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Abstract

Background: Identifying the relevant environmental variables that cause GxE interaction is often difficult when
they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question.
When data on candidate environmental variables are available, GxE interaction can be quantified as a function of
specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to
identify the latent common factor that explains GxE interaction. This factor can be correlated with known
environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for
body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes.

Methods: Reaction norm and factor analytic models were used to identify which environmental variables (age at
harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on
body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in
the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a
high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information
criteria were used to compare models.

Results: The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were
identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent
common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree.
Day*Degree and photoperiod were the environmental variables that differed most between Peru and other
environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more
parsimonious than the reaction norm model.

Conclusions: Day*Degree and photoperiod were identified as environmental variables responsible for the strong
GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and
the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor
analytic model is preferred over a reaction norm model when limited information on differences in environmental
variables between farms is available.
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Background
Body weight at harvest is an economically important
trait in rainbow trout (Onchorynchus mykiss) and other
farmed fish species. Rainbow trout can be produced in a
wide range of farming environments. When genotype-
by-environment interaction (GxE) is present and when
selection is practiced only in a breeding environment,
lower-than-expected genetic gains can be obtained in
other production environments. Optimization of a breed-
ing program to account for GxE interaction can increase
genetic gain across environments [1-3]. Optimization may
be expensive, for instance when environment-specific
breeding programs need to be established. Alternatively, if
environmental variables (EV) are changed so that they are
similar across production environments, GxE interaction
may decrease. This requires that the EV that cause GxE
interaction are identified, which can be done by using a
reaction norm model to quantify GxE interaction as the
function of specific EV [4-6]. Alternatively, in a two-step
factor analysis, a latent common factor responsible for
GxE interaction is first identified and, subsequently, corre-
lations between the common factor and EV are calculated
to identify the significant EV [7]. In this study, our aim
was to identify the EV that cause a strong GxE interaction
for body weight at harvest in rainbow trout using a reac-
tion norm model and a factor analytic model.

Methods
Data
The data used in this study were from a GxE experiment
conducted in four different environments on three con-
tinents (North America, South America, and Europe as
described by Sae-Lim et al. [8]). In August 2009, 100
full-sib families were produced from 58 sires and 100
dams (1 to 1.7 mating ratio) at the Troutlodge breeding
company in Washington State (nucleus: NUC). Proce-
dures for the ethical treatment of animals at Troutlodge,
Inc. followed the US and/or State guidelines for animal
care and use including those outlined by “Guidelines for
Use of Fishes in Field Research” established by the
American Fisheries Society (AFS), the American Society
of Ichthyologists and Herpetologists (ASIH), and the
American Institute of Fisheries Research Biologists
(AIFRB). The same standard was applied for all animals
in the study. Fertilization took place during a period of
four weeks. Different water temperatures were used to
synchronize embryonic development and hatching. At
least 25 eyed eggs per family were shipped to each of the
following three locations: (1) the re-circulating aquacul-
ture system at the Freshwater Institute, Virginia, USA
(FI); (2) a high altitude farm with low oxygen dissolved
in water (Titicaca Lake) in Peru (PE); and (3) a low
water temperature farm in Germany (GE). A random
sample of 25 eyed eggs per family was maintained at
NUC as a control. All fish were measured for body
weight at harvest (BWH, in grams), in June 2010 (NUC),
in July 2010 (FI), in August 2010 (PE), and in December
2010 (GE) (Table 1).

Pedigree reconstruction
The fish were tagged using passive integrated transpon-
ders (PIT tag; Allflex USA, Inc. for NUC, FI and PE, and
DORSET Identification b.v., the Netherlands, for GE)
and the PIT tag was scanned (scanner SF2001ISO: Des-
tron Fearing, USA for NUC, FI and PE, and GR250:
DORSET Identification b.v., the Netherlands, for GE) at
an average size of 26.3 to 33.2 g (five to seven months of
age). Before tagging, fish were anesthetized with MS222
(150 mg/L) in the NUC, FI, and PE farms and with clove
oil (10 mg/L) in the GE farm. Fin clips were collected
from all 158 parents and from the fish at tagging from
FI, PE and GE for DNA extraction. In the NUC farm, fin
clips were not collected, because fish were kept in separ-
ate full-sib family tanks until tagging, allowing the pedi-
gree to be recorded.
DNA was isolated from fin clips to reconstruct pedi-

