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A basic problem of microarray data analysis is to identify genes whose expression is affected by the distinction between malignancies
with different properties. These genes are said to be differentially expressed. Differential expression can be detected by selecting the
genes with P-values (derived using an appropriate hypothesis test) below a certain rejection level. This selection, however, is not
possible without accepting some false positives and negatives since the two sets of P-values, associated with the genes whose
expression is and is not affected by the distinction between the different malignancies, overlap. We describe a procedure for the
study of differential expression in microarray data based on receiver-operating characteristic curves. This approach can be useful to
select a rejection level that balances the number of false positives and negatives and to assess the degree of overlap between the two
sets of P-values. Since this degree of overlap characterises the balance that can be reached between the number of false positives and
negatives, this quantity can be seen as a quality measure of microarray data with respect to the detection of differential expression. As
an example, we apply our method to data sets studying acute leukaemia.
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Microarrays allow for the simultaneous measurement of expres-
sion levels of thousands of genes in tissues originating from
different classes of malignancies (e.g., normal and malignant
tissues (Alon et al, 1999); tumours that are and are not sensitive to
chemotherapy (Kihara et al, 2001); tumours with good and poor
prognosis (van ‘t Veer et al, 2002) and tumours with and without
metastatic potential (Ramaswamy et al, 2003)).

Usually a test statistic or a hypothesis test (resulting in a P-value
for each gene) is used to rank the genes with respect to their
differential expression between the different tumour types or
experimental conditions. Subsequently, an arbitrary threshold
or rejection level a (genes with a P-value smaller than a are
declared to be positive or differentially expressed) is chosen
to select the genes that warrant further investigation or
validation (e.g., for target discovery in drug development Gerhold
et al, 2002).

However, due to the overlap of the P-values of the genes that are
and are not actually differentially expressed (i.e., the genes whose
expression is and is not affected by the difference between the
experimental conditions), the choice of this rejection level has
some consequences (also see Table 1). Firstly, genes without actual

differential expression can accidentally have a P-value that is lower
than the rejection level. Therefore, these genes are wrongfully
declared to be differentially expressed. In statistics, this is also
called a Type I error. This results in a number of false-positive
genes that will not yield any results in further investigations. Since
the number of genes in a microarray, that is not actually
differentially expressed, usually is high, the number of false-
positive genes at commonly used rejection levels (e.g., 5%) can be
considerable (problem of multiple testing).

Secondly, the choice of the rejection level can also result in a
certain number of false-negative genes (Type II error). These are
the genes that are actually differentially expressed but that have a
P-value that is larger than the rejection level, resulting in
discarding potentially valid targets.

Recently, much attention has been paid in literature to the
control of the number of false positives or Type I error (Keselman
et al, 2002; Reiner et al, 2003; Storey and Tibshirani, 2003).
Classically, by applying a Bonferroni correction, one can control
the family-wise error (FWE; probability of having one or more
false positives) at a given level, fixed beforehand. However, a
Bonferroni correction results in extremely low rejection levels for
microarray data. Controlling the FWE is therefore too stringent in
this setting and results in an unacceptable Type II error (leading to
an unacceptable loss of statistical power). Controlling the false
discovery rate (FDR; expected fraction of genes falsely declared
positive among all the genes declared differentially expressed)
(Benjamini and Hochberg, 1995; Reiner et al, 2003; Storey and
Tibshirani, 2003) is less stringent and seems a more sensible
approach for microarray data but still does not control the Type II
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error, which could still be large and lead to the loss of a
considerable number of missed targets. Control of the Type I error
in microarray data often goes at the expense of the Type II error
that remains uncontrolled and (too) large.

While the study of multiple testing finds its roots in genetic
studies where the number of positives is usually small and control
of false positives is paramount, the number of positives in studies
of differential expression between patient biopsies is large and
false negatives become an equally important issue. Owing to this
historical reason, we believe that the control of false negatives in
multiple testing methods has been somewhat overlooked.

