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Resistance spreads rapidly in pathogen or pest populations exposed to bio-

cides, such as fungicides and antibiotics, and in many cases new biocides are

in short supply. How can resistance be reversed in order to prolong the effec-

tiveness of available treatments? Some key parameters affecting reversion of

resistance are well known, such as the fitness cost of resistance. However, the

population biological processes that actually cause resistance to persist or

decline remain poorly characterized, and consequently our ability to

manage reversion of resistance is limited. Where do susceptible genotypes

that replace resistant lineages come from? What is the epidemiological

scale of reversion? What information do we need to predict the mechanisms

or likelihood of reversion? Here, we define some of the population biological

processes that can drive reversion, using examples from a wide range of taxa

and biocides. These processes differ primarily in the origin of revertant

genotypes, but also in their sensitivity to factors such as coselection

and compensatory evolution that can alter the rate of reversion, and the

likelihood that resistance will re-emerge upon re-exposure to biocides. We

therefore argue that discriminating among different types of reversion

allows for better prediction of where resistance is most likely to persist.
1. Introduction
Resistance to a given biocide, such as an antibiotic or fungicide, can decline in

frequency in populations no longer exposed to it (e.g. [1–4]), but often does not

(e.g. [5–8]). Understanding what drives or prevents the decline of resistance

would help predict the outcome of interventions like restricting antibiotic

consumption, or multi-drug strategies aimed at minimizing resistance. Some

evolutionary processes and genetic factors that alter the likelihood of reversion

have been identified (e.g. coselection, costs of resistance, compensatory

adaptation) and studied for specific resistance mechanisms in controlled exper-

iments. In parallel, many studies have characterized changes in resistance,

including associated genetic changes (e.g. [9]), in real-world pathogens and

pests. Across systems however, it is unclear why reversion is more likely for

some resistance mechanisms and ecological scenarios than others. Here, we

identify some common themes of reversion among systems where resistance

has been observed to decline. We draw on examples from various taxa includ-

ing bacteria, protists, viruses, and fungi, because most of the key processes have

been observed in some taxa or scenarios and not others. By doing so, we aim to

alert researchers studying resistance in individual species or scenarios to mech-

anisms of reversion that may be important but so far only observed elsewhere.

We first define the population biological processes that can reduce the aver-

age level of resistance in a population. We distinguish three types of reversion

(figure 1): (i) resurgence of the ancestral, sensitive genotype that was prevalent

before resistance evolution, (ii) acquisition of additional alleles by the resistant
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Figure 1. Alternative pathways to reversion. The grey rectangle represents a pathogen or pest, the black circle its genome. Resistance alleles are shown in red, other
genetic changes affecting resistance in blue, and genetic variation at other loci in yellow. Resistance acquired by (a) mutation or (b) horizontal gene transfer may be
reverted through isogenetic, paragenetic, or allogenetic processes. Some processes involve genetic changes to the prevailing genotype (isogenetic reversion via
mutation or loss of horizontally transferred elements; paragenetic reversion), while others involve the prevailing genotype being replaced by a competing lineage
of the same strain or species that is either the same as the ancestral genotype (isogenetic reversion via regrowth or reinvasion) or different (allogenetic reversion).
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lineage that decrease resistance without restoring the ances-

tral genotype, (iii) replacement of resistant genotypes by

less resistant genotypes of the same species or strain that

are not derived from the ancestral population. We refer to

these processes as isogenetic, paragenetic, and allogenetic

reversion, respectively (figure 1), reflecting the different

types of genetic variation involved. We give examples of

each type and ask whether genetic or ecological information

can explain which type is most likely in a given scenario, at

what level it occurs (e.g. within-host versus among-host),

and ultimately whether resistance is likely to persist or

decline. A key parameter driving reversion is the fitness

cost associated with resistance, which varies with genetic

and environmental factors (e.g. [10,11]). This variation is

important for predicting reversion and has been reviewed

extensively elsewhere (e.g. [12]). However, the population

biological processes by which costs of resistance translate to

a net reduction in average resistance have received much

less attention, and that is our focus here.
2. Isogenetic reversion by regrowth or reinvasion
Provided the ancestral sensitive population is not eliminated

