𝑡)𝐼(𝑡)𝐾1(𝑡)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

treated and recover

+ 𝛼(𝑡)𝐼(𝑡)𝜇1
⏟⏞⏞⏟⏞⏞⏟

treated and die

− 𝛼(𝑡)𝐼(𝑡)𝜎
𝑑𝐵2
𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
treatment measurement error

(1)

For simplicity, we assume that the Brownian motion driving trans-
mission uncertainty (𝐵1) is independent from the Brownian motion
driving treatment uncertainty (𝐵2). Usually 𝜇0 ≥ 𝜇1 (people die faster
without treatment than with treatment), but not necessarily. Most of
the time 𝐾1(𝑡) > 𝐾0 (treatment is better than no treatment), but not
necessarily. We relax this requirement somewhat by requiring:

𝑃 (𝐾0 < 𝐾1(𝑡)) is close to one (2)

In order to keep the treatment rate within bounds, we model it as an
Ornstein–Uhlenbeck process:

𝑑𝐾1(𝑡) = 𝜆𝑘(𝑘̄1 −𝐾1(𝑡))𝑑𝑡 + 𝜎𝑘𝑑𝐵2(𝑡)

with the mean-reversion rate 𝜆𝑘 > 0 and the long run value of the
treatment rate 𝑘̄1. It is well-known that 𝐾1 is Gaussian, with variance
equal to:

V𝑎𝑟[𝐾1(𝑡)] =
𝜎2𝑘
2𝜆𝑘

(1 − 𝑒−2𝜆𝑘𝑡)

hus, if mean-reversion is large compared to volatility 𝜎𝑘, constraint
2) is satisfied. We simplify (1) by:
𝑑𝑅(𝑡)
𝑑𝑡 = 𝐾0 + 𝜇0 + 𝛼(𝑡)(−𝐾0 +𝐾1(𝑡) − 𝜇0 + 𝜇1) − 𝛼(𝑡)𝜎

𝑑𝐵2

𝐼(𝑡) 𝑑𝑡

2

Putting everything together, the dynamics of the infected is:
𝑑𝐼(𝑡)
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼(𝑡) −
𝑑𝑅(𝑡)
𝑑𝑡

− 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)
𝑑𝐵1
𝑑𝑡

We try to minimize a measure of the infected over our horizon
𝑇 . This article focuses on the solution of the Mayer problem, i.e., the
objective is expressed as a measure of 𝐼(𝑇 ). Another possible control

ould have been the time-integral of the number of infected over the
orizon (the Lagrange problem). Both figures have their merit,1 and

we leave for future research the control of (a measure) of the Lagrange
and Bolza problems. Rather than trying to minimize the expected value
of the infected, namely 𝐸[𝐼(𝑇 )], we include in our objective the risk
caused by the uncertainty of the model and its observations. Decision-
makers are notoriously risk-averse. For this reason, Morgenstern and
Von Neumann [15] introduced a class of utility functions 𝑈 that bears
their names. A decision-maker in epidemiology that is averse to risk will
thus minimize the expected utility of the infected, namely 𝐸[𝑈 (𝐼(𝑇 ))]
where 𝑈 is increasing and convex. Alternately, one can maximize the
negative thereof, i.e., maximize the expected value of a concave and
decreasing function of 𝐼(𝑇 ). The policy obtained in maximizing the
expected value of a concave utility function can be showed, under
certain conditions, to maximize the expected value of the outcome
(here −𝐼) under a constraint on the dispersion of the outcome. Out
of the universe of concave decreasing utility functions, we choose the
power utility function:

𝑈 (𝐼) = − 𝐼1−𝛾

1 − 𝛾

The coefficient 𝛾 is often called the risk-aversion parameter . When
𝛾 = 0 the decision-maker is risk-neutral, meaning that the uncertainty
does not have an influence on her decisions. It is straightforward to
check that this power utility function is concave in 𝐼 when 𝛾 < 0,
which we will assume. The more negative 𝛾 the more risk-averse is the
decision-maker. Taking for instance 𝛾 = −1, we see that the objective
is to

maxE
[

− 𝐼2

2
]

which returns the same policy as:

minE
[ 𝐼2

2
]

The importance of analytic formulations is that other figures of in-
terest in this model, like the expected number of deaths from treatment
can be analytically calculated, and depend on 𝛾. Thus, a decision-maker
can calibrate its risk-aversion parameter 𝛾 on other goals. Expected
number of deaths is only one type of goal and economic factors that
can be easily added. We define

𝜏 = min{𝑡 > 0|𝐼(𝑡) = 0 or 𝐼(𝑡) = 1}

ur controlled SIR model is thus:

sup
0≤𝛼(𝑡)≤1

E
[

−
𝐼(min(𝜏, 𝑇 ))1−𝛾

1 − 𝛾
]

𝑑𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡 + 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) (3)
𝐼(𝑡) =

(

𝛽𝑆(𝑡) − (𝐾0 + 𝜇0) + 𝛼(𝑡)(𝐾0 −𝐾1(𝑡) + 𝜇0 − 𝜇1)
)

𝐼(𝑡)𝑑𝑡

+ 𝛼(𝑡)𝐼(𝑡)𝜎𝑑𝐵2(𝑡) − 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) (4)
𝐾(𝑡) = 𝜆𝑘(𝐾̄ −𝐾(𝑡))𝑑𝑡 + 𝜎𝑘𝑑𝐵2(𝑡) (5)

The relative sign of our volatilities 𝜎 and 𝜎𝑘 is important. We will
ssume without loss of generality that 𝜎 < 0. The sign of 𝜎𝑘 is the
ign of covariance between the measured value of today’s treatment
ate and the change in value of the treatment rate between today and
future date. An example may help illustrate the difference. Suppose

hat over a week one performs daily measurements of the treatment

1 We thank an anonymous referee for this comment.



Y. Ding and H. Schellhorn Mathematical Biosciences 344 (2022) 108758

t
o
c
a

e
c
n

T
a
o

o
b
c
t
i
r
i

𝑋

a

t

s

a
t

(

a
t

3

𝑟

i
s
a
c

t

3

T

𝛼

𝑑

𝐻
w
c

𝐻

𝐴

Fig. 1. A stochastic SIR model.

recovery rate as well as daily forecasts of the evolution of the treatment
recovery rate over the next day. The two quantities measured each day
𝑡 are proportional to the same white noise 𝐵2(𝑡+1 day) − 𝐵2(𝑡). One
hen calculates weekly estimates 𝜎̂ of 𝜎 and 𝜎̂𝑘 of 𝜎𝑘 over these 7 daily
bservations. Since we arbitrarily choose 𝜎 < 0, a negative 𝜎̂𝑘 shows a
orrelation of +1 between the measurement (of today’s treatment rate)
nd the forecast. Fig. 1 is a depiction of our model.

Let 𝜏 be the time when the infection stops, i.e., the first time when
ither 𝐼(𝜏) or 𝑆(𝜏) or both are equal to zero. We naturally require the
ontrol to go down to zero at that time, for definiteness reasons. The
ext result considers an open-loop control.

heorem 1. For a given progressively measurable control 0 ≤ 𝛼 ≤ 1, with
nd given initial values (𝑆(0), 𝐼(0), 𝑅(0), 𝐾(0)) there exists a unique solution
f (3)(4)(5) up to time 𝜏.

The proof of Theorem 1, included in Appendix A, follows the proof
f a theorem of Yamada and Watanabe (1971), as exposed in the book
y Karatzas and Shreve [16, Prop. 2.13, Sec. 5.2]. We showed in a
ompanion document that the probability that either 𝐼 or 𝑆 is equal
o zero over a finite interval is zero, following the method of proof
n [17,18]. It is thus unlikely that a simple discretization of our model
esults in negative values.2 For notational simplicity we define the
mpact of treatment risk 𝑋:

(𝑡) =
𝐾0 + 𝜇0 − 𝜇1 −𝐾1(𝑡)

𝜎

s well as the long run impact of the treatment risk 𝑋̄:

𝑋̄ =
𝐾0 + 𝜇0 − 𝜇1 − 𝑘̄1

𝜎
We define 𝜆𝑥 = 𝜆𝑘 and 𝜎𝑥 = 𝜎𝑘∕𝜎. For simplicity we write 𝜇 =

𝐾0 + 𝜇0.
In the absence of bounds on 𝛼, Gatto and Schellhorn [1] show

hat, when a smooth optimal closed-loop control 𝛼 exists, there exists

2 We note that we never encountered a negative value of 𝐼(𝑡) in our
imulations.
 𝐵

3

probability measure P̃3 under which 𝐼(𝑡)𝑒𝜇𝑡 is a martingale and 𝐼 is
he optimal state. Moreover, 𝐼 has the explicit form:

𝐼(𝑡) = 𝐹 (𝑍(𝑡), 𝑋(𝑡), 𝑆(𝑡), 𝑡) (6)
𝑍(𝑇 ))1∕𝛾 = 𝐼(𝑇 ) (7)

nd 𝐹 is twice continuously differentiable. In the sequel we will shorten
his statement by saying that ‘‘𝐼 solves the martingale problem (6)’’.

. Results in the low infection regime

We assume 𝑆(𝑡) close to one and 𝜎 = 0. Thus the term:

= 𝛽𝑆(𝑡) − (𝐾0 + 𝜇0) ≃ 𝛽 −𝐾0 − 𝜇0

s assumed constant. With this simplification, we give an analytical
olution to the constrained problem, i.e., the case where 0 ≤ 𝛼(𝑡) ≤ 1,
significant improvement over [1], who considered the unconstrained

ase.
We consider first the case where the treatment rate is constant, and

hen the case where it follows an Ornstein–Uhlenbeck process.

.1. Constant treatment rate

Let 𝑏 = 𝛽 − 𝜇1 − 𝑘̄1. The problem is:

sup
0≤𝛼(𝑡)≤1

E
[

−
𝐼(𝑇 )1−𝛾

1 − 𝛾
]

𝑑𝐼(𝑡) = (𝑟 + 𝛼(𝑡)(𝑏 − 𝑟))𝐼(𝑡)𝑑𝑡 + 𝛼(𝑡)𝜎𝐼(𝑡)𝑑𝐵2(𝑡)
(8)

heorem 2. The following constant control is optimal:

= min
(

1,max
(

0,
𝑘̄1 −𝐾0

𝜎2|𝛾|
)

)

The proof is in Appendix B, and follows closely [19].