In this paper, we present a method based on receiver-operating
characteristic (ROC) curves that does not control the Type I or
Type II errors but that tries to balance them. We aim to obtain a
sensible or optimal – according to a certain criterion – trade-off
between false positives and negatives. Moreover, the use of ROC
curves enables us to estimate the degree of overlap between the P-
values of genes that are and are not actually differentially
expressed. This amount of overlap in its turn determines the
relationship between the false positives and negatives and the level
at which the optimal trade-off or balance between them can be
reached (i.e., the lower the amount of overlap, the better the
optimum balance). The assessment of the amount of overlap
between the P-values by ROC curves can therefore be used to
assign a quality measure to a specific microarray data set. Using
two publicly available data sets (both dealing with acute
leukaemia), we show that this quality measure can be used to
compare different microarray data sets with respect to their ability
to discriminate between genes whose expression is and is not
affected by the different conditions. Since, in the near future,
microarray data sets that address similar hypotheses will become
increasingly available (even to such an extent that meta-analysis
techniques will be necessary to analyse them simultaneously; see
Rhodes et al (2002) and Moreau et al (2003)), assessing their
quality could become an important issue.

MATERIALS AND METHODS

Consider microarray data containing several sets of experiments,
each analysing tissues originating from a specific group of
malignancies or a specific condition, and containing expression
levels for N genes. Assume that we have already used a certain
hypothesis test to calculate the P-values pi of the respective
genes. These P-values reflect the probability that an equally good
or better test statistic, quantifying the difference between the gene
expression levels of the different conditions, is generated if a
certain null hypothesis is true. In general, the null hypothesis states
that there is no actual differential expression. Also assume that
the genes are ordered according to this P-value, so that
p1op2oyopN. Note that, in this paper, we chose the Wilcoxon
rank sum test (a nonparametric test that examines the null
hypothesis that the medians of the expression levels from
two conditions for a certain gene are identical) to generate the
P-values (Pagano and Gauvreau, 2000; Troyanskaya et al, 2002).
Note, that, in principle, every procedure (e.g., through random
column permutations of the data; Tusher et al, 2001) or hypothesis
test (e.g., Kruskal–Wallis test if there are more than two
conditions), that generates P-values for every individual gene, is
suitable as long as its underlying assumptions are checked or
assumed.

Starting with the estimation of the total number of genes that are
and are not actually differentially expressed, we proceed by
calculating the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) at each rejection level.
Using these estimates, the sensitivities and specificities at each
rejection level can be calculated. Finally, we use these quantities to
construct a ROC curve.

Calculation of the number of genes that are and are not
actually differentially expressed

Call N0 the number of genes that are not actually differentially
expressed (i.e., for which the null hypothesis is true) and N1 the
number of genes that are actually differentially expressed (i.e., for
which the null hypothesis is false) – also see Table 1. Of course,
these numbers are not known in advance and have to be estimated
from the data. We use a recently introduced method (Storey and
Tibshirani, 2003) for the estimation of N0, which essentially
consists of an evaluation of the following formula:

N0 ¼ lim
l!1

number of genes with P-value4l
1 � l

:

After N0 is derived, N1 can easily be estimated by N�N0.
To test whether this approach results in reliable estimates for N0

and N1, we applied this method on five synthetic data sets
generated by the model introduced by Rocke and Durbin (2001)
(also see Wang and Ethier, 2004) with increasing values for the
standard deviations of the additive and multiplicative errors. These
data sets contained 100 experiments each and were designed such
that the values for N1 and N0 were known beforehand. For each
data set, 8000 (N0) genes had a constant true expression level over
the 100 experiments, while 2000 (N1) genes had a different true
expression level in the first 50 experiments compared with the last
50 experiments. The five estimates of N1 varied between 1939 and
1866, dependent on the settings for the additive and multiplicative
error. Note that using a two-sample t-test instead of the Wilcoxon
test did not result in a significantly different result (estimates
varied between 1909 and 1847).

Estimation of the number of true positive, true negative,
false-positive and false-negative genes

Suppose that we declare the genes with a P-value smaller than or
equal to a certain rejection level a¼ pi (P-value of the ith gene) as
differentially expressed (i.e., the null hypotheses for these genes
are rejected) and the genes with a P-value larger than this rejection
level as not differentially expressed (i.e., the null hypotheses for
these genes are not rejected). When the declared status of
differential expression is compared with the actual status, four
categories of genes (true positive, true negative, false-positive and
false-negative genes) emerge that are defined in Table 1. Using the
value of N1 and N0, derived in the previous section, we can
calculate the number of genes in each category using the formulas
from Table 1.

Table 1 Definition of true and false-positive genes (TPi and FPi) and of
true and false-negative genes (TNi and FNi) at a certain level of rejection
a¼ pi (P-value of the ith gene after ranking them in ascending order by P-
value) (for each of them, the formula of the expected value is given)

Actually differentially expressed?

Declared differentially
expressed?