during treatment, it may increase from a reduced frequency

after biocides are removed. The required coexistence of sensi-

tive and resistant strains beyond treatment is most likely

when biocide use is reduced after resistance begins to

spread [13], which is the case in many clinical, agricultural,

and veterinary settings. For example, WHO guidelines

suggest reviewing treatments if the percentage of resistant

Neisseria gonorrhoeae isolates obtained through routine sur-

veillance exceeds 5% [14]. Even at the within-host scale,

treated patients can harbour diverse populations in terms of
antibiotic susceptibility [15]. Similarly, crop plants are often

colonized by highly diverse populations of fungal pathogens

(e.g. [16]), which can display significant variation in fungicide

sensitivity even when sampled from the same field [17,18] or

the same plant (e.g. [19]). In such scenarios, unlike mechan-

isms of reversion that first require the appearance of

mutations or horizontal gene transfer, there is no waiting

time for susceptible genotypes to arise and the likelihood

that they are lost by genetic drift is relatively small as the

initial revertant population is larger [20]. In line with this,

Yang et al. [21] found reversion of transmitted drug resistance

in HIV-1 was more likely in populations polymorphic at the

locus involved in resistance.

The ancestral, sensitive genotype can survive treatment by

remaining viable despite exposure to biocides, which sub-

sequently permits reversion by regrowth from a reduced

frequency, or because biocide concentrations are spatially

heterogeneous, which permits reversion by reinvasion from

untreated patches. In the former case, there are at least three

processes allowing survival during exposure: (i) biocides inhi-

bit growth of susceptible genotypes but are nonlethal, such as

bacteriostatic or fungistatic compounds, (ii) susceptible indi-

viduals enter a phenotypic state permitting survival at

otherwise lethal doses, such as bacterial biofilms or persisters,

(iii) resistant individuals are present in sufficient numbers and

resistance is encoded by an external detoxification mechanism,

such as secreted deactivating enzymes or phospholipids [22]

that reduce the effective concentration experienced by some

susceptible individuals. Recent work suggests this increases

survival of Staphylococcus aureus exposed to daptomycin in

mice [23]. Such resistance mechanisms may be relatively

likely to be associated with isogenetic reversion via regrowth.

Unlike regrowth, reinvasion can occur even when all sus-

ceptible individuals exposed to high biocide concentrations
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are killed. This requires sufficient spatial heterogeneity of bio-

cide concentrations during treatment for the ancestral

genotype to persist in some hosts or patches and sufficient

pathogen migration for them to recolonize hosts or patches

where resistant genotypes had spread during treatment.

This could occur at the within-host scale for biocides with

poor penetrance, such as the fungicide amphotericin B [24].

Resistance to amphotericin B in Candida albicans is very

costly, increasing sensitivity to febrile temperatures, neutro-

phil attacks and other host-produced stressors in vitro, and

reducing fitness in a mouse model [25]. Resistance rarely

establishes in treated infections and susceptible C. albicans
genotypes are isolated from treated hosts [24], suggesting

reversion by reinvasion could be relevant here. Reinvasion

is also possible at the among-host scale, and this may explain

reversal of chloroquine resistance of Plasmodium in Malawi,

which was found in most but not all infections at its peak

and declined rapidly after chloroquine treatment was

removed in 1993 [2,26]. In this case, the susceptible popu-

lation was genetically diverse at other loci both before and

after resistance/reversion [26] and likely persisted during

the period of chloroquine use in asymptomatic, untreated

infections. This suggests predicting reversion by reinvasion

at the among-host scale requires not only monitoring the fre-

quency of resistance in symptomatic infections but also

nearby reservoirs or environmental compartments.