grees. Genotyping was done at three laboratories: National
Center for Cool and Cold Water Aquaculture, USDA;
Troutlodge, Inc.; and Animal Breeding and Genomics
Centre, Wageningen University. The protocols for DNA
isolation and genotyping were synchronized across the
three laboratories. DNA isolation was done using the
Nucleospin® 96 Tissue Core Kit. Multiplex PCR amplifica-
tion was as described in [9]. Nine microsatellite markers
were used for PCR: OMM1008, OMM1051, OMM1088,
OMM1097 [10], OMM5007, OMM5047 [11], OMM5233,
OMM5177 [12], and OMM1325 [13]. Multiplex PCR am-
plifications, i.e. quadroplex and pentaplex, were as follows
[9]: an initial 5 min denaturation at 95°C, followed by
35 cycles of 30 s denaturation at 95°C, 45 s annealing at
55°C, and 90 s extension at 72°C, and a final 10 min
extension step at 72°C. Fragment analysis of the PCR
products was done by setting the fragment sizes to Genes-
can LIZ 500 size standard (Applied Biosystem). Output
data were analysed using Genemapper software version 4
(Applied Biosystem) [14].
Parental allocation was performed using PAPA soft-

ware [15] based on the known mating data to increase
the accuracy of parental assignments [8]. In total, 2142
out of 2243 fish sampled in FI, 3106 out of 3236 fish
sampled in PE, and 2104 out of 2235 fish sampled in GE
were successfully allocated to the 100 full-sib families.
The 362 fish that were not successfully allocated to a
family were removed from the dataset. In total, six
generations of pedigree information, one from the DNA
reconstructed pedigree and five from the previous gener-
ations of pedigree information, were used in the genetic
analyses.



Table 1 Means and standard deviations (SD) for body weight at harvest (BWH) in four environments and means of
environmental variables during the rearing period

Environment N BWH (g) SD (g) Age (day) Temp (°C) Day*Degree (day*°C) Oxygen (mg/L) Photoperiod (min)

NUC 2367 546.7 94.7 287.5 13.8 3940 7.3 223.1

FI 1893 395.2 75.8 294.0 12.5 3686 10.5 163.3

PE 2897 524.1 105.0 357.0 13.4 4805 6.6 −53.1

GE 1819 376.4 81.7 444.0 9.9 4439 12.0 292.9

N = number of observations; NUC = breeding environment; FI = Freshwater Institute; PE = Peru; GE = Germany; units are indicated between brackets.
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Environmental variables
Summary statistics of the EV are in Table 1.

Temperature
The average water temperature (°C) was measured in
the tank (NUC, FI), raceway (GE) or lake (PE) during
the rearing period of the experiment. In NUC, the aver-
age ambient temperature was between 13 and 14°C
throughout the growing season. In FI, PE, and GE, the
water temperature followed the natural (daily and sea-
sonal) fluctuations. Water temperature was recorded
every 15 min using a data logging Transmitter SC100
(Hach Lange, Germany) in NUC and GE. In FI,
temperature was measured once a day using either a
Hach HQ40d hand held meter or a SC100 Universal
Controller (Hach Company, Loveland, CO). In PE, tem-
peratures were measured with a standard mercury
thermometer in the Titicaca Lake once a day for only a
short period (September 3 to 16, 2010). However, water
temperature of the Titicaca Lake does not fluctuate
much throughout the year and varies between 12 and
14°C.

Age
Average age at harvest (in days) corresponded to the
period between hatching and day of harvest. Differences
in age at harvest were caused by differences in preferred
market sizes across environments. In NUC, harvest was
done twice (at 2 week intervals).

Day*Degree
In salmonids, the growth rate depends on the water
temperature. The product of days to harvest and daily
temperature is therefore commonly used in salmonid
farming to compare days to harvest across temperature
regimes. Day*Degree was calculated as: average water
temperature during the growing period multiplied by
average age at harvest.

Oxygen
The amount of oxygen dissolved in the water during the
rearing period, recorded in mg/L or ppm, was calculated
based on the average of daily measurements. In NUC,
oxygen was measured daily in the morning (between
7:30 and 9:00 am) using a YSI model 550 (YSI, Yellow
Springs, OH) at the inlet and outlet of the rearing tanks.
In FI, oxygen was measured at a single position in the
circular tanks once a day between 8:00 and 9:30 am,
using a Hach HQ40d with a Hach LDO probe attach-
ment, or a SC100 Universal Controller (Hach Company,
Loveland, CO). In PE, dissolved oxygen was measured in
the net pens of Titicaca Lake in the morning (between
9:00 and 10:00 am) for a short period of time (same as
temperature), using the Hach dissolved oxygen test kit
(Hach Company, Loveland, CO). In GE, dissolved oxy-
gen level was controlled to be above 10 mg/L. When the
dissolved oxygen decreased, supplementary oxygen was
automatically released until the dissolved oxygen was
above 10 mg/L. Dissolved oxygen was measured every
15 min using a data logging Transmitter SC100 (Hach
Lange, Germany).