Yes No

Yes (Pppi) TPiE i�pi N0 FPiEpi N0

(Type I error)
Posi¼ i

No (P4pi) FNiE N1�i+pi N0

(Type II error)
TNiE(1�pi)N0 Negi¼N�i

N1 N0

N¼ total number of genes; N0¼ number of genes without actual differential
expression; N1¼ number of genes with actual differential expression (N¼N0+N1);
Posi¼ number of genes declared positive or differentially expressed at rejection level
pi; Negi¼ number of genes declared negative at rejection level pi.
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Sensitivity and specificity

Using the values calculated in the previous section, the sensitivity
at a certain rejection level a¼ pi is defined as (Pagano and
Gauvreau, 2000)

SENSi ¼
TPi

TPi þ FNi
¼ TPi

N1
;

which is the fraction of actually differentially expressed genes that
are declared differentially expressed. 1�sensitivity equals the
probability that a gene with actual differential expression is not
declared differentially expressed, which is exactly the probability
of a Type II error.

The specificity at a certain rejection level a¼ pi is defined as
(Pagano and Gauvreau, 2000)

SPECi ¼
TNi

TNi þ FPi
¼ TNi

N0
;

which is the fraction of genes without actual differential expression
that are not declared differentially expressed. 1�specificity equals
the probability that a gene without actual differential expression is
declared differentially expressed, which is exactly the probability
of a Type I error.

Construction and interpretation of the ROC curve

Suppose that we calculate the sensitivities and specificities at all
possible rejection levels a¼ pi (i¼ 1,y,N) and that we construct a
graph where sensitivity is plotted vs 1�specificity. This graph is
called the ROC curve (Dawson-Saunders and Trapp, 1994; Swets,
1996). ROC curves are a popular method to compare and
characterise the performance of diagnostic tests in medicine
(e.g., Epstein et al, 2002). They can be used here to quantify our
ability to discriminate between genes with and without actual
differential expression.

First of all, an ROC curve shows the trade-off between specificity
and sensitivity (and hence between the Type I and Type II errors)
and therefore allows for the selection of a rejection level aopt with
an optimal balance between specificity and sensitivity or between
the Type I and Type II errors. Optimal can be defined in several
ways and depends on the context or the requirements of the
application. Often, the point on the ROC curve (and associated
rejection level) with a tangent line with slope 1 is chosen, for which
it can be proven that it maximises the sum of the sensitivity and
specificity (and hence minimises the sum of the probability of the
Type I and Type II errors) – this is also the definition of optimal
that will be used in this paper. Alternatively, one can also try to
optimise a more custom-defined cost function of the Type I and
Type II errors that meets some specific requirements. One could,
for example, use a cost function that puts more weight on either
the Type I or Type II error (see the example in the Supplementary
online material), depending on which is most important or
practical for a specific situation or researcher (it is, therefore,
difficult to give general or objective guidelines for the values of
these weights). In fact, by minimising the sum of the probability of
the Type I and Type II errors (as said, this is done in this paper),
the number of false positives and negatives are weighed by the
inverse of the number of genes without and with actual differential
expression, respectively. This means, for example, that the ‘cost’ of
a false negative will be higher if the number of genes that are
actually differentially expressed (or that are actually positive) is
lower and vice versa, which is logical since the impact of missing a
rare target is higher than the impact of missing one of many
targets.

Secondly, the area under the ROC curve (AUC) has a special
meaning (see Hanley and McNeil (1982) for a method to calculate
the AUC and its standard deviation). Suppose we randomly select a

gene gi with actual differential expression with P-value pi and a
gene gj without actual differential expression with P-value pj, then
it can be proven that

AUC ¼ PðpiopjÞ;

that is, the AUC equals the probability that the P-value of the gene
with actual differential expression is lower than the P-value of the
gene without actual differential expression and therefore it is the
probability that pi and pj are ranked correctly. The AUC quantifies
how well the genes whose expression is and is not affected by the
difference between the tumour types can be discriminated using
the P-values of these genes. The AUC increases if the overlap
between the P-values of the genes with and without actual
differential expression decreases. This means that the level of the
optimal balance between Type I and Type II (e.g., the maximum of
the sum of the specificity and sensitivity) increases if the AUC
increases. Therefore, the AUC can be seen as a quality measure
with respect to the detection of differential expression for a specific
set of microarray experiments. Provided the same hypothesis test
is consistently applied, the AUC can be used to compare (see
Hanley and McNeil (1983) for a method to compare AUCs) the
ability of different gene expression data sets to discriminate
between genes whose expression is and is not affected by the
difference in conditions. For example, one could calculate this
quality measure for several data sets, which study gene expression
levels under the same conditions, from different sources or
institutions. As another example, one could try to study the effect
on the differential expression and on this quality measure by a
change in one or both conditions (see Results section).