Reversion by reinvasion is likely to be common for plant

pathogens because crops are typically planted in a patchwork

where fungicide-treated fields can be adjacent to untreated

fields. For example, Japanese populations of the rice blast

pathogen Pyricularia oryzae became resistant to a fungicide

affecting melanin biosynthesis 3 years after it was introduced

[27]. Resistance was associated with a single nonsynonymous

point mutation that occurred independently in three different

P. oryzae lineages. After discontinuing the use of this fungi-

cide, the frequency of resistant strains decreased from 72%

to 25% in 1 year and was undetectable after 4 years. Much

of the increase and decrease in resistance was due to spread

of particular P. oryzae lineages including R-Sa4, R-Sa5, and

R-Sa18 carrying resistance mutations [28]. These lineages

showed higher fitness when the fungicide was present

but were quickly replaced by other susceptible lineages,

especially S-Sa5, after the fungicide was withdrawn [27].

Similarly, approximately 60% of strains of the sugar beet

pathogen Cercospora beticola were resistant to triphenyltin

hydroxide after approximately 14 years of continuous use

in North Dakota and Minnesota [29], so most beet growers

switched to fungicides with different modes of action. Ten

years after switching fungicides, strains resistant to triphe-

nyltin hydroxide were no longer detected. Soon thereafter,

growers began to use triphenyltin hydroxide successfully.

Both of these examples illustrate that biocides can be success-

fully reintroduced if fitness costs are high enough and

pathogen migration among subpopulations is sufficiently

high to enable susceptible alleles to reinvade from untreated

areas while being sufficiently restricted to prevent movement

of resistant alleles into new areas where the biocide is still

effective. The plant pathologists working on C. beticola gener-

ate resistance maps annually to identify geographical

hotspots of resistance to particular fungicides, and sugar

beet growers in these hotspots are encouraged to use fungi-

cides with a different mode of action in the following year

to enable a reversion of resistance. This also suggests that
alternating biocide applications may provide an effective

long-term strategy to manage resistance.
3. Isogenetic reversion by mutation
If the ancestral, sensitive genotype that was prevalent before

resistance evolution has been lost from the population it may

be regained by reversal of the mutation(s) conferring resist-

ance, as has been documented for a wide range of

organisms including bacterial pathogens in vitro [30] and

for HIV-1 in patients [21,31]. The likelihood of reversion via

backward mutation depends on the supply rate of mutations

restoring the ancestral genotype and their selective effects

relative to alternative mutations at other loci [32], or patho-

gen migration. The likelihood of mutation back to the

ancestral genotype will be greatly reduced when resistance

results from multiple mutations, such as high-level resistance

to fluoroquinolones in pathogenic bacteria [33], or when the

genomic mutation rate is low.

Even when reversion requires a single backward

mutation, there can be multiple possible beneficial mutations

at other loci that have similar fitness benefits but do not

reverse resistance. Experiments with pathogenic bacteria

suggest acquisition of such compensatory mutations is

more likely than reversion both in vitro [34] and in vivo [35].

In Mycobacterium tuberculosis, putative compensatory

mutations have also been identified in clinical isolates [9].

Compensatory mutations are expected to have a fitness

benefit contingent upon the presence of particular resistance

alleles [36] or combinations of resistance alleles [37], meaning

that reversion mutations are probably less beneficial, and

therefore less likely to spread, after compensatory adaptation.

In both M. tuberculosis and Escherichia coli, some mutations

conferring resistance to other antibiotics also reduce the fit-

ness costs of existing resistance alleles [38,39], indicating

that switching from one antibiotic to another could simul-

taneously promote new resistance phenotypes and stabilize

existing ones. Thus, isogenetic reversion via backward

mutation is likely to be rare, as it can be precluded by

mutations at other loci that are known to be segregating in

real pathogen populations. Consistent with this, very few

studies have reported this type of reversion outside the lab-

oratory, with the notable exception of HIV-1 [21,31]. The

reversibility of resistance in HIV-1 appears to vary among

resistance alleles and may be explained by multiple factors,

including high mutation rate [40], fitness costs associated

with resistance [41], and that resistance can be encoded by

a single amino acid change, meaning that a single mutation

can restore the wild-type allele [42]. Because some of these

factors also apply to other viruses, we can speculate that

the supply of backward mutations may be relatively high

for viruses compared to other types of pathogens.
4. Isogenetic reversion by loss of resistance
genes