3.2. Treatment rate as Ornstein–Uhlenbeck process

The problem is

supE
[

−
𝐼(𝑇 )1−𝛾

1 − 𝛾
]

𝑑𝐼(𝑡) = (𝑟 + 𝛼(𝑡)𝜎𝑋(𝑡))𝐼(𝑡)𝑑𝑡 + 𝛼(𝑡)𝜎𝐼(𝑡)𝑑𝐵2(𝑡)

𝑋(𝑡) = 𝜆𝑥(𝑋̄ −𝑋(𝑡))𝑑𝑡 − 𝜎𝑥𝑑𝐵2(𝑡)

(9)

In the low infection regime our solution will depend on a kernel
0(𝑋𝑡, 𝜏) with 𝜏 = 𝑇 − 𝑡, while in the moderate infection regime it
ill also depend on two other kernels 𝐻1(𝑋𝑡, 𝜏) and 𝐻2(𝑋𝑡, 𝜏) that are

losely related. In order to unify notation we define the kernels. Define

0(𝑋𝑡, 𝜏)

= exp

(

1
𝛾

(𝐴1(𝜏, 𝛾)𝑋2
𝑡

2
+ 𝐴2(𝜏, 𝛾)𝑋𝑡 + 𝐴3(𝜏, 𝛾) + (1 − 𝛾)(𝜇 + 𝑟)𝜏

)

)

(10)

and, for 𝑖 > 0

𝐻𝑖(𝑋𝑡, 𝜏) = exp

(

𝑖
𝛾

(𝐴1(𝜏, 𝛾∕𝑖)𝑋2
𝑡

2
+ 𝐴2(𝜏, 𝛾∕𝑖)𝑋𝑡 + 𝐴3(𝜏, 𝛾∕𝑖)

)

)

(11)

where

𝐴1(𝜏, 𝛾) =
1 − 𝛾
𝛾

2(1 − exp(−𝜃(𝛾)𝜏))
2𝜃(𝛾) − (𝑏2(𝛾) + 𝜃(𝛾))(1 − exp(−𝜃(𝛾)𝜏))

(12)

2(𝜏, 𝛾) =
4𝜆𝑥𝑋̄𝑏1(𝛾) (1 − exp (−𝜃(𝛾)𝜏∕2))2

𝜃(𝛾)
(

2𝜃(𝛾) − (𝜃(𝛾) + 𝑏2(𝛾))(1 − exp(−𝜃(𝛾)𝜏))
) (13)

𝐴3(𝜏, 𝛾) = ∫

𝜏

0

(

𝜎2𝑥
2𝛾

+ 𝜆𝑥𝑋̄

)

𝐴2
2(𝑠, 𝛾) +

𝜎2𝑥
2
𝐴1(𝑠, 𝛾) + (𝛾 − 1)𝜇𝑑𝑠 (14)

3 Equivalent to the original measure P, which is the measure under which
and 𝐵 are Brownian motions.
1 2
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(

𝑏1(𝛾) =
1 − 𝛾
𝛾

𝑏2(𝛾) = 2
( 𝛾 − 1

𝛾
𝜎𝑥 − 𝜆𝑥

)

𝑏3(𝛾) =
𝜎2𝑥
𝛾

(𝛾) =
√

𝑏22(𝛾) − 4𝑏1(𝛾)𝑏3(𝛾)

e provide an explicit formula for 𝐴3(𝜏, 𝛾) in Appendix C.
Gatto and Schellhorn [1, Prop. 1] provide an explicit solution to

he PDE that 𝐹 in (6) satisfies, but with some typos in the expression
f 𝐻0(𝑋𝑡, 𝜏), which we correct here.

Theorem 3 (Proposition 1 in [1]). If 𝜎𝑥 < 0 then 𝐼 solves the martingale
problem (6), where

𝐼(𝑡) = (𝑍(𝑡))
1
𝛾 𝐻0(𝑋𝑡, 𝑇 − 𝑡)

where
𝑑𝑍(𝑡)
𝑍(𝑡)

= (𝑟 +𝑋2(𝑡))𝑑𝑡 +𝑋(𝑡)𝑑𝐵2(𝑡)

𝑍(0) =
( 𝐼(0)
𝐻0(𝑋(0), 𝑇 )

)𝛾

he corresponding control 𝛼∗(𝑡) is given by:

0(𝑡) =
𝑋(𝑡)
𝛾𝜎

−
𝜎𝑥
𝛾𝜎

(𝐴0,1(𝑇 − 𝑡)𝑋(𝑡) + 𝐴0,2(𝑇 − 𝑡)) (15)

This control has some very clear properties. It is decomposed into
a myopic policy 𝑋(𝑡)

𝛾𝜎 and a hedging policy, namely the second term of
15). Recall that 𝑋 is most often negative. Both myopic control and
edging policies are thus inversely proportional to the degree of risk
version |𝛾| and to the volatility 𝜎 which corresponds to the contem-

poraneous transmission measurement error. The hedging policy gives
protection against the risk of making decisions too soon. As expected,
its magnitude decreases as time approaches the horizon 𝑇 . This is a
typical feature of the Mayer problem, which is usually attenuated in
the Bolza problem.

4. Results in the moderate infection regime

We first handle the Ornstein–Uhlenbeck treatment rate case, which
was presented in [1, Prop. 2].

4.1. Treatment rate as Ornstein–Uhlenbeck process

The problem is defined in Section 2. We rewrite here for conve-
nience,

supE
[

−
𝐼(min(𝜏, 𝑇 ))1−𝛾

1 − 𝛾
]

𝑑𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡 + 𝜎
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡)

𝑑𝐼(𝑡) = (𝛽𝑆(𝑡) − 𝜇 + 𝛼(𝑡)𝜎𝑋(𝑡)) 𝐼(𝑡)𝑑𝑡 + 𝛼(𝑡)𝐼(𝑡)𝜎𝑑𝐵2(𝑡)

− 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡)

𝑑𝑋(𝑡) = 𝜆𝑥(𝑋̄ −𝑋(𝑡))𝑑𝑡 − 𝜎𝑥𝑑𝐵2(𝑡)

(16)

We further define

𝑀̃(𝑡, 𝜏) =
2𝜃(𝛾)𝑒

1
2 (𝑏2(𝛾∕2)−𝑏2(𝛾)−𝜃(𝛾))(𝜏−𝑡)

2𝜃(𝛾) − (𝑏2(𝛾) + 𝜃(𝛾))
(

1 − 𝑒−𝜃(𝛾)(𝜏−𝑡)
) (17)

𝑚𝑌 (𝜏, 𝑥) = 𝑥𝑀̃(𝑡, 𝜏) + ∫

𝜏

𝑠=𝑡
𝑀̃(𝑠, 𝜏)(𝜆𝑥𝑋̄ +

𝜎2𝑥
𝛾 𝐴2(𝜏 − 𝑠, 𝛾))𝑑𝑠

+
𝐴2(𝑇 − 𝜏, 𝛾)
𝐴1(𝑇 − 𝜏, 𝛾)

𝑌 (𝜏, 𝑥) = 𝜎2𝑥 ∫

𝜏

𝑡
𝑀̃2(𝑠, 𝜏)𝑑𝑠

(𝑋, 𝑡) = ∫

𝑇

𝜏=𝑡
𝐻2(𝑋, 𝜏 − 𝑡) 1

2
𝛽2

𝜎2𝑆𝛾
1

√

1 − 2𝑉𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)∕𝛾

× exp
( 2𝐴3(𝑇 − 𝜏, 𝛾) −

𝐴2
2(𝑇 − 𝜏, 𝛾)

(18)

𝛾 𝛾𝐴1(𝑇 − 𝜏, 𝛾)

4

+
𝑚2
𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)

𝛾 − 2𝑉𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)

)

𝑑𝜏

rom this, we can calculate:

𝜕𝑔
𝜕𝑋

= ∫

𝑇

𝜏=𝑡
𝐻2(𝑋, 𝜏 − 𝑡) 1

2
𝛽2

𝜎2𝑆𝛾
1

√

1 − 2𝑉𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)∕𝛾

exp

(

2
𝛾
𝐴3(𝑇 − 𝜏, 𝛾) −

𝐴2
2(𝑇 − 𝜏, 𝛾)

𝛾𝐴1(𝑇 − 𝜏, 𝛾)
+

𝑚2
𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)

𝛾 − 2𝑉𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)

)

×
(𝐴1(𝜏 − 𝑡, 𝛾∕2)𝑋(𝑡) + 𝐴2(𝜏 − 𝑡, 𝛾∕2)

𝛾∕2

+
2𝑚𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)

𝛾 − 2𝑉𝑌 (𝜏,𝑋)𝐴1(𝑇 − 𝜏, 𝛾)
𝑀̃(𝑡, 𝜏)

)

𝑑𝜏

heorem 4. Let 𝐼(0) = 𝜀. If 𝜎𝑥 < 0 then 𝐼 solves the martingale problem
6), where:

(𝑡) = 𝜀𝑍1∕𝛾 (𝑡)𝐻1(𝑋(𝑡), 𝑇 − 𝑡) + 𝜀2𝑍2∕𝛾 (𝑡)𝑆(𝑡)𝑔(𝑋(𝑡), 𝑡) + 𝑂(𝜀3)

here 𝑍(𝑡) satisfies:

𝑑𝑍
𝑍

=
(

−𝜇 +𝑋2 +
𝛽2𝑆𝐼
𝜎2𝑆

)

𝑑𝑡 −
𝛽
√

𝑆𝐼
𝜎𝑆

𝑑𝐵1 +𝑋𝑑𝐵2

𝑍(0) =

⎛

⎜

⎜

⎜

⎝

−𝐻1(𝑋(0), 𝑇 ) +
√

𝐻2
1 (𝑋(0), 𝑇 ) − 4𝜀𝑆(0)𝑔(𝑋(0), 0)((𝜀2) − 1)

2𝜀𝑆(0)𝑔(𝑋(0), 0)

⎞

⎟

⎟

⎟

⎠

𝛾

he corresponding control 𝛼∗(𝑡) = 𝛼0(𝑡) + 𝜀𝛼1(𝑡) + (𝜀2) where:

0(𝑡) =
𝑋(𝑡)
𝛾𝜎

−
𝜎𝑥
𝛾𝜎

(

𝐴1(𝑇 − 𝑡, 𝛾)𝑋(𝑡) + 𝐴2(𝑇 − 𝑡, 𝛾)
)

1(𝑡) =
𝑍1∕𝛾 (𝑡)𝑆(𝑡)

𝐻1(𝑋(𝑡), 𝑇 − 𝑡)𝜎

( 𝑔(𝑋(𝑡), 𝑡)𝑋(𝑡)
𝛾

− 𝜎𝑥
𝜕𝑔
𝜕𝑋

+𝜎𝑥
𝑔(𝑋(𝑡), 𝑡)

𝛾
(

𝐴1(𝑇 − 𝑡, 𝛾)𝑋(𝑡) + 𝐴2(𝑇 − 𝑡, 𝛾)
)

)

The proof is in Appendix D. We refer to [1] for a discussion of
0. In the moderate infection regime, the control 𝛼0 (which is the
ontrol in the low infection regime) dominates the corrections due to
ransmission of the disease. Our asymptotic expansion thus indicates
ow the optimal control should change as the pandemic progresses.
he sign of 𝛼1 is determined by the signs of 𝜎 and
𝑔(𝑋(𝑡), 𝑡)

𝛾

(

𝑋(𝑡) + 𝜎𝑥
(

𝐴1(𝑇 − 𝑡, 𝛾)𝑋(𝑡) + 𝐴2(𝑇 − 𝑡, 𝛾)
)

)

− 𝜎𝑥
𝜕𝑔
𝜕𝑋

(19)

More specifically, 𝛼1 is positive if 𝜎 and (19) are both positive or
negative. 𝛼1 is negative if one of them is positive and the other one
is negative.

It is obvious that the magnitude of both 𝑔(𝑋(𝑡), 𝑡) and 𝜕𝑔
𝜕𝑋 decrease

ith time and are equal to zero when 𝑡 = 𝑇 . Therefore, the importance
f 𝛼1 decreases as time increases.

To further discuss the sign of (19), we rewrite it by
|

|

|

|

𝑔(𝑋(𝑡), 𝑡)
𝛾

|

|

|

|

(

(

1 + |

|

𝜎𝑥𝐴1(𝑇 − 𝑡, 𝛾)|
|

)

𝑋(𝑡) + 𝑋̄
|

|

|

|

𝜎𝑥𝐴2(𝑇 − 𝑡, 𝛾)
𝑋̄

|

|

|

|

)

+ |𝜎𝑥|
𝜕𝑔
𝜕𝑋

Thus, suppose 𝜕𝑔
𝜕𝑋 , 𝑋(𝑡), and 𝑋̄ are all positive, (19) is positive, and vice

ersa. In the following cases, we provide two simple cases that we can
asily discuss the sign of 𝛼1:

• if 𝜕𝑔
𝜕𝑋 𝜎 > 0, 𝜇 − 𝜇1 > max(𝐾1(𝑡), 𝑘̄1), then 𝛼1 is positive.