Photoperiod
Since the experiment was conducted across continents,
changes in day length differed. “Photoperiod” was de-
fined as the difference between the maximum day length
observed during the rearing period and average day
length during the rearing period. This measurement re-
flects the amplitude of day length, which provides more
information than average day length. The locations that
were used to calculate photoperiod were: Seattle in
Washington State (NUC), Martinsburg in West Virginia
(FI), Juliaca in Peru (PE), and Leipzig Schkeuditz in
Germany (GE). Data on times of sunrise and sunset each
week in 2009 and 2010 were obtained from http://www.
wunderground.com/history/. Average day length was
calculated as the difference between sunrise and sunset
in minutes, for each day of the week in the rearing
period (Figure 1). To account for differences between
northern and southern hemispheres (NUC, FI and GE
versus PE), we used negative and positive signs to indi-
cate the directions of change in the photoperiod.

Statistical analysis
In a previous study, we reported a significant GxE inter-
action for body weight at harvest in rainbow trout that

http://www.wunderground.com/history/
http://www.wunderground.com/history/


Figure 1 Day length profiles in four experimental
environments. The x-axis represents the rearing period in two-
month intervals (month-year); each observation represents the
average day length during a two-week interval; the rearing period
differed across environments: NUC = breeding environment,
FI = Freshwater Institute, PE = Peru and GE = Germany.
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were reared on three different continents [8]. Genetic
correlations (0.19 to 0.48) were estimated using a multi-
variate model (multi-trait multi-environment) with cor-
rection for selection bias due to selective mortality. The
same data were used to identify the EV that contributed
to the GxE interaction in this study. ASReml was used
for all models in this study.

Multivariate model
In this study, we compared reaction norm and factor
analytic models with the multivariate model without se-
lection bias correction. The multivariate model without
the selection bias correction was:

Yhij ¼ μþ βhAGEh þ FERThi þ ahj þ ehij;

where Yhij is the observation (body weight at harvest) of
the jth individual in a given environment (h =1: NUC, 2:
FI, 3: PE, and 4: GE), μ is the overall mean. βh is the co-
efficient of linear fixed regression on age at harvest
(AGEh) within the hth environment. The (AGEh) was in-
cluded in the model to correct for different measure-
ment dates, and corrected for the length of the rearing
period from hatching to the day of trait measurement.
The orthogonal polynomial of (AGEh) was tested for sig-
nificance up to the third order but the quadratic and the
cubic orders were not significant based on a Wald test.
FERThi is the effect of the ith fertilization period within
the hth environment due to different groups of available
fertile dams. ahj is the random additive genetic effect,
a ∼MVN[0,A⊗G], of the jth animal, where MVN is the
multivariate normal distribution, A is the additive gen-
etic relationship matrix among individuals and G is the
additive genetic (co)variance matrix among body weight
in the different environments. Residual covariances of
the same trait measured in different environments were
set to zero, because animals were measured in only one
environment:

VAR eð Þ ¼
σ2e1 0 0 0
0 σ2

e2 0 0
0 0 σ2e3 0
0 0 0 σ2

e4

2
664

3
775;

where σ2eh is residual variance of body weight in different
h environments.

Reaction norm model
The EV causing GxE interaction can be identified by fit-
ting each EV in a reaction norm model. Random regres-
sion was used to estimate (co)variance components. The
random animal effect was modelled as a function of the
EV. The random regression model was:

Yhij ¼ μþ ηh þ βhAGEh þ FERThi þ
Xm
k¼0

αkjPkh þ ehij;

where ηh is fixed environmental effect (h =1: NUC, 2:
FI, 3: PE, and 4: GE), accounting for different levels
of environment and αkj is random regression coeffi-
cient k for animal j for the orthogonal polynomial Pkh
for an EV in environment h, with m maximum order
of the polynomial. The matrix of random regression
coefficients was assumed to be distributed multivariate

normal:
α0

⋮
αm

2
4

3
5∼MVN 0;A⊗GRN½ � , where MVN is the
multivariate normal distribution, A is the additive genetic
relationship matrix, and GRN is the n*n genetic (co)vari-
ance matrix for parameters of the reaction norm model.
The n is the highest order of polynomial (m) + 1. Residual
effects ehij for animal j in environment h were assumed
distributed

e∼N 0;

Iσ2e1 0 0 0
0 Iσ2e2 0 0
0 0 Iσ2

e3 0
0 0 0 Iσ2

e4

2
664

3
775

0
BB@

1
CCA , where I is the identity

matrix. A third order polynomial for the random reac-
tion norm model results in a 4×4 G matrix, which is the
same dimension as the original multivariate model with
four environments. When each environment has just
one value for the environmental variable, the multivari-
ate model and the reaction norm model yield identical
genetic correlations [16]. Therefore, even meaningless
EV would give the same results as the multivariate
model. Thus, to identify EV responsible for the GxE
interaction, we decided to use a first order polynomial
(m = 1), because it is the simplest and has the largest dif-
ference in number of estimated parameters. The additive
genetic variance V̂ A of BWH for each level of an EV
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was calculated as ϕ̂0ĜRNϕ̂ , where ϕ̂ is a n*1 vector of