The rate at which revertant genotypes are generated is prob-

ably considerably higher for some resistance mechanisms on

horizontally transferred elements than backward mutation of

chromosomally encoded resistance. For example, plasmids

can be lost through segregation at high rates [43] and this

can rapidly reduce plasmid frequency in the absence of
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positive selection [44]. As with chromosomal mutations, the

rate at which revertant genotypes displace resistant ones

also depends on the cost of plasmid-encoded resistance [45]

(which can be compensated by additional mutations [46]).

The overall rate of decline will therefore depend on the bal-

ance of segregational loss, fitness costs, and conjugative

transfer [47,48]. These parameters can change rapidly. For

example, Smith [49] showed that despite the persistence of

tetracycline-resistance genes in E. coli isolated from British

pigs after prohibition of veterinary tetracycline use, the

transmissibility of resistance among bacteria declined.

Horizontally transmissible resistance alleles can also be

maintained by post-segregational killing mechanisms such

as toxin-antitoxin (TA) systems (unstable antitoxin; stable

toxin) that make their loss deleterious to the host cell [50].

This could prevent isogenetic reversion and explain the

prevalence of such plasmids in populations not consistently

exposed to high antibiotic concentrations [51], including

glycopeptide-resistant Enterococcus faecium [52].

When plasmid-encoded resistance genes are lost through

segregation, they may be maintained in the local ‘resistome’

of the microbial community [53], and consequently may be

rapidly regained by horizontal gene transfer if selecting anti-

biotics are reintroduced. This could occur if treatment

promotes the spread of resistance in both the focal pathogen

species and related lineages, and following the end of treat-

ment resistance alleles are lost at different rates in different

lineages. For example, Chung et al. [1] showed that resistance

to ampicillin rapidly increased in Haemophilus isolates during

treatment, but declined rapidly after treatment. This was cor-

related with changes in the frequency of a resistance element

readily transferrable among related species including com-

mensals [54]. Thus, although resistance declined in the focal

pathogen species, the likelihood of re-evolving resistance

upon re-exposure will depend on whether it had declined

to a similar extent in other lineages that potentially constitute

a reservoir of resistance genes.

Reversion by loss of resistance determinants from the same

lineage that evolved resistance is not limited to plasmids, or

even to horizontally transmitted elements. For example, for

the human fungal pathogen Candida albicans, changes in fluco-

nazole sensitivity were associated with aneuploidy caused by

an isochromosome, an altered chromosome structure formed

by fusing two left arms of chromosome 5, which carries the

ERG11 gene encoding the azole target protein. The isochromo-

some emerged in patients treated with fluconazole and then

disappeared after treatment stopped [55].
5. Paragenetic reversion by mutation
Some genetic changes that diminish fitness costs can reduce

resistance without reversing the original resistance allele.

This appears to explain the reversal of chloroquine resistance

in French Guiana, linked to additional mutations in the pfcrt
gene involved in resistance [56]. That resistance in French

Guiana reverted by this mechanism rather than reinvasion,

as in Malawi, could reflect several differences in malaria dis-

ease dynamics and resistance evolution. The most important

is probably that resistance in French Guiana, where trans-

mission rates are low, appeared to fix during the period of

chloroquine use [56]. Thus, following elimination of the

ancestral genotype and without an influx of susceptible
genotypes via transmission from other regions, reversion

was only possible by genetic changes in the same lineage

that evolved resistance. A similar process is thought to be hap-

pening for the CYP51 protein in plant-pathogenic fungi.

Widespread use of azole fungicides over several decades in

European wheat fields led to elimination of the ancestral

wild-type CYP51 allele in Zymoseptoria tritici, which was

replaced by a highly diverse array of CYP51 alleles that vary

in their sensitivity to different members of the azole fungicide

family [57], with evolved alleles conferring greater resistance

to some azoles and greater sensitivity to other azoles [58].