• if 𝜕𝑔
𝜕𝑋 𝜎 < 0, 𝜇 − 𝜇1 < min(𝐾1(𝑡), 𝑘̄1), then 𝛼1 is negative.

In the following, we discuss the full expansion of the solution in
heorem 4. Consider equation (57) in [1]:
𝜕
𝜕𝑡

+ 𝐿1 + 𝜀𝐿2

)

𝑓 = 0

This time we use full asymptotic expansion:

𝑓 = 𝑓1 + 𝜀𝑓2 +⋯ =
∞
∑

𝑓𝑖𝜀
𝑖−1
𝑖=1
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𝛼
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5

a
c
s
p
n
i

and obtain:

0 =
( 𝜕
𝜕𝑡

+ 𝐿1

)

𝑓1 +
∞
∑

𝑖=1

(( 𝜕
𝜕𝑡

+ 𝐿1

)

𝑓𝑖+1 + 𝐿2𝑓𝑖
)

𝜀𝑖

he terms of our asymptotic expansion are thus determined by:
𝜕
𝜕𝑡

+ 𝐿1

)

𝑓1 = 0 (20)
𝜕
𝜕𝑡

+ 𝐿1

)

𝑓𝑖+1 = −𝐿2𝑓𝑖 𝑖 = 1, 2,… (21)

e use the Ansatz:

𝑖(𝑍(𝑡), 𝑋(𝑡), 𝑡) = 𝑍(𝑡)2
𝑖−1∕𝛾𝑆(𝑡)2

𝑖−1−1𝑔𝑖(𝑋(𝑡), 𝑡) 𝑖 = 1, 2,…

We have showed that 𝑔1 = 𝐻1 and 𝑔2 = 𝑔 in the proof of Theorem 4.
By the same process, we can also calculate the expressions for 𝑔3, 𝑔4,…
in the sequel.

4.2. Constant treatment rate

The problem is:

supE
[

−
𝐼(𝑇 )1−𝛾

1 − 𝛾
]

𝑑𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡 + 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡)

𝑑𝐼(𝑡) = (𝑟 + 𝛼(𝑡)(𝑏 − 𝑟))𝐼(𝑡)𝑑𝑡 + 𝛼(𝑡)𝜎𝐼(𝑡)𝑑𝐵2(𝑡) − 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡)

(22)

The HJB equation of this problem is obtained by simplifying (6),
i.e., making the value function independent from 𝑋. Let 𝜏 = 𝑇 − 𝑡,
the solution kernels ℎ𝑖(𝜏) for 𝑖 = 1, 2,… are given by:

ℎ𝑖(𝜏) = exp
( 2𝑖−1

𝛾

(𝑎𝑖,1
2

( 𝑏 − 𝑟
𝜎

)2 + 𝑎𝑖,2
)

𝜏
)

(23)

here

𝑖,1 =
1 − 𝛾∕2𝑖−1

𝛾∕2𝑖−1
(24)

𝑎𝑖,2 = (𝛾∕2𝑖−1 − 1)𝜇 (25)

Theorem 5. Let 𝐼(0) = 𝜀, then 𝐼 solves the martingale problem (6), where:

(𝑡) =
∞
∑

𝑖=1
𝑍(𝑡)2

𝑖−1∕𝛾𝑆(𝑡)2
𝑖−1−1𝑔𝑖(𝑡)𝜀𝑖

here 𝑔1(𝑡) = ℎ1(𝑇 − 𝑡), 𝑔𝑖(𝑡), 𝑖 > 1 can be obtained by (47), and 𝑍(𝑡)
satisfies:

𝑑𝑍
𝑍

=
(

−𝜇 +
( 𝑏 − 𝑟

𝜎
)2 +

𝛽2𝑆𝐼
𝜎2𝑆

)

𝑑𝑡 −
𝛽
√

𝑆𝐼
𝜎𝑆

𝑑𝐵1 +
𝑏 − 𝑟
𝜎

𝑑𝐵2

1 =
∞
∑

𝑖=1
𝑍(0)2

𝑖−1∕𝛾𝑆(0)2
𝑖−1−1𝑔𝑖(0)𝜀𝑖−1

he corresponding control 𝛼∗(𝑡) is equal to 𝛼0(𝑡)+𝜀𝛼1(𝑡)+(𝜀2), where 𝛼0(𝑡)
nd 𝛼1(𝑡) are equal to

0 =
𝑏 − 𝑟
𝛾𝜎2

𝛼1 =
𝑍1∕𝛾 (𝑡)𝑆(𝑡)𝑔2(𝑡)

ℎ1(𝑇 − 𝑡)
𝑏 − 𝑟
𝛾𝜎2

The proof is in Appendix E, where we also provide a formula for 𝑔3.
Observe that

𝑔2(𝑡) =
𝛽2

2𝜎2𝑆

ℎ2(𝑇 − 𝑡) − ℎ21(𝑇 − 𝑡)
( 𝑏−𝑟

𝜎

)2(𝑎1,1 − 𝑎2,1) + 2(𝑎1,2 − 𝑎2,2)

=
𝛽2

2𝜎2𝑆

ℎ2(𝑇 − 𝑡) − ℎ21(𝑇 − 𝑡)

𝛾𝜇 −
( 𝑏−𝑟

𝜎

)2∕𝛾

is always positive because the signs of ℎ2(𝑇 − 𝑡) − ℎ21(𝑇 − 𝑡) and 𝛾𝜇 −
𝑏−𝑟
𝜎

)2∕𝛾 are the same. The signs of 𝛼0 and 𝛼1 are determined by the
ign of 𝑟−𝑏 .
𝜎2

5

Table 1
Parameters.

Treatment parameter Symbol Value

Death rate/no treatment 𝜇0 0.0575
Death rate 𝜇1 0.0575
Recovery rate/no treatment 𝐾0 0.2559
Recovery rate at time 0 𝐾1(0) 0.2559
Long run value of recovery rate 𝑘̄1 0.4612
Volatility of the measurement of today’s recovery rate 𝜎 0.4418
Volatility of changes in the recovery rate 𝜎𝑘 −1.1647
Speed of mean-reversion of the recovery rate 𝜆𝑘 0.7692
Transmission rate 𝛽 0.025
Proportion of infected at time 0 𝜀 0.01
Time step 𝛥𝑡 0.001
Volatility of the measurement of today’s susceptible rate 𝜎𝑆 2.17

5. Application to COVID-19

We use the same weekly US COVID-19 data from June 7, 2020 to
November 1, 2020 as in [1, Sec. 5.1] and the parameters in Table 1 are
estimated using the COVID-19 data set. In the following, we show both
simulation plots and one scenario real data plots under low infection
regime with constant treatment, low infection regime with OU treat-
ment, moderate infection regime with constant treatment, moderate
infection regime with OU treatment, respectively. We compare three
types of treatment:

• no control, i.e., 𝛼(𝑡) = 0.
• full control, i.e., 𝛼(𝑡) = 1.
• optimal control, i.e. the control from Theorems 2, 3, 4, 5.

he Github repository for implementing the models and generating the
lots can be found at https://github.com/yujiading/optimal-control-
ir-model.

.1. Simulations

In Figs. 2, 3, 4, and 5 we use the Euler scheme to simulate 1, 000, 000
cenarios using the parameters in Table 1 and calculate the expected
alues of 𝐼(𝑇 ) and utility of 𝐼(𝑇 ) for each regime. The risk-aversion
arameters 𝛾 that are considered are between −0.5 and −5. In all the
egimes, the expected utility of our control is higher than full control
nd no control, as expected. This effect is more pronounced in the low
nfection than in the moderate infection regime. When 𝛾 becomes more
egative, the expected utility of no control is higher than that of full
ontrol. This is because when 𝛾 becomes more negative, the decision-
aker becomes more risk averse and trades off expected value of 𝐼(𝑇 )

gainst dispersion of 𝐼(𝑇 ). In the low infection regime, the expected
umber of infected is lower with full control than with no control, as
xpected, and, with the optimal control, it depends on the level of risk-
version, as expected. When treatment is risky the more risk-averse a
ecision maker, the less he or she is likely to invest in treatment.

.2. One scenario real data

In Fig. 6, we use the one scenario COVID-19 data as introduced
bove to plot the infections with optimal control, full control, and no
ontrol for each of the regimes. We can see that as gamma varies,
ome plots show contrafactual results. In fact, it is possible for a
articular scenario to result in a better or worse outcome. This does
ot contradict our theoretical results, as in stochastic control the goal
s not to optimize a single scenario.

https://github.com/yujiading/optimal-control-sir-model
https://github.com/yujiading/optimal-control-sir-model
https://github.com/yujiading/optimal-control-sir-model
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Fig. 2. Expected infection and expected utility of optimal control, full control, and no control of low infection regime with constant treatment. Using 1, 000, 000 simulation scenarios.
6. Conclusion

We showed that a stochastic optimal control approach enables to
more efficiently use treatment in an pandemic such as COVID-19. On
a theoretical level, we show that, in a first approximation, the control
does not depend on the transmission of the pandemic, i.e., the control
in the moderate infection regime resembles the control in the low
infection regime. The influence of key parameters of the problems,
namely risk-aversion and volatility, are clearly demonstrated in our
formulas. On a practical level, we show that an optimal control would
have been better than a full control, had it been available in the low
infection regime which we experienced in summer 2020 in the US for
COVID-19. However the relative poor efficiency of the treatment that
we experienced then would have translated into a poor performance of
any type of control, had the pandemic moved into a moderate infection
regime. In that regime, the influence of the type of control would have
turned out not to be significant.
6

In the Mayer problem, which we study here, the control depends
significantly on the horizon. The study of the full Bolza problem
remains to be done. Many other interesting problems remain to be
solved. For instance, we showed optimality of the constrained control
only in the constant, low infection regime case. Verification theorems
need to be worked out in the multiple treatment case or the Ornstein–
Uhlenbeck case. Optimal vaccination is another area where we believe
a similar asymptotic approach can be used. Finally, Bertozzi et al.
[20] use Hawkes processes to model COVID-19. The control of Hawkes
processes remains a largely open problem that deserves attention, in
particular for its application to epidemiology.
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Fig. 3. Expected infection and expected utility of optimal control, full control, and no control of low infection regime with OU treatment. Using 1, 000, 000 simulation scenarios.
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Appendix A. Proof of Theorem 1

We follow the proof in [16, Prop. 2.13, Sec. 5.2]. They consider the
one-dimensional case. Let ℎ ∶ [0,∞) → [0,∞) be a strictly increasing
function with ℎ(0) and

∫(0,𝜀)
ℎ−2(𝑢) = ∞, ∀𝜀 > 0 (26)

In our case, we take ℎ(𝑥) = 𝑥. Because of (26), there exists a strictly
decreasing sequence {𝑎𝑛} ⊂ (0, 1] with 𝑎0 and lim𝑛→∞ 𝑎𝑛 = 0 such that
∫ 𝑎𝑛−1
𝑎𝑛

ℎ−2(𝑢)𝑑𝑢 = 𝑛. For every 𝑛 there exists continuous function 𝜌𝑛 on
R with support on (𝑎𝑛, 𝑎𝑛−1) so that