polynomial coefficients for each level of the EV and ϕ̂0 is
the transposed vector of ϕ̂ . The covariance (COV) be-
tween BWH at levels i and j of an EV was calculated

as ϕ̂ 0
iĜRNϕ̂j; i≠j . The genetic correlation (rg) between

BWH at levels i and j of an EV was calculated as
COV AEVi ;AEVj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ A;EV i�V̂ A;EV j

p . Standard errors of estimates of genetic

correlations were approximated with ASReml [17]. The
sire BLUP-estimated breeding value (EBV) for each level

of EV was calculated as Ĥϕ̂ , where Ĥ is a 1*n vector of
sire BLUP-EBV for BWH. The sire BLUP-EBV of eight
randomly selected sires were plotted against photoperiod
as an example to show the degree of heterogeneity of
additive genetic variance and re-ranking of sires, de-
pending on change across levels of photoperiod.

Factor-analytic model
The factor analytic (FA) model identifies latent common
factors that explain the variation in the data and can be
used to estimate GxE interaction [18]. The FA animal
mixed model was:

Yhij ¼ μþ ηh þ βhAGEh þ FERThi þ ACj þ AShj

þ ehij;

where ACj is the random genetic effect of the latent
common factor across environments for animal j and
AShj is the random genetic effect specific to environ-
ment h for animal j. The five genetic effects (one
across environments and four specific to each environ-
ment) were assumed distributed multivariate normal:
Ac;As1 ;As2 ;As3 ;As4ð Þ∼MNV 0;A⊗GFA½ � , where A is the
additive genetic relationship matrix and GFA is the
genetic (co)variance matrix for common and specific
animal effects. The common animal effect can be
interpreted as the breeding value for the latent com-
mon factor whereas the specific animal effects are the
environment-specific remnant breeding value unex-
plained by the common factor. Therefore, each animal
has five breeding values. The genetic (co)variance
matrix GFA = ΓΓ ' +Ψ, where Γ is the matrix of factor
loadings (coefficient vector of the latent common fac-
tor) and Ψ is the diagonal matrix of specific variances
(ψh) for each environment h, accounting for additional
variance, i.e., variation that is not explained by latent
common factors [18]. The total number of parameters
fitted in the FA model is n(k + 1)-k(k-1)/2 and may not
exceed n(n + 1)/2, where n is the size of G matrix from
the multivariate model, and k is the number of latent
common factors. When k is equal to 1, the number of
parameters fitted in FA is 4(1 + 1) -1(1-1)/2 = 8, com-
pared to 4(4 + 1)/2 = 10 for the multivariate model
[19]. The eight parameters are four elements of esti-
mated loading γ̂ h

� �
and four estimated specific vari-

ance ψ̂hð Þ for each environment h. The number of
factors cannot be higher than 1 in this study.
In ASReml, different types of FA models can be im-

plemented [19]. In this study, we used the extended
FA (XFA) [18,19] model, which provides estimates of
the GFA matrix, of loading parameters, of correlations
between genetic effects in four environments, and of
the latent common factor. The additive genetic vari-
ance V̂ A

� �
for a certain environment was estimated as:

V̂ Ah ¼ γ̂
0
hγ̂h þ ψ̂h. The square of the loading parameter

indicates the amount of additive genetic effect ex-
plained by the latent common factor. A high loading
for an environment indicates that the latent common
factor explains a large amount of the additive genetic
variance in that environment. The percentage of addi-
tive genetic variance explained by latent common fac-
tors in a specific environment was calculated as:

%Expl ¼ γ̂
0
h γ̂ h

V̂ A
� 100 . The covariance of BWH between

environments i and j was calculated as γ̂ i
0γ̂ j . The rg

between BWH measured in different environments i

and j was estimated as: rg ¼ γ̂
0
i γ̂ jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ Ai�V̂ Aj

p .

Initially, the environmental effect common to full-sibs
(caused by family rearing until tagging) was included in
the model. However, ASReml had difficulty in disentan-
gling genetic (co)variance components from common
environmental (co)variance components. The solution
was not positive definite and therefore we decided to ex-
clude the common environmental effect from this and
all other models in this study.

Model comparison
Reaction norm and FA models were compared using
Akaike’s information criteria (AIC: [20]) and Bayesian’s
information criteria (BIC: [21]). The model with the low-
est AIC and BIC indicates the most parsimonious model.
All models were kept the same with respect to fixed ef-
fects so that they were comparable in terms of REML
log likelihood.