Here, despite genetic variation at loci that determine resist-

ance, reversion to the wild-type allele is virtually impossible.

In general, the mutational target size for paragenetic

reversion is likely greater than that for isogenetic reversion.

For example, Salmonella enterica Typhimurium and S. aureus
can both recover the cost of mupirocin resistance by alterna-

tive mutations in ileS, the gene involved in resistance. These

mutations increase fitness in the absence of antibiotics but

reduce resistance [59,60], in some cases fully restoring suscep-

tibility. Paragenetic reversion is also distinct from isogenetic

reversion because the derived, reverted genotype is different

from the pre-resistance-evolution ancestor. This is important

because it could potentially alter the propensity to re-evolve

resistance. For example, restrictions on antibiotic usage in Ice-

land were followed by an increase in the frequency of

Streptococcus pneumoniae clones that retained resistance

genes but had deactivated them, losing some of their resist-

ance phenotypes [61]. Among the reverted clones, some

had deleted large regions of resistance genes [61]. This

should reduce the likelihood of them re-evolving resistance

by mutation. Here, other clones including the original

multi-resistant genotype also persisted, suggesting that both

the mechanism of reversion and its extent in the pathogen

population are important for predicting the likelihood that

resistance re-emerges upon re-treatment. Deactivation of

resistance by partially or completely deleting resistance

genes has also been observed on resistance plasmids in

E. coli [62,63]. This type of reversion is more likely for dedi-

cated resistance genes that can be deactivated at little cost.

This is because when resistance results from mutations in

essential enzymes, such as RNA polymerase or the ribosome,

deleting or deactivating these genes is lethal to bacteria.
6. Paragenetic reversion by modulating gene
expression

Resistance can also be reduced without restoring the ancestral

sequence by genetic changes that do not disrupt resistance

genes themselves but alter their expression level. A recent

study showed the importance of this process for ‘vancomy-

cin-variable’ genotypes of E. faecium: an insertion sequence

upstream of the vanHAX operon effectively silences the

VanA resistance phenotype [64]. Critically, the resultant gen-

otype is phenotypically sensitive but still possesses resistance

genes, and the unstable nature of the insertion means that

excision events are common. Consequently, resistant geno-

types arise frequently via excision of the insertion sequence

and spread rapidly upon treatment with vancomycin [64].

Thus, this mechanism of paragenetic reversion is associated

with a relatively high propensity to re-evolve resistance

upon re-exposure to selecting biocides. Silencing mutations



rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20171619

5
that restore susceptibility but leave the bacteria capable of

rapidly re-acquiring resistance have also been detected in

plasmid-carrying E. coli [63].

Altered expression of resistance genes could also occur by

reshuffling of integrons. Integrons are ‘gene capture devices’

found in many bacteria that can mediate the acquisition and

expression of novel genes [65]. Their role in antibiotic resist-

ance evolution is well established [66]: in many Gram-

negative bacteria, antibiotic resistance genes have been

acquired horizontally from other bacteria, incorporated into

an integron and then selectively spread during treatment.

However, integrons could also play an important but hitherto

unexplored role during reversion once treatment is ceased.