0 ≤ 𝜌𝑛(𝑥) ≤
2

𝑛ℎ(𝑥)
, 𝑥 > 0

nd ∫ 𝑎𝑛
𝑎𝑛−1

𝜌𝑛(𝑢)𝑑𝑢 = 1. Then the function

𝑛(𝑥) =
|𝑥| 𝑦

𝜌𝑛(𝑢)𝑑𝑢𝑑𝑦
∫0 ∫0

7

s even and twice continuously differentiable, with |𝛹 ′
𝑛(𝑥)| ≤ 1 and

im𝑛→∞ 𝛹𝑛(𝑥) = |𝑥|. Suppose there are two strong solutions (𝐼 (1), 𝑆(1))
and (𝐼 (2), 𝑆(2)),

(𝐼 (1) − 𝐼 (2) − E[𝐼 (1) − 𝐼 (2)]) − 𝛼𝜎(𝐼 (1) − 𝐼 (2))𝑑𝐵2

= −𝜎𝑆
(√

𝑆(1)𝐼 (1) −
√

𝑆(2)𝐼 (2)
)

𝑑𝐵1

= −𝑑(𝑆(1) − 𝑆(2) − E[𝑆(1) − 𝑆(2)])

o that

𝑑(𝐼 (1) − 𝐼 (2)))2 < 𝜎2𝑆 (𝑆
(1)𝐼 (1) − 𝑆(2)𝐼 (2))𝑑𝑡 + (𝛼𝜎)2(𝐼 (1) − 𝐼 (2))2𝑑𝑡

𝑑(𝑆(1) − 𝑆(2)))2 < 𝜎2𝑆 (𝑆
(1)𝐼 (1) − 𝑆(2)𝐼 (2))𝑑𝑡

((𝐼 (1) − 𝐼 (2))(𝑆(1) − 𝑆(2))) < −𝜎2𝑆 (𝑆
(1)𝐼 (1) − 𝑆(2)𝐼 (2))𝑑𝑡

hus, since |𝛹 ′
𝑛| < 1,

[𝑑𝛹𝑛(𝐼
(1)
𝑡 − 𝐼 (2)𝑡 ) + 𝑑𝛹𝑛(𝑆

(1)
𝑡 − 𝑆(2)

𝑡 )]

= E[𝛹 ′(𝐼 (1) − 𝐼 (2))(𝑑(𝐼 (1) − 𝐼 (2))) + 𝛹 ′(𝑆(1) − 𝑆(2))(𝑑(𝑆(1) − 𝑆(2)))]
𝑛 𝑡 𝑡 𝑛 𝑡 𝑡
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Fig. 4. Expected infection and expected utility of optimal control, full control, and no control of moderate infection regime with constant treatment. Using 1, 000, 000 simulation
cenarios.
S

+ 1
2
E[𝛹 ′′

𝑛 (𝐼
(1)
𝑡 − 𝐼 (2)𝑡 )(𝑑(𝐼 (1) − 𝐼 (2)))2]

+ 1
2
E[𝛹 ′′

𝑛 (𝑆
(1)
𝑡 − 𝑆(2)

𝑡 )(𝑑(𝑆(1) − 𝑆(2)))2]

≤ E[2|𝛽||𝑆(1)𝐼 (1) − 𝑆(2)𝐼 (2)|𝑑𝑡 + |𝐷||𝐼 (1) − 𝐼 (2)|𝑑𝑡]

+ 1
2
E[𝛹 ′′

𝑛 (𝐼
(1)
𝑡 − 𝐼 (2)𝑡 )𝜎2𝑆 (𝑆

(1)𝐼 (1) − 𝑆(2)𝐼 (2))𝑑𝑡]

+ 1
2
E[𝛹 ′′

𝑛 (𝑆
(1)
𝑡 − 𝑆(2)

𝑡 )𝜎2𝑆 (𝑆
(1)𝐼 (1) − 𝑆(2)𝐼 (2))𝑑𝑡]

+ 1
2
E[𝛹 ′′

𝑛 (𝐼
(1)
𝑡 − 𝐼 (2)𝑡 )(𝛼𝜎)2(𝐼 (1) − 𝐼 (2))2]𝑑𝑡

where

𝐷 = −(𝐾0 + 𝜇0) + 𝛼(𝐾0 −𝐾1 + 𝜇0 − 𝜇1)

Observe that:

𝑆(1)𝐼 (1) − 𝑆(2)𝐼 (2) = 𝑆(1)(𝐼 (1) − 𝐼 (2)) + 𝐼 (2)(𝑆(1) − 𝑆(2))

< |𝐼 (1) − 𝐼 (2)| + |𝑆(1) − 𝑆(2)
|
 E

8

Since 𝛹 ′′
𝑛 < 2∕𝑛ℎ and ℎ is positive,

(

𝛹 ′′
𝑛 (𝐼

(1)
𝑡 − 𝐼 (2)𝑡 ) + 𝛹 ′′

𝑛 (𝑆
(1)
𝑡 − 𝑆(2)

𝑡 )
)

(

𝑆(1)𝐼 (1) − 𝑆(2)𝐼 (2)
)

< 2
𝑛

(

1
ℎ(|𝐼 (1) − 𝐼 (2)|)

+ 1
ℎ(|𝑆(1) − 𝑆(2)

|)

)

(|𝐼 (1) − 𝐼 (2)| + |𝑆(1) − 𝑆(2)
|)

< 2
𝑛

(

|𝐼 (1) − 𝐼 (2)|
ℎ(|𝐼 (1) − 𝐼 (2)|)

+
|𝑆(1) − 𝑆(2)

|

ℎ(|𝑆(1) − 𝑆(2)
|)

)

Taking ℎ(𝑥) = 𝑥 results in

E[𝑑𝛹𝑛(𝐼
(1)
𝑡 − 𝐼 (2)𝑡 ) + 𝑑𝛹𝑛(𝑆

(1)
𝑡 − 𝑆(2)

𝑡 )]

<
(

E[(2|𝛽| + |𝐷|)|𝐼 (1) − 𝐼 (2)|] + E[2|𝛽||𝑆(1) − 𝑆(2)
|]

+
2𝜎2𝑆
𝑛

+
(𝛼𝜎)2

2
E[|𝐼 (1) − 𝐼 (2)|]

)

𝑑𝑡

ince lim𝑛→∞ 𝛹𝑛(𝑥) = |𝑥|,

[|𝐼 (1) − 𝐼 (2)| + |𝑆(1) − 𝑆(2)
|]
𝑡 𝑡 𝑡 𝑡
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Fig. 5. Expected infection and expected utility of optimal control, full control, and no control of moderate infection regime with OU treatment. Using 1, 000, 000 simulation
cenarios.
a

A

u
W
m
a
e
s

< ∫

𝑡

0
E[(2|𝛽| + |𝐷𝑠|)|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |] + E[2|𝛽||𝑆(1)

𝑠 − 𝑆(2)
𝑠 |]

+
(𝛼𝑠𝜎)2

2
E[|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |]𝑑𝑠

But,

E[(2|𝛽| + |𝐷𝑠|)|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |] <
√

E[(2|𝛽| + |𝐷𝑠|)2]
√

E[|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |

2
]

ince |𝐼 (1)𝑠 − 𝐼 (2)𝑠 | < 1, E[(𝐼 (1)𝑠 − 𝐼 (2)𝑠 )2] < 1 and
√

E[(𝐼 (1)𝑠 − 𝐼 (2)𝑠 )2] <
[|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |] thus

[|𝐼 (1)𝑡 − 𝐼 (2)𝑡 | + |𝑆(1)
𝑡 − 𝑆(2)

𝑡 |]

< ∫

𝑡

0

(
√

E[(2|𝛽| + |𝐷𝑠|)2] +
(𝛼𝜎)2

2

)

E[|𝐼 (1)𝑠 − 𝐼 (2)𝑠 |]

+ 2|𝛽|E[|𝑆(1)
𝑠 − 𝑆(2)

𝑠 |]𝑑𝑠

<
𝑡
max

(
√

E[(2|𝛽| + |𝐷𝑠|)2] +
(𝛼𝜎)2

, 2|𝛽|
)

∫0 2 o

9

× E[|𝐼 (1)𝑠 − 𝐼 (2)𝑠 | + |𝑆(1)
𝑠 − 𝑆(2)

𝑠 |]𝑑𝑠

nd local uniqueness follows by Gronwall’s inequality.

ppendix B. Proof of Theorem 2

We refer to the problem treated by Gatto and Schellhorn [1] as the
nconstrained problem. Indeed, in that problem 𝛼 was not constrained.
e refer to our problem as the constrained problem. We follow the
ethod of proof in [19], referred to hereafter as CK. They introduce

uxiliary problems, which are unconstrained. They show that there
xists an auxiliary problem which solution can be used to construct the
olution of the original constrained problem. We follow the numbering
f the sections in CK in order to ease understanding.
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Fig. 6. Infection of optimal control, full control, and no control of low infection regime with constant treatment, low infection regime with OU treatment, moderate infection
egime with constant treatment, and moderate infection regime with OU treatment. Using real COVID-19 data.
K Section 2. The model. To ease the correspondence with the CK
aper, we define 𝑏 − 𝑟 = 𝐾0 + 𝜇0 − 𝜇1 − 𝑘̄1, 𝜃 ∶= (𝑏 − 𝑟)∕𝜎, and

(0)(𝑡) = exp(−𝑟𝑡) exp
(

−∫

𝑡

0
𝜃𝑑𝐵2(𝑠) −

1
2 ∫

𝑡

0
𝜃2𝑑𝑠

)

Observe that E[∫ 𝑡
0 𝜃2𝑑𝑠] < ∞.

CK Section 3. Portfolio and consumption processes. Define:

𝐵(0)
2 (𝑡) = 𝐵2(𝑡) + ∫

𝑡

0
𝜃𝑑𝑠

Denote by 𝐼 𝑖,𝛼 the infected process subject to 𝐼(0) = 𝑖 and control
𝛼. It is admissible if

0 ≤ 𝐼 𝑖,𝛼(𝑡) ≤ 1 ∀ 0 ≤ 𝑡 ≤ 𝑇

The set of admissible 𝛼 is denoted 0(𝑖). Note that (See (3.5) in CK)

𝐻 (0)(𝑡)𝐼(𝑡) = 𝑖 +
𝑡
𝐻 (0)(𝑠)𝐼(𝑠)(𝛼(𝑠)𝜎 − 𝜃)𝑑𝐵2(𝑠)
∫0

10
CK Section 4. Convex sets and their support functions. The difference
between CK and this paper is that our objective is to minimize. This
means that the key relation between our auxiliary infected and infected
is reversed compared to the first equation in CK. Indeed if 𝛼𝜈 solves the
auxiliary problem and 𝛼 the original problem, we must have:

𝐼 𝑖,𝛼𝜈𝜈 (𝑡) ≤ 𝐼 𝑖,𝛼(𝑡)

Define

𝛿(𝜈) =
{

0 𝜈 < 0
𝜈 𝜈 > 0

(27)

It is subadditive:

𝛿(𝜆 + 𝜈) ≤ 𝛿(𝜆) + 𝛿(𝜈) (28)

CK Section 5. Utility functions. The main difference between our utility
functions and the utility functions in financial economics is that our
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utility functions are decreasing for positive arguments. Recall indeed
that our utility function is, for 𝛾 < 0:

𝑈 (𝑖) = − 𝑖1−𝛾

1 − 𝛾

Since

𝑈 ′(𝑖) = −𝑖−𝛾

e have lim𝑖→∞ 𝑈 ′(𝑖) = −∞ and lim𝑖→0 𝑈 ′(𝑖) = 0, again for 𝛾 < 0.
This is unlike CK and [21] who consider the case 0 < 𝛾 < 1 with
utility of wealth 𝑈2(𝑥) = 𝑥1−𝛾

1−𝛾 . In their case, lim𝑥→∞ 𝑈 ′
2(𝑥) = 0 and

im𝑥→0 𝑈 ′
2(𝑥) = ∞.