Identification of EV
With a reaction norm model, the EV that provide the
best fit to the data will result in the highest log likeli-
hood of the model. In addition, the mean square devi-
ation (MSD) was calculated as the difference between
estimated genetic correlations obtained from reaction
norm and multivariate (MUV) models and was com-

puted as MSD ¼
Xn

i¼1
rgRN ;i

−rgMUV ;i

� �2

n , where rgRN ;i
and

rgMUV ;i
are the estimated genetic correlations of BWH
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between different environments obtained from the reac-
tion norm and multivariate models, respectively. The ith

genetic correlation was from the same pair of environ-
ments for both models and n was equal to six, because
with four environments there are six genetic correla-
tions. The reaction norm model with the lowest MSD is
the model that deviates least from the multivariate
model, which indicates that the EV used in that reaction
norm model is able to capture the GxE interaction.
The FA model was used as the first step in a two-step

approach. The second step consisted of estimating cor-
relations between loadings and means of EV. Pearson
(ρ EP,L) and Kendall rank (τ EP,L) correlations between
loading of the latent common factor and EV were calcu-
lated to identify the EV that shows the highest correl-
ation with the latent common factor, which is the most
likely EV that caused the GxE interaction.

Results
Reaction norm model
For the reaction norm model, estimates of rg of BWH
between different environments are in Table 2. For age
Table 2 Estimates of genetic correlations of body weight at h
square deviation (MSD*) between estimates from reaction no

Model EV Environment

Reaction norm Age NUC

FI

PE

Temperature NUC

FI

PE

Day*Degree NUC

FI

PE

Oxygen NUC

FI

PE

Photoperiod NUC

FI

PE

Factor analytic Latent NUC

FI

PE

Multivariate N. A. NUC

FI

PE

EV = environmental variables; NUC = breeding environment; FI = Freshwater Institute

* MSD ¼
Xn

i¼1
rgRN;i−rgMUV ;i

� �2

n , where rgRN;i and rgMUV;i
are the estimated genetic corr

multivariate (MUV) models.
at harvest, estimates of rg varied between 0.57 and 0.99
(MSD = 0.17). For water temperature, estimates of rg var-
ied between 0.61 and 0.99 (MSD = 0.19). Estimates of rg
for Day*Degree were lower and varied between 0.35 and
0.97 (MSD = 0.09). For dissolved oxygen, estimates of rg
ranged from 0.60 to 0.99 (MSD = 0.14), which was simi-
lar to the range of estimates of rg for water temperature.
For photoperiod, estimates of rg ranged from 0.37 to
0.97 (MSD = 0.12). Reaction norm models with day-
degree and photoperiod as EV resulted in genetic corre-
lations closest to the multivariate model, which indicates
that day-degree and photoperiod were the most import-
ant EV that explain the GxE interaction. A plot of the
EBV of eight randomly selected sires against photo-
period shows that the GxE interaction was caused by
both heterogeneity of additive genetic variance and re-
ranking (Figure 2).

Factor analytic model
For the FA model, estimates of rg of BWH between PE
and NUC (0.36), between PE and FI (0.41), and between
PE and GE (0.39) were low, which indicate moderate to
arvest measured in different environments and mean
rm and multivariate models

FI PE GE MSD

0.99 ± 0.00 0.91 ± 0.03 0.57 ± 0.11 0.17

0.94 ± 0.02 0.63 ± 0.10

0.86 ± 0.04

0.97 ± 0.01 0.99 ± 0.00 0.61 ± 0.11 0.19

0.98 ± 0.01 0.79 ± 0.06

0.65 ± 0.10

0.97 ± 0.01 0.56 ± 0.10 0.82 ± 0.05 0.09

0.35 ± 0.13 0.66 ± 0.10

0.93 ± 0.02

0.75 ± 0.06 0.99 ± 0.00 0.45 ± 0.12 0.14

0.68 ± 0.08 0.93 ± 0.02

0.36 ± 0.13

0.97 ± 0.01 0.60 ± 0.09 0.96 ± 0.01 0.12

0.78 ± 0.06 0.87 ± 0.04

0.37 ± 0.13

0.56 ± 0.06 0.36 ± 0.04 0.54 ± 0.06 N.A.

0.41 ± 0.05 0.61 ± 0.07

0.39 ± 0.05

0.61 ± 0.10 0.25 ± 0.13 0.53 ±0.12 N.A.

0.40 ± 0.12 0.55 ± 0.12

0.49 ± 0.12

; PE = Peru; GE = Germany; EV = environmental variable; N.A. = not applicable.

elation of BWH between different environments from reaction norm (RN) and



Figure 2 Estimated breeding values of sires for body weight
(y-axis: in grams) against photoperiod (min) using the reaction
norm model. Only eight randomly chosen sires are plotted in this
graph to illustrate the degree of re-ranking.