This is because the integrase, a recombinase that forms the

core of an integron, can not only incorporate new genetic

material but also excise and reshuffle the gene cassettes

making up the integron. Consider a resistance gene cassette

located close to the cassette promoter (Pc, usually situated

inside the integrase gene). Such a resistance gene will be

highly expressed and thus provide strong resistance, but

may also impose fitness costs [67]. In the absence of drug

pressure, integrase-mediated reversion can occur in two

ways: the cassette may be excised and lost, or other cassettes

(either excised from further downstream within the integron

or imported by horizontal gene transfer) may be integrated

in the first position of the integron, so that the focal resistance

cassette is moved downstream. Because genes farther from the

cassette promoter (Pc) are less highly expressed [68,69], contin-

ued reshuffling could reduce expression and associated fitness

costs. Importantly, reversion by integron reshuffling need not

be driven by selection to reduce fitness costs but could also be

a by-product of selection for high expression of other cassettes,

such as those encoding resistance to other drugs. Thus, rever-

sion of integron-mediated resistance might occur rapidly even

in the absence of fitness costs, provided other stressors with

corresponding resistance gene cassettes are present. An impor-

tant finding in this regard is that in class 1 integrons, integrase

expression is regulated by the SOS response [70], which in

turn is triggered by several antibiotics. Recent work indicates

that cassette excision is more common than excision followed

by re-insertion into the first position [69], which has important

consequences for the capacity to re-evolve resistance upon re-

exposure to selecting antibiotics: if the cassette is still present,

increased expression may be regained by further reshuffling

but if the cassette is lost it needs to be regained by horizontal

gene transfer. In conclusion, integrons are expected to effect

both rapid reversion and re-evolution of drug resistance, but

we are only beginning to understand the population biological

dynamics of these processes.
7. Allogenetic reversion within hosts
Under both isogenetic and paragenetic reversion the derived

population of pathogens or pests is descended directly from

the ancestral genotype that was present prior to resistance evol-

ution. However, it is also important to account for interactions

among different lineages of the same species or strain, because

in many pathogens multiple genotypes are circulating within

communities of hosts or within individual hosts [6,61,71]. Clo-

sely related strains and species can have characteristic

differences in resistance phenotypes, such as penicillin suscep-

tibility in Streptococcus pyogenes compared to related species
[72], or the relatively high antibiotic resistance of E. coli from

clonal complex 87 [73]. This means a lineage that has evolved

resistance can potentially be outcompeted within a host by sus-

ceptible lineages of the same strain or species, such as those

that superinfect the same host after biocide concentrations

decline to a level conferring a competitive advantage to suscep-

tibles. Reversion at the within-host scale appears to be common

for antibiotic-resistant bacteria, as demonstrated by a recent

meta-analysis [74]. Note that allogenetic reversion is different

from clearance in that clearance is defined by a change in absol-

ute pathogen or pest population size, whereas reversion is

defined by a decline in average resistance in the population.

Nevertheless, if a pathogenic, resistant lineage is replaced by

a nonpathogenic, sensitive lineage, we could consider this to

be simultaneous reversion and clearance.

As with other types of reversion, allogenetic reversion is

most likely when resistant pathogens incur large fitness

costs. However, allogenetic reversion is also highly sensitive

to the degree of local adaptation in the resistant population

(figure 2): even if resistance itself is costly, resistant genotypes

may be fitter than immigrating susceptibles if they also carry

beneficial mutations affecting other traits relevant in the cur-

rent environment. This could result, for example, from

pathogens adapting to host factors or interactions with

other microorganisms during chronic infection, as character-

ized extensively in Pseudomonas aeruginosa infections of

cystic fibrosis patients [75]. Because allogenetic reversion at

the within-host scale is less likely when transmission is too

low for multiple genotypes to be present in the same host

(figure 2), we can speculate that local adaptation is most

likely to prevent reversion in either chronic infections or

highly spatially structured populations, as opposed to scen-

arios with high gene flow among heterogeneously treated

patches or hosts, such as in agricultural settings.
8. Allogenetic reversion at the among-host scale
Allogenetic reversion within hosts or patches relies on a supply

of susceptibles and their competitive advantage over resistant

genotypes in the same host or patch. However, allogenetic

reversion can also be driven by resistant and susceptible gen-

otypes colonizing new hosts or patches at different rates.