We define 𝐼2 to be the inverse of 𝑈 ′, with 𝐼2(𝑦) on 𝑦 ≤ 0. By
traightforward calculations:

2(𝑦) = (−𝑦)−1∕𝛾

We also define the Legendre–Fenchel dual

̃ (𝑦) = max
𝑥>0

[𝑈 (𝑥) − 𝑥𝑦] = 𝑈 (𝐼2(𝑦)) − 𝑦𝐼2(𝑦)

This function satisfies:

𝑈̃ ′(𝑦) = −𝐼2(𝑦) 𝑦 ≤ 0

CK Section 6. The constrained and unconstrained optimization problems.
We define:

′(𝑖) = {𝛼 ∈ 0(𝑖)|0 ≤ 𝛼 ≤ 1}

The supremum of the unconstrained problem is denoted by 𝑉0, while
the supremum of the constrained problem is denoted by 𝑉 , namely:

𝑉0(𝑖) = sup
𝛼∈0(𝑖)

E[𝑈 (𝐼 𝑖,𝛼(𝑇 ))|𝐼(0) = 𝑖]

𝑉 (𝑖) = sup
𝛼∈′(𝑖)

E[𝑈 (𝐼 𝑖,𝛼(𝑇 ))|𝐼(0) = 𝑖]

CK Section 7. Solution of the unconstrained problem. We note that the
expectation

0(𝑦) ≡ E[𝐻 (0)(𝑇 )𝐼2(𝑦𝐻 (0)(𝑇 ))]

is finite for every 𝑦 ∈ (−∞, 0]. We define its inverse 0:

0(0(𝑦)) = 𝑦

The solution of the unconstrained problem is well-known, and equal to:

𝛼(𝑠) = 𝜃
𝜎𝛾

= 𝑟 − 𝑏
𝜎2|𝛾|

CK Section 8. Auxiliary unconstrained optimization problems. Recall 𝛿(𝜈)
in (27). It is easily seen that:

𝛼𝜈 − 𝛿(𝜈) =
{

𝛼𝜈 𝜈 < 0
(𝛼 − 1)𝜈 𝜈 > 0

}

≤ 0

e introduce a new process 𝐼 (𝜈) by:

𝑑𝐼 (𝜈)(𝑡)
𝐼 (𝜈)(𝑡)

= (𝑟 + 𝛼(𝑡)𝜈(𝑡) − 𝛿(𝜈(𝑡)))𝑑𝑡 + 𝛼(𝑡)𝜎𝑑𝐵(0)
2 (𝑡)

Likewise we introduce

𝜃(𝜈) = 𝜃 + 𝜈∕𝜎

𝐵(𝜈)(𝑡) = 𝐵2(𝑡) + ∫

𝑡

0
𝜃(𝜈)(𝑠)𝑑𝑠

𝐻 (𝜈)(𝑡) = exp
(

−𝑟𝑡 + ∫

𝑡

0
𝛿(𝜈(𝑠))𝑑𝑠

)


(

−∫

𝑡

0
𝜃(𝜈)(𝑠)𝑑𝐵2(𝑠)

)


(

−∫

𝑡

0
𝜃(𝜈)(𝑠)𝑑𝐵2(𝑠)

)

≡ exp
(

−∫

𝑡

0
𝜃(𝜈)(𝑠)𝑑𝐵2(𝑠) −

1
2 ∫

𝑡

0
(𝜃(𝜈)(𝑠))2𝑑𝑠

)

We denote by ′
𝜈 (𝑖) the class of 𝛼 for which

𝐼 𝑖,𝛼(𝑡) ≤ 1
𝜈

11
Since the solution of our dual problem will have 𝛼(𝑡)𝜈(𝑡)−𝛿(𝜈(𝑡)) ≤ 0,
learly ′(𝑖) ⊂ ′

𝜈 (𝑖). We define:

𝜈 (𝑖) = sup
𝜋∈′

𝜈 (𝑖)
E[𝑈 (𝐼 𝑖,𝛼(𝑇 ))]

𝜈(𝑦) ≡ E[𝐻 (𝜈)(𝑇 )𝐼2(𝑦𝐻 (𝜈)(𝑇 ))]

We define a class of progressively measurable processes 𝜈 in R by:

′ =
{

𝜈;E∫

𝑇

0
𝛿(𝜈(𝑡))𝑑𝑡 ≤ ∞,E∫ 𝜈2(𝑡)𝑑𝑡 < ∞,𝜈 (𝑦) < ∞, 𝑦 ∈ (−∞, 0]

}

Proposition 8.3. in CK shows that, if for some 𝜆 ∈ ′ the corre-
ponding control 𝛼𝜆 is optimal for the auxiliary optimization problem
nd if

𝛿(𝜆) + 𝛼𝜆(𝑡)𝜆(𝑡) = 0

hen 𝛼 ∈ ′(𝑖) and is optimal for the constrained problem.
The solution of the unconstrained problem is:

(𝑠) = 𝜃(𝜈)

𝜎𝛾
=

𝜃 + 𝜈∕𝜎
𝜎𝛾

= 𝑟 − 𝑏 − 𝜈
𝜎2|𝛾|

(29)

CK Section 9. Contingent claims attainable by constrained portfolios. We
sketch the proof of Theorem 9.1 in CK, as the signs are different, and
the structure of the control is slightly different.

CK 9.1 Theorem. Let 𝐵 be a positive 𝑇 -measurable random variable and
suppose there is a process 𝜆 ∈ ′ such that, for all 𝜈 ∈ ′

E[𝐻 (𝜈)(𝑇 )𝐵] ≤ E[𝐻 (𝜆)(𝑇 )𝐵] ∶= 𝑖 (30)

Then there exists a control 𝛼 ∈ ′(𝑖) such that 𝐼 𝑖,𝛼 = 𝐵.

Sketch of Proof. See CK p.782 for a definition of the stopping time
𝜏𝑛. By (30) and subadditivity of 𝛿(28):

0 ≤ lim
𝜀↓0

sup 1
𝜀
E[(𝐻 (𝜆)(𝑇 ) −𝐻 (𝜆+𝜀(𝜈−𝜆))(𝑇 ))𝐵]

= lim
𝜀↓0

sup 1
𝜀
E
[

𝐻 (𝜆)(𝑇 )𝐵
(

1 − exp
(

∫

𝑇∧𝜏𝑛

0
(𝛿(𝜆(𝑡) + 𝜀(𝜈(𝑡) − 𝜆(𝑡))) − 𝛿(𝜆(𝑡))) 𝑑𝑡

× 
(

∫

𝑇∧𝜏𝑛

0
(−𝜃(𝜆)(𝑡) + 𝜃(𝜆+𝜀(𝜈−𝜆))(𝑡))𝑑𝐵(𝜆)

2 (𝑡)
)

))]

≤ lim
𝜀↓0

supE
[

𝐻 (𝜆)(𝑇 )𝐵(𝐿𝑇 +𝑁𝑇 )
]

here

̆(𝜈)(𝜆(𝑡)) =
{

𝛿(𝜆(𝑡)) 𝜈 = 0
−𝛿(𝜈(𝑡) − 𝜆(𝑡)) otherwise

𝑇 = ∫

𝑇∧𝜏𝑛

0
𝛿(𝜈)(𝜆(𝑡))𝑑𝑡

𝑇 = ∫

𝑇∧𝜏𝑛

0

𝜈(𝑡) − 𝜆(𝑡)
𝜎

𝑑𝐵(𝜆)
2 (𝑡)

By Ito’s lemma.

[𝐻 (𝜆)(𝑡)𝐼(𝑡)(𝐿𝑡 +𝑁𝑡)] = 𝐼(𝑡)𝐻 (𝜆)(𝑡)𝑑(𝐿𝑡 +𝑁𝑡)

+ (𝐿𝑡 +𝑁𝑡)𝐻 (𝜆)(𝑡)𝐼(𝑡)𝛼(𝑡)𝜎𝑑𝐵(𝜆)
2 (𝑡) + 𝐼(𝑡)𝐻 (𝜆)(𝑡)𝛼(𝑡)(𝜈(𝑡) − 𝜆(𝑡))𝑑𝑡

hich implies
(𝜆)(𝑇 )𝐼(𝑇 )(𝐿𝑇 +𝑁𝑇 )

∫

𝜏𝑛

0
𝐼(𝑡)𝐻 (𝜆)(𝑡)

( 𝜈(𝑡) − 𝜆(𝑡)
𝜎

+ (𝐿𝑡 +𝑁𝑡)𝜎𝛼(𝑡)
)

𝑑𝐵(𝜆)
2 (𝑡)

+ ∫

𝜏𝑛

0
𝐻 (𝜆)(𝑡)𝐼(𝑡)

(

𝛼(𝑡)(𝜈(𝑡) − 𝜆(𝑡))𝑑𝑡 + 𝑑𝐿𝑡

)

herefore,

≤ E[𝐻 (𝜆)(𝑇 )𝐵(𝐿𝑇 +𝑁𝑇 )] = E
[ 𝜏𝑛

𝐻 (𝜆)(𝑡)𝐼(𝑡)
(

𝛼(𝑡)(𝜈(𝑡)−𝜆(𝑡))𝑑𝑡+𝑑𝐿𝑡

)]
∫0
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×

It is easy to see that, for any 𝜌 ∈ ′, take 𝜈 = 𝜆 + 𝜌:

−𝛿(𝜌(𝑡)) + 𝛼(𝑡)𝜌(𝑡) ≥ 0 (31)

and, taking 𝜈(𝑡) = 0, we obtain:

−𝛿(𝜆(𝑡)) + 𝛼(𝑡)𝜆(𝑡) ≤ 0

which together with (31) for 𝜌 = 𝜆 yields:

−𝛿(𝜆(𝑡)) + 𝛼(𝑡)𝜆(𝑡) = 0 □

CK Section 10. Equivalent optimality conditions. The most important
implication to prove is (D) ⇒ (B) ⇒ (A) in CK. It shows that the solution
of the dual problem solves the auxiliary problem, and that, moreover, it
is feasible and optimal for the original constrained problem. We make
it more explicit here.

(Part of) CK 10.1 Theorem. Suppose that for every 𝜈 ∈ ′,

E[𝑈̃ (𝜆(𝑖)𝐻 (𝜆)(𝑇 ))] ≤ E[𝑈̃ (𝜆(𝑖)𝐻 (𝜈)(𝑇 ))] (32)

then there exists a control 𝛼𝜆 ∈ [0, 1] that is optimal for the constrained
problem 𝑉𝜆(𝑖) = E[𝑈 (𝐼 𝑖,𝛼𝜆 (𝑇 ))] and such that

𝑉𝜆(𝑖) = 𝑉 (𝑖)

Proof.