Sae-Lim et al. Genetics Selection Evolution 2014, 46:16 Page 7 of 11
http://www.gsejournal.org/content/46/1/16
strong re-ranking. The estimate of rg of BWH between
NUC and FI was much lower (0.56) than the estimate
obtained through the reaction norm model when the EV
was photoperiod (0.97) or Day*Degree (0.97). For photo-
period, the covariance between NUC and FI obtained
through the reaction norm model was similar to that ob-
tained through the FA model (1524.3 and 1555.8, re-
spectively), which indicates that the higher estimate of rg
obtained with the reaction norm model (photoperiod)
was mainly caused by a lower VA (NUC: 1574 and FI:
1570), as shown in Table 3. In contrast, for Day*Degree
as the EV, the reaction norm model gave a high estimate
of rg due to both a higher covariance between NUC and
FI (1931.7) and a lower VA (NUC: 1774 and FI: 2221)
compared to those obtained through the FA model. Ele-
ments of the estimated loading vector γ̂ were equal to
40.34 for NUC, 38.57 for FI, 30.41 for PE, and 30.70 for
GE, which means that the latent common factor ex-
plained most of the of VA in NUC and FI (Table 3). The
proportion of genetic variance explained by the com-
mon factor was only 26.20% for PE and ψ̂ was high in
PE (2606.73), which showed that much of the additive
genetic variance was not accounted for by the latent
common factor.
Pearson correlations (ρ EP,L) between the latent common

factor and the known EV were negative and high for
Table 3 Estimates of the total genetic variance (V̂ A), loadings
variance explained by the latent common factor (%Expl) for e

Environment V̂ A, MUV V̂ A, RN, PP V̂ A, RN,

NUC 3304 1574 1774

FI 2405 1570 2221

PE 3558 3161 2455

GE 1638 1822 1713

NUC = breeding environment; FI = Freshwater Institute; PE = Peru; GE = Germany; MU
Day*Degree (DD); FA = factor analytic model.
Day*Degree (-0.91), and for age at harvest (-0.86). The
Kendall rank correlation (τ EP,L) was in agreement with the
(ρ EP,L) but lower for both Day*Degree (τ EP,L = − 0.67)
and age at harvest (τ EP,L = − 0.67) (Table 4). Water
temperature was moderately correlated with the latent
common factor (ρ EP,L = 0.50). Dissolved oxygen was weakly
correlated (ρ EP,L = − 0.14) or not correlated (τ EP,L = 0.00)
with the latent common factor. Photoperiod was positively
correlated with the latent common factor (ρ EP,L = 0.32, τ EP,

L = 0.33). These results indicate that Day*Degree was the
most likely EV responsible for the GxE interaction in
BWH.

Model comparison
With the reaction norm model, the lowest AIC (87645.7)
and BIC (87695.3) were obtained for photoperiod, which
indicated that it was the best fitted EV, compared to the
other EV (Table 5). However, Day*Degree (AIC = 87656.5,
BIC = 87706.2) fitted the model similarly well. The best fit
was concordant with a lower average estimate of rg for
either photoperiod or Day*Degree. The AIC (87513.0) and
BIC (87528.6) were lower with the FA model than with
the reaction norm model, which indicates that the FA
model is more parsimonious than the reaction norm
model.

Discussion
The aim of this study was to identify the environmental
variables (EV) that explain the GxE interaction for body
weight at harvest (BWH) of rainbow trout using a reac-
tion norm model and a factor analytic model.

Identification of environmental variables
To our knowledge, this is the first study that imple-
mented reaction norm and factor analytic models to
identify significant EV responsible for GxE interaction in
aquaculture. Our findings show that both methods can
be used to identify significant EV. However, the reaction
norm and FA models identified different significant EV.
Based on AIC and BIC, photoperiod gave a slightly bet-
ter fit with the reaction norm model than Day*Degree,
which indicates that photoperiod may also be the most
significant EV. However with the FA model, Day*Degree
(γ̂), specific genetic variances (ψ̂), and % genetic
ach environment

DD V̂ A, FA γ̂ ψ̂ %Expl

3283 40.3 1656 49.6

2362 38.6 874 63.0

3531 30.4 2607 26.2

1613 30.7 671 58.4

V =multivariate model; RN = reaction norm model for photoperiod (PP) and



Table 4 Correlations between loadings* and
environmental variables for body weight at harvest

Environmental variable** Pearson Kendall rank

Age −0.86 −0.67

Temperature 0.50 0.33

Day*Degree −0.91 −0.67

Oxygen −0.14 0.00

Photoperiod 0.32 0.33

*Obtained from factor analytic model.
**Mean of environmental variable (Table 1).
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was highly negatively correlated (Pearson correlation:
ρ EP,L = − 0.91) with loadings of the latent common fac-
tor, which suggests that Day*Degree was the most sig-
nificant EV. Both the reaction norm and FA models
indicate that Day*Degree is an important EV and that it
is less likely that temperature is responsible for the GxE
interaction. However, the power to identify EV is limited
due to having only four environments.
Identification of environmental variables that explain