Assuming a supply of uninfected or recovered hosts, pathogen

genotypes with higher transmission rates will colonize vacant

hosts or patches more frequently and consequently increase

their frequency across the pathogen metapopulation (across

all hosts or patches). Consistent with the idea that variable

transmission rates could influence reversion, resistance to

some antibiotics in M. tuberculosis can reduce transmission

rate per infected host [76]. Resistance has also been associated

with altered transmission in Plasmodium spp. [77]. In general,

we can predict this type of reversion to be most likely for

pathogens that are rapidly or widely transmitted relative to

the duration or scale of treatment, providing a supply of sus-

ceptibles across different patches or hosts. This is particularly

relevant for fungicides used against plant pathogens, where

spatially heterogeneous biocide coverage is common.
9. Coselection
All of the above reversion mechanisms depend on the selec-

tive effects of resistance alleles, which can be modified by
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of susceptibles from other hosts/patches and the likelihood of coinfection, preventing both allogenetic reversion and isogenetic reversion by reinvasion. (c) Resistant
genotypes are also locally adapted to their present host or patch, diminishing the competitive advantage of susceptibles and preventing isogenetic reversion by
regrowth or reinvasion and allogenetic reversion resulting from outcompetition by coinfecting or superinfecting susceptibles; here the most likely reversion pathway
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migration/gene flow less likely.
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coselection: if resistance to a biocide is positively or nega-

tively correlated with one or more other traits, selection on

those traits can alter the frequency of biocide resistance

[78]. Positive coselection of resistance mechanisms to multiple

biocides (cross-resistance) is common and can result from a

single mechanism conferring resistance to multiple biocides

[79], or from two or more resistance genes occurring on the

same genetic element, such as a multi-resistance plasmid or

integron [5,80]. Coselection has been implicated in the lack

of reversion of some types of antibiotic resistance in the

absence of selecting drugs, because coselecting compounds

were still in use [6,8]. On the other hand, recent in vitro
work shows that resistance to some antibiotics increases bac-

terial susceptibility to other antibiotics (collateral sensitivity)

[81,82], so that treatment with one may select for reversion

of resistance to the other [10]. The relevance of reversion

driven by collateral sensitivity remains unclear for bacterial

pathogens outside the laboratory, but evidence from other

pathogens suggests it can contribute to the efficacy of combi-

nation therapy. In HIV-1, the common clinical mutation

M184 V of the reverse transcriptase (RT) enzyme confers

resistance to 3TC (lamivudine) but suppresses the effect of

AZT (zidovudine) resistance mechanisms in the same enzyme

[83]. In vitro, AZT therapy alone or in combination with 3TC

leads to reversion of the M184 V mutation [84], and similar

reversion caused by sensitivity to PMPA (tenofovir) has been

shown in vivo using macaques [85]. AZT and 3TC have been

used together in fixed-dose combinations since 1997 and this

is still considered an essential formulation [86].

In agriculture, collateral sensitivity is called negative

cross-resistance and was exploited using mixture strategies

that ultimately failed. Benzimidazoles inhibit ß-tubulin

polymerization and prevent cell division in many species of
fungi. Mutations in the ß-tubulin gene at codons 198 and

200 confer resistance to benzimidazoles. Two other fungicide

classes, N-phenylcarbamates and benzamides, also inhibit

ß-tubulin polymerization. Fungal strains sensitive to benzimi-

dazoles are resistant to N-phenylcarbamates, while strains

that are resistant to benzimidazoles are sensitive to N-phenyl-

carbamates. This allowed mixtures of these two fungicide

classes to successfully control Botrytis cinerea in European

vineyards from 1987 until 1994, when the F200Y mutation

appeared which conferred resistance to both fungicide classes

[87]. For N-phenylcarbamates and benzamides, negative

cross-resistance depends on specific mutations present at

codon 198 [88]. Wild-type isolates that are sensitive to benzi-

midazoles are insensitive to N-phenylcarbamates and

benzamides. Isolates carrying the alanine E198A mutation

lose sensitivity to benzimidazoles but become sensitive to

N-phenylcarbamates and benzamides. However, another

allele at this locus, E198 K, resulted in resistance to all three

fungicide classes [89–91]. In such cases, alternative ways of

deploying biocides, such as 2-way or 3-way alternations

that exploit negative cross-resistance (collateral sensitivity)

to drive recurrent rounds of reversion of single-resistance,

may be more effective than using mixtures that consistently

select for multi-resistance. However, pathogens may even-

tually overcome both types of treatment if generalized

resistance mechanisms can evolve.