E[𝑈̃ (𝜆(𝑖)𝐻 (𝜆)(𝑇 ))] ≤ E[𝑈̃ (𝜆(𝑖)𝐻 (𝜆+𝜀(𝜈−𝜆))(𝑇 ))]

Since 𝑈̃ ′(𝑦) = −𝐼2(𝑦),

0 ≤ lim
𝜀↓0

sup 1
𝜀
E[𝑈̃ (𝜆(𝑖)𝐻 (𝜆+𝜀(𝜈−𝜆))(𝑇 )) − 𝑈̃ (𝜆(𝑖)𝐻 (𝜆)(𝑇 ))]

= 𝜆(𝑖) lim𝜀↓0
sup 1

𝜀
E[𝐼2(𝜆(𝑖)𝐻 (𝜆)(𝑇 ))(𝐻 (𝜆)(𝑇 ) −𝐻 (𝜆+𝜀(𝜈−𝜆))(𝑇 ))]

By Theorem 9.1 there exists a control 𝛼𝜆 ∈ ′
𝜆(𝑖) such that:

𝐼 𝑖,𝛼𝜆 (𝑇 ) = 𝐼2(𝜆(𝑖)𝐻𝜆(𝑇 ))

Clearly 𝛼𝜆 is optimal for the constrained problem, and

−𝛿(𝜆) + 𝛼𝜆(𝑡)𝜆(𝑡) = 0

Thus by proposition 8.3, 𝛼𝜆 is optimal for the constrained problem. □

CK Section 12. A dual problem. Define:

𝑉 (𝑦) = inf
𝜈∈′

E[𝑈̃ (𝑦𝐻𝜈 (𝑇 ))]

In our case,

𝑈̃ (𝑦) = max
𝑥>0

[

− 𝑥1−𝛾

1 − 𝛾
− 𝑥𝑦

]

hus

= 𝑈 ′(𝑥) = −𝑥−𝛾 ⟹ 𝐼2(𝑦) = (−𝑦)−1∕𝛾

Let 𝜌 = (1 − 𝛾)∕𝛾. Then:

𝑈̃ (𝑦) = −(−𝑦)−𝜌∕𝜌

Typically, 𝛾 = −1, so that:

𝑈̃ (𝑦) = 𝑦2∕2

The main problem in condition (32) is to find the optimal process
𝐻 (𝜆) (across all 𝐻 (𝜈)) but it depends on 𝑦 which depends on 𝜆. Thus the
dual must be fixed for a fixed but arbitrary real number 𝑦. The objective
has the form

E[𝑈̃ (𝑦𝐻 (𝜈)(𝑇 ))] = E[𝑈 (𝐼2(𝑦𝐻 (𝜈)(𝑇 ))) − 𝑦𝐻 (𝜈)(𝑇 )𝐼2(𝑦𝐻 (𝜈)(𝑇 ))]

The right hand-side of the equation (see [22, p.134]) is the max-
imum of the function ℎ(𝐵, 𝑦) ∶= 𝐿(𝐵, 𝑦) for all non-negative 𝑇 mea-
surable 𝐵 with E[𝐻 (𝜈)(𝑇 )𝐵] ≤ 𝑖. Thus a minimization over all positive
numbers 𝑦 of ℎ(𝐵, 𝑦) would yield the optimal utility of the uncon-
strained problem. We could thus first minimize E[𝑈̃ (𝑦𝐻 (𝜈)(𝑇 ))] in 𝑦, and
then minimize over 𝜈. However, the main idea is to first minimize over
𝜇, and then minimize over 𝑦, hoping that the two can be interchanged.
12
CK 12.1 Proposition. Suppose that for any 𝑦 there exists 𝜆𝑦 such that
𝑉 (𝑦) = E[𝑈̃ (𝑦𝐻 (𝜆𝑦 ) (𝑇 ))]. Then there exist an 𝛼 ∈ ′(𝑖) with 𝑖 = 𝜆𝑦(𝑦)
which is optimal for the primal problem, and we have:

𝑉 (𝑦) = sup
𝑖
[𝑉 (𝑖) − 𝑖𝑦]

Proof. Write 𝜆 for 𝜆𝜆(𝑖). Then

E[𝑈̃ (𝜆(𝑖)𝐻 (𝜆)(𝑇 ))] ≤ E[𝑈̃ (𝜆(𝑖)𝐻 (𝜈)(𝑇 ))]

and we conclude by CK Theorem 10.1. □

CK Section 15. Deterministic coefficients and feedback formulae. Define:

𝑄(𝑦, 𝑡) = E[𝑈̃ (𝑦𝐻 (𝜈)(𝑇 ))|𝑦𝐻 (𝜈)(𝑡) = 𝑦]

ecall
𝑑𝐻 (𝜈)

𝐻 (𝜈)
= (−𝑟 + 𝛿(𝜈))𝑑𝑡 − (𝜃 + 𝜈∕𝜎)𝑑𝐵2

The HJB equation is:

min
𝜈

1
2
𝑦2(𝜃 + 𝜈∕𝜎)2𝑄𝑦𝑦 + 𝑦(−𝑟 + 𝛿(𝜈))𝑄𝑦 +𝑄𝑡 = 0

𝑄(𝑇 , 𝑦) = 𝑈̃ (𝑦) = −
(−𝑦)−𝜌

𝜌

Again, with 𝜌 = (1 − 𝛾)∕𝛾 < 0. We choose

𝑄(𝑦, 𝑡) = −1
𝜌
(−𝑦)−𝜌𝑣(𝑡)

hus
1
2
𝑦2(𝜃 + 𝜈∕𝜎)2𝑄𝑦𝑦 + 𝑦(−𝑟 + 𝛿(𝜈))𝑄𝑦

= −1
2
(𝜌 + 1)(−𝑦)−𝜌𝑣(𝑡)(𝜃 + 𝜈∕𝜎)2 + (−𝑟 + 𝛿(𝜈))(−𝑦)−𝜌𝑣(𝑡)

ividing by (−𝑦)−𝜌𝑣(𝑡), the problem becomes:

rgmin
𝜈

−
1 + 𝜌
2

(𝜃 + 𝜈∕𝜎)2 + 𝛿(𝜈) (33)

ecall that if 𝜈 is positive, then 𝛿(𝜈) = 𝜈 thus we solve (33) and obtain

= 𝜎2

1 + 𝜌
+ 𝑟 − 𝑏 = −𝜎2|𝛾| + 𝑟 − 𝑏

ince 1 + 𝜌 = 1∕𝛾 and 𝛾 is negative. If 𝜈 is negative, then 𝛿(𝜈) = 0, thus
= 𝑟 − 𝑏.

From (29), the solution is

(𝑠) = 𝑟 − 𝑏 − 𝜈
𝜎2|𝛾|

= min
(

1,max
(

0, 𝑟 − 𝑏
𝜎2|𝛾|

))

uppose 𝜇0 = 𝜇1 and treatment is better than no treatment 𝑘̄1 > 𝐾0.
Thus 𝑟 − 𝑏 = 𝑘̄1 −𝐾0 is positive. Thus

𝛼(𝑠) = min
(

1,max
(

0,
𝑘̄1 −𝐾0

𝜎2|𝛾|

))

Appendix C. Explicit formula of 𝑨𝟑(𝝉, 𝜸) in (14)

3(𝜏, 𝛾) = ∫

𝜏

0

(

𝜎2𝑥
2𝛾

+ 𝜆𝑥𝑋̄

)

𝐴2
2(𝑠, 𝛾) +

𝜎2𝑥
2
𝐴1(𝑠, 𝛾) + (𝛾 − 1)𝜇𝑑𝑠

(

𝜎2𝑥
2𝛾

+ 𝜆𝑥𝑋̄

)(

2𝜆𝑥𝑋̄𝑏2(𝛾)𝐴2(𝜏, 𝛾)
𝜃3(𝛾)𝑏3(𝛾)

+
2𝑋̄2𝜆2𝑥
𝜃3(𝛾)

(

−
𝐴1(𝜏, 𝛾)
𝑏3(𝛾)

+
8𝑏21(𝛾)𝜏 log

(

2𝜃(𝛾)−(𝜃(𝛾)+𝑏2(𝛾))
(

1−𝑒−𝜃(𝛾)𝜏
)

2𝜃(𝛾)

)

(𝑏2(𝛾) − 𝜃(𝛾))
√

𝑏1(𝛾)𝑏3(𝛾)
+

𝑏2(𝛾)(𝜃(𝛾) − 2
√

𝑏1(𝛾)𝑏3(𝛾))

𝜃(𝛾)𝑏23(𝛾)

log

(

𝑏2(𝛾) − 2
√

𝑏1(𝛾)𝑏3(𝛾)
𝜃(𝛾)

(

2𝑏2(𝛾) + 4
√

𝑏1(𝛾)𝑏3(𝛾)𝑒−𝜃(𝛾)𝜏∕2

2𝜃(𝛾) −
(

𝑏2(𝛾) + 𝜃(𝛾)
) (

1 − 𝑒−𝜃(𝛾)𝜏
)

−
(𝑏2(𝛾) + 𝜃(𝛾))𝐴1(𝜏, 𝛾)

))

+
4𝑏21(𝛾)𝜏

2

))
2𝑏1(𝛾) (𝑏2(𝛾) + 𝜃(𝛾))
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A

(
(

(

w

S

𝑓

C

W

𝑓

W

w

𝛼

L

L

T

E

U

E

U
i

𝑓

D

w

𝑣

T

E

T

𝑔

w

𝑄

C

+
𝜎2𝑥
2

(

1
𝑏3(𝛾)

log

(

2𝜃(𝛾)𝑒−𝜃(𝛾)𝜏

2𝜃(𝛾) −
(

𝑏2(𝛾) + 𝜃(𝛾)
) (

1 − 𝑒−𝜃(𝛾)𝜏
)

)

−
2𝑏1(𝛾)𝜏

𝑏2(𝛾) + 𝜃(𝛾)

)

(𝛾 − 1)𝜇𝜏

ppendix D. Proof of Theorem 4

We follow the proof of Proposition 2 in [1]. Recall the equations
58) (59) in [1] and following same notations:
𝜕
𝜕𝑡

+ 𝐿1

)

𝑓1 = 0 (34)
𝜕
𝜕𝑡

+ 𝐿1

)

𝑓2 = −𝐿2𝑓1 (35)

here 𝐿1, 𝐿2 are equations (53) (54) in [1].

olution of (34). We postulate that:

1(𝑍,𝑋, 𝑡) = 𝑍1∕𝛾𝐻1(𝑋, 𝑇 − 𝑡)

Substitution in (34) shows that 𝐻1 solves:
( 𝜕
𝜕𝑡

+ 𝐿𝛾
)

𝐻1 = 0 (36)

𝐻1(𝑋, 0) = 1

where the operator 𝐿𝛾 is defined by:

𝐿𝛾𝐻 ≡ 1
2
𝜎2𝑥

𝜕2𝐻
𝜕𝑋2

+
(( 𝛾 − 1

𝛾
𝜎𝑥 − 𝜆𝑥

)

𝑋 + 𝜆𝑥𝑋̄
) 𝜕𝐻
𝜕𝑋

+
(

𝑋2
( 1
2
1
𝛾
( 1
𝛾
− 1

)

)

+ 𝜇
(

1 − 1
𝛾
)

)

𝐻

Using the Ansatz (11), we can rewrite the LHS of (36) into:

(𝐶1(𝑡)𝑋2 + 𝐶2(𝑡)𝑋 + 𝐶3(𝑡))𝐻1∕𝛾 = 0

learly all terms 𝐶1, 𝐶2, 𝐶3 must be identically zero. Thus:

𝑑𝐴1(𝑡, 𝛾)
𝑑𝑡

=
𝜎2𝑥
𝛾
𝐴2
1(𝑡, 𝛾) + 2

( 𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥
)

𝐴1(𝑡, 𝛾) +
1 − 𝛾
𝛾

𝑑𝐴2(𝑡, 𝛾)
𝑑𝑡

=
𝜎2𝑥𝐴1(𝑡, 𝛾)

𝛾
𝐴2(𝑡, 𝛾) +

( 𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥
)

𝐴2(𝑡, 𝛾) + 𝜆𝑥𝑋̄𝐴1(𝑡, 𝛾)

𝑑𝐴3(𝑡, 𝛾)
𝑑𝑡

=
𝜎2𝑥
2
(

𝐴1(𝑡, 𝛾) +
𝐴2
2(𝑡, 𝛾)
𝛾

)

+ 𝜆𝑥𝑋̄𝐴2(𝑡, 𝛾) − 𝜇(1 − 𝛾)

which admit the solutions (12), (13), (14).