GxE interaction has been studied using different methods.
In Guernsey cows from four different countries, among
the 15 environmental variables that were studied using a
random regression model, nine indicated the presence of
GxE interaction (estimates of rg varied between 0.85 and
0.98) [4]. By calculating genetic correlations between ani-
mals from opposite ends of environmental gradients,
Zwald et al. [6] reported that seven of 13 EV caused gen-
etic correlations to deviate from unity (rg = 0.79 to 0.90).
Identification of significant EV that cause GxE inter-

action is valuable because the information can be used
to reduce GxE interaction before optimization of a
breeding program. Optimization of a breeding program
may be more expensive than changing the significant EV
Table 5 Model comparison between five different
reaction norm models, factor analytic model, and
multivariate model on body weight at harvest

Model EV LogL NPar AIC BIC

Reaction norm Age 0.0 7 87721.5 87735.1

Temperature 3.1 7 87715.3 87728.9

Day*Degree 32.5 7 87656.5 87670.2

Oxygen 38.8 7 87643.8 87657.5

Photoperiod 43.0 7 87635.4 87649.0

Factor analytic Latent 105.2 12 87521.0 87544.4

Multivariate N.A. 114.12 14 87507.2 87534.5

EV = environmental variable; LogL = natural logarithm of likelihood deviated
from the smallest value (Age: -43853.7); NPar = number of parameters; AIC =
Akaike’s information criterion, BIC = Bayesian’s information criterion; bold letter
indicates the lowest AIC and BIC from both random regression and factor
analytic models; residual degrees of freedom are equal to 8854 (reaction norm
and factor analytic model) and 8853 (multivariate model); N.A. =
not applicable.
so that they are similar across environments, thereby re-
ducing GxE interaction, because of the possible need to
establish multiple sib-testing stations or environment-
specific breeding programs. However, changing EV to be
similar across environments may be expensive or impos-
sible for some farmers or producers, e.g. in the case of
sea water temperature. It may be more reasonable to
manipulate EV in the breeding environment (NUC) ra-
ther than across all diverging production environments
(FI, PE, and GE). However, the decision on which EV to
manipulate in the NUC will depend on the relative eco-
nomic importance of the corresponding production en-
vironments for which this EV is relevant. A reduction in
genotype re-ranking across environments would lead to
an increase of genetic gain of BWH in the production
environments but the extra profit that this generates
may be offset by the extra costs of EV manipulation.
Finding the significant EV is also of biological interest,
because it provides evidence for environmental sensitiv-
ity of growth in rainbow trout. Artificial selection will
target those fish that perform best in the stable and con-
trolled environment in which selection is usually done.
This could lead to increased environmental sensitivity
across multiple environments [22,23]. The elevated sen-
sitivity develops as a logical consequence of re-ranking
GxE interaction and/or when genetic variation in the se-
lected environment is higher than in the non-selected
environments. Higher sensitivity to environments may
have negative consequences, such as reduced fitness and
poor animal health in challenging environments [24]. Al-
ternatively, selection for high growth performance in a
challenging environment may lead to more robust and
better adapted fish to commercial production environ-
ments, thus reducing the detrimental side effects on, or
even improving, survival or disease resistance [14,25].
Previous studies have shown that photoperiod is one

of the major factors that influence growth in rainbow
trout [26-28]. In general, longer day length tends to in-
crease growth rate. Taylor et al. [27] found that rainbow
trout exposed to a light to dark hours (L:D) rhythm of
18:6 grew significantly faster than rainbow trout exposed
to L:D = 8:16, and expressed significantly higher circulat-
ing levels of insulin-like growth factor-I (IGF-I) hor-
mone. This hormone is positively correlated with growth
rate in rainbow trout [27]. These observations support
the idea that photoperiod may cause the significant GxE
interaction for growth if genetic variation in sensitivity
to photoperiod exists. The direction of change in day
length in Peru is opposite to that in the other locations.
The light rhythm can be manipulated in aquaculture
production. Manipulation of photoperiod by placing
lamps under or above the water is becoming common
practice to enhance growth and delay sexual maturation
in Atlantic salmon and rainbow trout [28]. Therefore, it
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may be possible to reduce the GxE interaction due to
different photoperiods.
Day*Degree is a combination of two factors: days to

harvest, which determine the length of the rearing
period, and average water temperature. Differences in
Day*Degree between environments may result from dif-
ferences in age or temperature, or both. It is easy to
adjust age at harvest so that it is the same across envi-
ronments, to reduce the observed re-ranking. However,
commercial market weights differ between countries,
and thus the age differences must be maintained. Most
of the production of rainbow trout occurs in fresh and
sea water net pens, ponds or raceways, in which
temperature control is difficult.