Coselection can also be driven by resistance being associ-

ated with traits other than resistance to additional biocides.

For example, vaccines targeting resistant pneumococci led

to a reduction in the prevalence of the strains included in

the vaccine, which also had high resistance, indicating that

an association between vaccine susceptibility and drug resist-

ance can promote reversion [92]. Recent work suggests
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linkage with alleles affecting other aspects of pathogen life

history, such as carriage duration, can also drive coselection

during temporally variable exposure to antibiotics [93]. In

general, the potential for coselection to influence reversion

will depend on the extent to which resistance is correlated

with other traits. In the simplest scenario, where resistance

to a single biocide results from a single resistance gene that

does not affect other traits and is not in linkage disequili-

brium with other types of genetic variation under selection,

coselection is unlikely to influence reversion. Alternatively,

if resistance pleiotropically influences other traits (e.g. [94])

or is linked to other resistance genes [5], there is greater

potential for coselection. For example, resistance to azole

fungicides was pleiotropic with higher melanization and

slower growth rates in Z. tritici [95] and with slower

growth rates in Rhynchosporium commune [19]. Coselection

driven by associations with other traits is particularly rel-

evant for allogenetic reversion, where by definition resistant

and sensitive genotypes differ at other loci beyond those

encoding resistance. Moreover, when coselection is caused

by genetic associations rather than pleiotropy it is expected

to be more important in pathogens with low than with

high rates of recombination or genetic exchange.
10. Conclusion
Why does discriminating among different types of reversion

matter?

First, the risk of resistance re-emerging upon re-introduc-

tion of a biocide depends on the mechanism of reversion. For

example, paragenetic reversion via unstable genetic changes,

as for vancomycin variable enterococci [64], allows resistance

to be rapidly regained upon re-exposure to antibiotics. The

opposite effect is likely for paragenetic reversion by large

deletions in resistance-determining regions, as observed in

S. pneumoniae [61]. Therefore identifying the genetic basis of

reversion, and ideally testing the stability of revertant pheno-

types by culturing them in vitro or in animal models, permits

predictions about the re-emergence of resistance.

Second, identifying likely mechanisms of reversion can

inform experiments and surveillance. For example, exper-

iments with homogeneous, resistant populations and no

immigration are a poor model for scenarios where reversion
is most likely via regrowth or reinvasion. This may explain

the rarity of reversion in pure-culture evolution experiments

compared to natural populations of bacterial pathogens

[96]. Predicting reversion in such pathogens could be facili-

tated by measuring resistance for multiple clones from the

same individual host or population (estimating sample diver-

sity of resistance as well as the mean). In other scenarios, such

as when resistance is reversed by loss of horizontally transfer-

able elements that might persist in related members of the

local microbial community, as observed for Haemophilus spp.

[1,54], monitoring resistance genes beyond the focal pathogen

could improve predictions. Such information is increasingly

available through metagenomic/non-culture-based approaches

to surveillance [97]. Finally, when asymptomatic infections are

common and transmission is high enough to permit reinva-

sion, as for chloroquine resistance in Malawi [26], monitoring

resistance beyond symptomatic, treated infections may help

predict the potential for reversion by reinvasion.

Third, some reversion mechanisms, particularly coselec-

tion, can potentially be exploited to minimize the spread of

resistance during treatment. These effects rely on successive

rounds of reversion driven by negative cross-resistance/

collateral sensitivity [10]. Negative cross-resistance has

already been exploited with limited success against fungal

pathogens [90]. For bacterial pathogens, results from resistant

mutants isolated in vitro are promising [81,82], but imple-

menting such strategies will require that resistance

mechanisms in natural and clinical populations also display

negative cross-resistance/collateral sensitivity. Ideally, this

would be determined by measuring resistance profiles of iso-

genic strains with and without the resistance mechanisms

circulating in pathogen populations, but the potential for

managing resistance via coselection can also be inferred

indirectly by measuring resistance profiles of clinical isolates,

information that is already widely collected [15], and testing

for non-random associations between resistance phenotypes.
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