Solution of (35). The second equation can be rewritten
( 𝜕
𝜕𝑡

+ 𝐿1

)

𝑓2 =
1
2

𝛽2

𝛾𝜎2𝑆
𝑍2∕𝛾𝑆𝐻1(𝑋, 𝑇 − 𝑡)2 (37)

e try the Ansatz:

2(𝑍(𝑡), 𝑋(𝑡), 𝑡) = 𝑍(𝑡)2∕𝛾𝑆(𝑡)𝑔(𝑋(𝑡), 𝑡) (38)

Thus
( 𝜕
𝜕𝑡

+ 𝐿𝛾∕2
)

𝑔(𝑋, 𝑡) = 1
2

𝛽2

𝜎2𝑆𝛾
𝐻1(𝑋, 𝑇 − 𝑡)2

𝑔(𝑋, 𝑇 ) = 0

e use Lemma 6 to obtain the 𝑔(𝑋, 𝑡) in (18).
The optimal policy is:

𝛼∗ = 1
𝜎𝐹

( 𝜕𝐹
𝜕𝑍

𝑋𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥
)

= 𝛼0 + 𝜀𝛼1 + (𝜀2)

here

0 =
𝜕𝑓1
𝜕𝑍

𝑋𝑍
𝜎𝑓1

−
𝜕𝑓1
𝜕𝑋

𝜎𝑥
𝜎𝑓1

=
𝑋(𝑡)
𝛾𝜎

−
𝜎𝑥
𝛾𝜎

(

𝐴1(𝑇 − 𝑡, 𝛾)𝑋(𝑡) + 𝐴2(𝑇 − 𝑡, 𝛾)
)

𝛼1 = 𝑋𝑍
(

𝜕𝑓2 −
𝜕𝑓1 𝑓2

)

−
𝜎𝑥

(

𝜕𝑓2 −
𝜕𝑓1 𝑓2

)

𝜎𝑓1 𝜕𝑍 𝜕𝑍 𝑓1 𝜎𝑓1 𝜕𝑋 𝜕𝑋 𝑓1

13
=
𝑍1∕𝛾 (𝑡)𝑆(𝑡)

𝐻1(𝑋, 𝑇 − 𝑡)𝜎

(

𝑔(𝑋(𝑡), 𝑡)𝑋(𝑡)
𝛾

− 𝜎𝑥
𝜕𝑔
𝜕𝑋

+𝜎𝑥
𝑔(𝑋(𝑡), 𝑡)

𝛾
(

𝐴1(𝑇 − 𝑡, 𝛾)𝑋(𝑡) + 𝐴2(𝑇 − 𝑡, 𝛾)
)

)

emma 6. Let 𝑢(𝑥, 𝑡) = 1
2

𝛽2

𝜎2𝑆 𝛾
𝐻1(𝑥, 𝑇 − 𝑡)2. The solution to

𝜕𝑔(𝑥, 𝑡)
𝜕𝑡

+ 𝐿𝛾∕2𝑔(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) (39)

𝑔(𝑥, 𝑇 ) = 0

is in (18).

Sketch of Proof. Define 𝑚(𝑥) and 𝑟(𝑥) to be such that:

𝐿𝛾∕2𝑓 (𝑥, 𝑡) = 1
2
𝜎2𝑥

𝜕2𝑓 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑚(𝑥)
𝜕𝑓 (𝑥, 𝑡)

𝜕𝑥
− 𝑟(𝑥)𝑓 (𝑥, 𝑡)

𝑚(𝑥) =
( 𝛾∕2 − 1

𝛾∕2
𝜎𝑥 − 𝜆𝑥

)

𝑥 + 𝜆𝑥𝑋̄

𝑟(𝑥) = −
(

𝑥2 1
𝛾
( 2
𝛾
− 1

)

+ 𝜇
(

1 − 2
𝛾
)

)

et 𝑓 (𝑥, 𝑡) be the solution of:

𝜕𝑓 (𝑥, 𝑡)
𝜕𝑡

+ 1
2
𝜎2𝑥

𝜕2𝑓 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑚(𝑥)
𝜕𝑓 (𝑥, 𝑡)

𝜕𝑥
= 𝑟(𝑥)𝑓 (𝑥, 𝑡) (40)

Defining:

𝑑𝑋(𝑡) = 𝑚(𝑋)𝑑𝑡 + 𝜎𝑥𝑑𝑊 (𝑡) (41)

we see that:
𝜕𝑓 (𝑥, 𝑡)

𝜕𝑡
+ 1

2
𝜎2𝑥

𝜕2𝑓 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑚(𝑥)
𝜕𝑓 (𝑥, 𝑡)

𝜕𝑥
= E[𝑑𝑓 (𝑋, 𝑡)|𝑋(𝑡) = 𝑥]∕𝑑𝑡 (42)

hus (40) can be rewritten:

[𝑑𝑓 (𝑋(𝑡), 𝑡) − 𝑟(𝑋(𝑡))𝑓 (𝑋(𝑡), 𝑡)𝑑𝑡|𝑋(𝑡)] = 0

sing the integrating factor exp(− ∫ 𝑡
0 𝑟(𝑋(𝑠))𝑑𝑠), we have:

[𝑑(exp(−∫

𝑡

0
𝑟(𝑋(𝑠))𝑑𝑠)𝑓 (𝑋(𝑡), 𝑡))|𝑋(𝑡)] = 0

nder the boundary condition 𝑓 (𝑋(𝑇 ), 𝑇 ) = 1 the only possible solution
s:

(𝑥, 𝑡; 𝑇 ) = E[exp(−∫

𝑇

𝑡
𝑟(𝑋(𝑠))𝑑𝑠)|𝑋(𝑡) = 𝑥]

efine 𝑃 (𝑡, 𝑇 ) = 𝑓 (𝑋(𝑡), 𝑡; 𝑇 ) = 𝐻2(𝑋(𝑡), 𝑇 − 𝑡). Clearly:
𝑑𝑃 (𝑡, 𝑇 )
𝑃 (𝑡, 𝑇 )

= 𝑟(𝑋(𝑡))𝑑𝑡 + 𝑣(𝑡, 𝑇 )𝑑𝑊 (𝑡)

here:

(𝑡, 𝑇 ) = 𝜎𝑥

𝜕𝑓
𝜕𝑥
𝑓

By Ito’s lemma, and for the exact same reason as (42):

𝜕𝑔(𝑥, 𝑡)
𝜕𝑡

+ 1
2
𝜎2𝑥

𝜕2𝑔(𝑥, 𝑡)
𝜕𝑥2

+ 𝑚(𝑥)
𝜕𝑔(𝑥, 𝑡)
𝜕𝑥

= E[𝑑𝑔(𝑋, 𝑡)|𝑋(𝑡) = 𝑥]∕𝑑𝑡

he stochastic equivalent of (39) is:

[𝑑𝑔(𝑋(𝑡), 𝑡) − 𝑟(𝑋(𝑡))𝑔(𝑥, 𝑡)𝑑𝑡|𝑋(𝑡)] = E[𝑢(𝑋(𝑡), 𝑡)𝑑𝑡|𝑋(𝑡)]

he solution is:

(𝑋(𝑡), 𝑡) = ∫

𝑇

𝜏=𝑡
𝑄(𝑡, 𝜏)𝑑𝜏

here:

(𝑡, 𝜏) = E[exp(−∫

𝜏

𝑡
𝑟(𝑋(𝑠))𝑑𝑠)𝑢(𝑋(𝜏), 𝜏)|𝑋(𝑡)]

learly, for some volatility 𝜎𝑄(𝑡, 𝜏)

𝑑𝑄(𝑡, 𝜏)
= 𝑟(𝑋(𝑡))𝑑𝑡 + 𝜎𝑄(𝑡, 𝜏)𝑑𝑊 (𝑡)
𝑄(𝑡, 𝜏)
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w
t

E

𝑌

C

E

p

A

𝐿

𝐿

t
(

w

𝐿

(

L

𝑟

W
𝑔

𝑔

⎛

⎜

⎜

⎜

We are now ready to define a change of numeraire. Let

𝑑𝑊 𝜏 = 𝑑𝑊 − 𝑣(𝑡, 𝜏)𝑑𝑡

By Theorem 9.2.2 in [23], 𝑄(𝑡, 𝜏)∕𝑃 (𝑡, 𝜏) is a P𝜏 -martingale, i.e.,

𝑄(𝑡, 𝜏) = 𝑃 (𝑡, 𝜏)E𝜏
𝑡 [𝑢(𝑋(𝜏))]

where

𝑑𝑋(𝑡) = 𝑚(𝑋)𝑑𝑡 + 𝜎𝑥𝑑𝑊 (𝑡)

= 𝑚(𝑋)𝑑𝑡 + 𝜎𝑥(𝑑𝑊 𝜏 (𝑡) + 𝑣(𝑡, 𝜏)𝑑𝑡)

From (11),

𝑢(𝑋(𝑡), 𝑡) = 1
2

𝛽2

𝜎𝑆2𝛾
𝑒

2
𝛾
( 𝐴1(𝑇−𝑡,𝛾)

2 𝑋(𝑡)2+𝐴2(𝑇−𝑡,𝛾)𝑋(𝑡)+𝐴3(𝑇−𝑡,𝛾)
)

Let us now take:

𝑃 (𝑡, 𝑇 ) = exp
( 2

𝛾

(𝐴1(𝑇 − 𝑡, 𝛾∕2)
2

𝑋2(𝑡)+𝐴2(𝑇−𝑡, 𝛾∕2)𝑋(𝑡)+𝐴3(𝑇−𝑡, 𝛾∕2)
))

Thus:

𝑣(𝑡, 𝜏) =
𝜎𝑥
𝛾 (𝐴1(𝜏 − 𝑡, 𝛾∕2)𝑋(𝑡) + 𝐴2(𝜏 − 𝑡, 𝛾∕2))

𝑑𝑋(𝑡) =
[

(

𝛾
2 − 1

𝛾∕2
𝜎𝑥 − 𝜆𝑥 +

𝜎2𝑥
𝛾 𝐴1(𝜏 − 𝑡, 𝛾∕2)

)

𝑋(𝑡) + 𝜆𝑥𝑋̄

+
𝜎2𝑥
𝛾 𝐴2(𝜏 − 𝑡, 𝛾∕2)

]

𝑑𝑡 + 𝜎𝑥𝑑𝑊
𝜏 (𝑡)

(43)

Thus E𝜏
𝑡 [𝑢(𝑋(𝜏))] when (43) holds can be calculated exactly the same

ay as E[𝑢(𝑋(𝜏))] when (41) holds. The structure is also affine, and
here will be a solution of the form:

𝜏
𝑡 [𝑢(𝑋(𝜏), 𝜏)] = 1

2
𝛽2

𝜎𝑆2𝛾
E𝜏
𝑡

[

𝑒
2
𝛾

( 𝐴1(𝑇−𝜏,𝛾)
2 𝑋2(𝜏)+𝐴2(𝑇−𝜏,𝛾)𝑋(𝜏)+𝐴3(𝑇−𝜏,𝛾)