Model comparison
In this study, the most significant EV was identified
using the following criteria with the reaction norm
model: the EV that best fitted the data based on AIC
and BIC and the EV that resulted in the lowest mean
square deviation (MSD) between estimates of rg from
the reaction norm and multivariate models. Due to the
lack of continuous gradients within environments, the
reaction norm model resembled a model with categor-
ical EV. The reaction norm model would pinpoint the
EV more efficiently if the EV were measured on a more
continuous scale (e.g. more environments or treat-
ments). The factor analytic model is frequently used in
plant breeding, for example in multi-environment trials
to analyse data on variety testing [29]. The factor ana-
lytic model is the random version of a model with addi-
tive main effects and multiplicative interaction (AMMI)
[30-32]. Recently, it was suggested that the factor ana-
lytic model was useful to estimate GxE interaction in
animal breeding [18]. The factor analytic model was
used in international sire evaluations to reduce the num-
ber of parameters to be estimated, compared to estimat-
ing the full genetic variance-covariance matrix between
countries [33]. Our study used a two-step factor analytic
model to identify the environmental variable responsible
for the GxE interaction. The advantage of using a factor
analytic model is the ability to analyse latent common
factors, which can be correlated to known EV [7], as
shown in our study. The latent common factor can be
regarded as either a single factor or a composite of en-
vironmental factors, because several environmental fac-
tors may contribute to the GxE interaction between
environments.
The latent common factor in this study explained gen-

etic variance in body weight at harvest differently be-
tween environments. For instance, the latent common
factor explained only 26.2% of the total additive genetic
variance for BWH recorded in PE but 63% for BWH re-
corded in FI. These differences in the percentage of
explained additive genetic variance indicates the pres-
ence of GxE interaction. In all environments, the per-
centage of additive genetic variance was less than 100%,
which indicates that more than one latent common fac-
tor explained the GxE interaction. Due to the limited di-
mension of the G matrix, the second latent common
factor could not be studied, which would require, e.g., a
5×5 matrix and that the experiment is conducted in at
least five farms or locations. The second latent common
factor is expected to explain mainly additive genetic
variance in PE because common factors are orthogonal
and VA in the other environments was mainly explained
by the first latent common factor. Moreover, with a lim-
ited number of environments, the correlation between
the latent common factor and the EV may not be accur-
ate and therefore no solid conclusions can be made
about EV that explain the GxE interaction. Therefore, it
is recommended that a higher number of environments
are investigated in future research on GxE interaction.
Based on AIC and BIC, the factor analytic model was

more parsimonious than the reaction norm model,
which indicates that the factor analytic model was the
most suitable for our data set. This model is suitable
when the experiment does not have multiple farms per
environment, and to study latent common factors across
environments. With more than five environments, mul-
tiple latent common factors can be studied [32].
As an alternative to the reaction norm or factor ana-

lytic models, a hybrid between these two models can be
used to capture the GxE interaction and to identify EV.
By adding the environment-specific random effect from
the FA model to the first order reaction norm model, we
can quantify how much of the GxE interaction between
environments is explained by the reaction norm on the
EV, without the need to compare to the multivariate
model. For Day*Degree, the preliminary results from
such a hybrid model indicated a better goodness of fit
(AIC = 87520.0 and BIC = 87598.0; results not shown)
than the original reaction norm model (AIC = 87656.5
and BIC = 87670.2), as expected. The MSD from the
hybrid model was equal to 0.005, which implies that the
hybrid model could capture all the GxE interaction
present between environments like the multivariate
model. This contrasts with the reaction norm model
(MSD = 0.09), which deviated more from the multivari-
ate model. For photoperiod, the hybrid model also had
a better goodness of fit (AIC = 87524.2 and BIC =
87539.8; results not shown) than the reaction norm
model (AIC = 87635.4 and BIC = 87649.0). Thus, the
hybrid model is potentially useful to study GxE inter-
action and to identify EV.
The common environmental effect was excluded from

both reaction norm and factor analytic models. In our
previous study with the same data, this effect explained
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a small proportion of the phenotypic variation (c2 ≤ 0.04)
[14]. In general, the common environmental effect is
high in early life stages but decreases over time. In
addition, when a common environmental effect was fit-
ted, ASReml could not easily find positive definite solu-
tions and a converged log-likelihood. This is probably
due to the difficulty in disentangling genetic (co)variance
components from common environmental (co)variance
components. Additive genetic variances may be inflated
when ignoring common environmental effects [14,34]
and might result in biased estimates of the genetic cor-
relation. However, the bias in the genetic correlation
would depend on biases in the additive genetic covari-
ance and in the additive genetic variances, and might be
small if all components are proportionally affected. Prac-
tical factorial mating designs and/or multigenerational
data may be more efficient in separating genetic and
common environmental (co)variance components. This
should be taken into account in future studies on GxE
interaction.

Conclusions
Day*Degree and photoperiod were identified as environ-
mental variables causing a strong GxE interaction for
BWH in rainbow trout across four environments. Both
the reaction norm and factor analytic models can con-
tribute to the identification of environmental variables
responsible for the GxE interaction. A factor analytic
model is preferred over a reaction norm model when
limited information on the variation of EV between
farms is available.
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