)]

To summarize, since 𝑃 (𝑡, 𝑇 ) = 𝐻2(𝑋(𝑡), 𝑇 − 𝑡)

𝑔(𝑥, 𝑡) =∫

𝑇

𝜏=𝑡
𝑃 (𝑡, 𝜏)E𝜏

𝑡 [𝑢(𝑋(𝜏), 𝜏)]𝑑𝜏

=∫

𝑇

𝜏=𝑡
𝐻2(𝑋, 𝜏 − 𝑡) 1

2
𝛽2

𝜎𝑆2𝛾

E𝜏
𝑡

[

𝑒
2
𝛾

( 𝐴1(𝑇−𝜏,𝛾)
2 𝑋2(𝜏)+𝐴2(𝑇−𝜏,𝛾)𝑋(𝜏)+𝐴3(𝑇−𝜏,𝛾)

)]

𝑑𝜏

(44)

Let 𝑀̃(𝑡, 𝜏) as in (17) and

(𝜏) = 𝑋(𝜏) +
𝐴2(𝑇 − 𝜏, 𝛾)
𝐴1(𝑇 − 𝜏, 𝛾)

learly:

𝜏 [𝑋(𝜏)|𝑋(𝑡) = 𝑥] = 𝑥𝑀̃(𝑡, 𝜏) + ∫

𝜏

𝑠=𝑡
𝑀̃(𝑠, 𝜏)(𝜆𝑥𝑋̄ +

𝜎2𝑥
𝛾 𝐴2(𝜏 − 𝑠, 𝛾))𝑑𝑠

V𝑎𝑟𝜏 [𝑋(𝜏)|𝑋(𝑡) = 𝑥] = 𝜎2𝑥 ∫

𝜏

𝑡
𝑀̃2(𝑠, 𝜏)𝑑𝑠

Thus we can calculate:

𝑚𝑌 (𝜏, 𝑥) = E𝜏 [𝑌 (𝜏)|𝑋(𝑡) = 𝑥]

= E𝜏 [𝑋(𝜏)|𝑋(𝑡) = 𝑥] +
𝐴2(𝑇 − 𝜏, 𝛾)
𝐴1(𝑇 − 𝜏, 𝛾)

𝑉𝑌 (𝜏, 𝑥) = V𝑎𝑟𝜏 [𝑌 (𝜏)|𝑋(𝑡) = 𝑥] = 𝜎2𝑥 ∫

𝜏

𝑡
𝑀̃2(𝑠, 𝜏)𝑑𝑠

We can further develop:

E𝜏
𝑡

[

exp
( 2
𝛾

(𝐴1(𝑇 − 𝜏, 𝛾)
2

𝑋2(𝜏) + 𝐴2(𝑇 − 𝜏, 𝛾)𝑋(𝜏) + 𝐴3(𝑇 − 𝜏, 𝛾)
))]

= E𝜏
𝑡

⎡

⎢

⎢

⎣

𝑒
2
𝛾 𝐴3(𝑇−𝜏,𝛾)+

1
𝛾 𝐴1(𝑇−𝜏,𝛾)

(

𝑋(𝜏)+ 𝐴2(𝑇−𝜏,𝛾)
𝐴1(𝑇−𝜏,𝛾)

)2
−

𝐴22(𝑇−𝜏,𝛾)
𝛾𝐴1(𝑇−𝜏,𝛾)

⎤

⎥

⎥

⎦

= E𝜏
𝑡

⎡

⎢

⎢

𝑒
2
𝛾 𝐴3(𝑇−𝜏,𝛾)−

𝐴22(𝑇−𝜏,𝛾)
𝛾𝐴1(𝑇−𝜏,𝛾) 𝑒

𝐴1(𝑇−𝜏,𝛾)
𝛾

(

𝑋(𝜏)+ 𝐴2(𝑇−𝜏,𝛾)
𝐴1(𝑇−𝜏,𝛾)

)2
⎤

⎥

⎥

⎣ ⎦ ⎝

14
= 𝑒
2
𝛾 𝐴3(𝑇−𝜏,𝛾)−

𝐴22(𝑇−𝜏,𝛾)
𝛾𝐴1(𝑇−𝜏,𝛾)

1
√

2𝜋𝑉𝑌 (𝜏, 𝑥) ∫
𝑒
𝐴1(𝑇−𝜏,𝛾)

𝛾 𝑦2𝑒
− (𝑦−𝑚𝑌 (𝜏,𝑥))2

2𝑉𝑌 (𝜏,𝑥) 𝑑𝑦

= 𝑒
2
𝛾 𝐴3(𝑇−𝜏,𝛾)−

𝐴22(𝑇−𝜏,𝛾)
𝛾𝐴1(𝑇−𝜏,𝛾)

+
𝑚2𝑌 (𝜏,𝑥)𝐴1(𝑇−𝜏,𝛾)

𝛾−2𝑉𝑌 (𝜏,𝑥)𝐴1(𝑇−𝜏,𝛾)
1

√

1 − 2𝑉𝑌 (𝜏, 𝑥)𝐴1(𝑇 − 𝜏, 𝛾)∕𝛾

roviding 𝛾 < 2𝐴1(𝑇 −𝜏, 𝛾)𝑉𝑌 (𝜏, 𝑥). Thus Eq. (18) follows from (44). □

ppendix E. Proof of Theorem 5

When 𝑋(𝑡) is a constant, equations (53) and (54) in [1] become

1𝐹 = 1
2
𝑍2( 𝑏 − 𝑟

𝜎
)2 𝜕2𝐹

𝜕𝑍2
− 𝜇𝑍 𝜕𝐹

𝜕𝑍
+ 𝜇𝐹

2𝐹 = −1
2
𝛽2

𝜎2𝑆
𝑍𝑆𝐹 𝜕𝐹

𝜕𝑍

Use the Ansatz 𝑓1(𝑍(𝑡), 𝑡) = 𝑍1∕𝛾 (𝑡)ℎ1(𝑇 − 𝑡) and insert in (20) shows
hat ℎ1 solves:
𝜕
𝜕𝑡

+ 𝐿𝛾
)

ℎ1 = 0 ℎ1(0) = 1 (45)

here the operator 𝐿𝛾 is defined by:

𝛾𝐻 ≡
(

( 𝑏 − 𝑟
𝜎

)2
( 1
2
1
𝛾
( 1
𝛾
− 1

)

)

+ 𝜇
(

1 − 1
𝛾
)

)

𝐻

Using the Ansatz (23), we can rewrite (45) into:
(

𝐶1(𝑡)
( 𝑏 − 𝑟

𝜎
)2 + 𝐶2(𝑡)

)

ℎ1∕𝛾 = 0

Clearly all terms 𝐶1, 𝐶2 must be identically zero. Thus
𝑑𝑎1,1𝑡
𝑑𝑡

=
1 − 𝛾
𝛾

𝑑𝑎1,2𝑡
𝑑𝑡

= 𝜇(𝛾 − 1)

which admit the solutions (24), (25) at 𝑖 = 1.
Now use 𝑓𝑖(𝑍(𝑡), 𝑡) = 𝑍2𝑖−1∕𝛾 (𝑡)𝑆2𝑖−1−1(𝑡)𝑔𝑖(𝑡). We can rewrite (21) by

𝜕
𝜕𝑡

+ 𝐿𝛾∕2𝑖
)

𝑔𝑖+1(𝑡) =
1
2
𝛽22𝑖−1

𝜎2𝑆𝛾
𝑔2𝑖 (𝑡) 𝑔𝑖+1(𝑇 ) = 0 (46)

et 𝑢(𝑡) = 1
2
𝛽22𝑖−1

𝜎2𝑆 𝛾
𝑔2𝑖 (𝑡) and

𝑖 =
2𝑖
𝛾

( 1
2
( 𝑏 − 𝑟

𝜎
)2𝑎𝑖+1,1 + 𝑎𝑖+1,2

)

Then

𝐿𝛾∕2𝑖𝑔𝑖+1(𝑡) = 𝑟𝑖𝑔𝑖+1(𝑡)

and the stochastic equivalent of (46) is:
𝜕𝑔𝑖+1(𝑡)

𝜕𝑡
+ 𝑟𝑖𝑔𝑖+1(𝑡) = 𝑢(𝑡) 𝑔𝑖+1(𝑇 ) = 0

which admits

𝑔𝑖+1(𝑡) = −1
2
𝛽22𝑖−1

𝜎2𝑆𝛾
1

ℎ𝑖+1(𝑡) ∫

𝑇

𝑡
𝑔2𝑖 (𝑠)ℎ𝑖+1(𝑠)𝑑𝑠 (47)

e have showed that 𝑔1(𝑡) = ℎ1(𝑇 − 𝑡). Here we also provide the 𝑔2 and
3 in the following:

2(𝑡) =
𝛽2

2𝜎2𝑆

ℎ2(𝑇 − 𝑡) − ℎ21(𝑇 − 𝑡)
( 𝑏−𝑟

𝜎

)2(𝑎1,1 − 𝑎2,1) + 2(𝑎1,2 − 𝑎2,2)

𝑔3(𝑡) = −
𝛽6

16𝜎6𝑆

⎛

⎜

⎜

⎝

1
( 𝑏−𝑟

𝜎

)2(𝑎1,1 − 𝑎2,1) + 2(𝑎1,2 − 𝑎2,2)

⎞

⎟

⎟

⎠

2

1
ℎ3(𝑡)

ℎ22(𝑇 )

ℎ3(𝑇 )
ℎ22(𝑇 )

− ℎ3(𝑡)
ℎ22(𝑡)

𝑎3,1−𝑎2,1 ( 𝑏−𝑟 )2 + 𝑎3,2 − 𝑎2,2
+ℎ41(𝑇 )

ℎ3(𝑇 )
ℎ41(𝑇 )

− ℎ3(𝑡)
ℎ41(𝑡)

𝑎3,1−𝑎1,1 ( 𝑏−𝑟 )2 + 𝑎3,2 − 𝑎1,2
2 𝜎 2 𝜎
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b

𝛼

𝛼

A

a

R

−2
ℎ2(𝑇 )
ℎ21(𝑇 )

ℎ3(𝑇 )ℎ21(𝑇 )
ℎ2(𝑇 )

−
ℎ3(𝑡)ℎ21(𝑡)

ℎ2(𝑡)

𝑎3,1−
𝑎2,1−𝑎1,1

2
2

( 𝑏−𝑟
𝜎

)2 + 𝑎3,2 −
𝑎2,2−𝑎1,2

2

⎞

⎟

⎟

⎟

⎠

Suppose we use the first two expansions, the optimal policy is given
y:
∗ = 𝛼0 + 𝜀𝛼1 + (𝜀2)

where

𝛼0 =
𝜕𝑓1
𝜕𝑍

𝑏−𝑟
𝜎 𝑍

𝜎𝑓1
=

𝑏−𝑟
𝜎
𝛾𝜎

1 =
𝑏−𝑟
𝜎 𝑍

𝜎𝑓1

(

𝜕𝑓2
𝜕𝑍

−
𝜕𝑓1
𝜕𝑍

𝑓2
𝑓1

)

=
𝑍1∕𝛾 (𝑡)𝑆(𝑡)
ℎ1(𝑇 − 𝑡)𝜎

𝑔2(𝑡)
𝑏−𝑟
𝜎

𝛾

ppendix F. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.mbs.2021.108758.
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