Data sets

We applied the methodology described above on microarray data
originating from two sources that contain measurements from two
or three classes of acute leukaemia.

The first data set (Golub et al, 1999) studies the expression
profiles of bone marrow or peripheral blood of 72 patients with
acute lymphoblastic (ALL; Condition 1; 47 patients) or myeloid
leukaemia (AML; Condition 2; 25 patients) using an Affymetrix
chip. In the original publication the patients are divided into
training and a test set, but this distinction is not important here.
Although the separation between the two conditions is more
pronounced than in most other cases, this data set can still be
considered as a benchmark (paper cited over 1090 times). The data
contains N¼ 7129 genes and can be downloaded from http://
www.genome.wi.mit.edu/cancer/.

The second data set (Armstrong et al, 2002) also contains several
microarray experiments obtained from patients with ALL or AML
and from a third class or condition containing ALLs with an MLL
translocation (called MLL leukaemia). Armstrong et al discovered
that MLL leukaemias have a distinct expression pattern and can
be considered as a separate disease distinguishable from ALL
and AML. The data set they used is publicly available and can
be downloaded from http://research.dfci.harvard.edu/korsmeyer/
Supp_pubs/Supp_Armstrong_Main.html. It contains expression
profiles for 12 582 genes measured using Affymetrix technology. In
total, 24 ALL patients, 28 AML patients and 20 MLL patients are
available. This resulted in a data set containing 72 patients.

RESULTS

Comparison of data from different sources studying the
same conditions

We analysed the data from Golub et al and Armstrong et al
separately with respect to the detection of differential expression
between ALL and AML (for this analysis, we removed the 20 MLL
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patients from Armstrong et al). The results can be inspected and
compared in Table 2 and Figure 1. The AUC of the data from
Armstrong et al (95.13%) is significantly (Po0.0001; two-sided,
unpaired test; Hanley and McNeil, 1983) different from the AUC
derived from the data set from Golub et al (91.39%), which is
reflected in the fact that the level of the optimal balance between
(or, in our case, the maximum sum of) sensitivity and specificity is
higher in the data from Armstrong et al when compared to the
data from Golub et al (175.82 vs 166.09%).

Note that in the Supplementary online material accompanying
this paper, the results of a similar analysis studying differential
expression between human breast tumours that are moderately
and poorly differentiated can be inspected.

Effect of a change in condition

We analysed the data from Armstrong et al with respect to the
detection of differential expression between ALL and MLL (after
removal of the 28 AML patients) and with respect to the detection
of differential expression between MLL and AML (after removal of
the 24 ALL patients) and compared this with the results from the
previous section with respect to the detection of differential
expression between ALL and AML on the same data set. The
results can also be inspected in Table 2. The difference
between MLL and AML did not result in any statistically significant

change in AUC when compared with the difference between
ALL and AML. However, the difference between ALL and MLL
did result in a significant decrease in AUC when compared
with the difference between ALL and AML (85.98 vs 95.13%,
Po0.0001), which also resulted in a considerable decrease in the
level of the optimal balance between sensitivity and specificity
(maximum of sensitivityþ specificity¼ 154.71 vs 175.82%), as
could be expected.

DISCUSSION

In this paper, we describe and use a procedure for the detection of
differential expression based on the construction of ROC curves. In
contrast with current practice only to control the Type I error, this
method enables to balance the Type I and Type II errors according
to a certain criterion or cost function and enables, through the
AUC, to quantify our ability to discriminate between genes with
and without actual differential expression in a specific data set and
using a certain hypothesis test. As was shown in the Results
section, the AUC also reflects how well the Type I and Type II
errors can be balanced. We therefore propose to use the AUC as a
quality measure to compare data sets for their appropriateness to
detect differential expression, provided the same hypothesis test is
used consistently.

In theory, using other tests to derive the P-values could have
an effect on the result of our analysis. Therefore, as an example,
we repeated all the analyses described in this manuscript using a
two-sample (parametric) t-test (although we could be far from
certain that its distributional assumptions were satisfied) instead
of the Wilcoxon test. This did not significantly change the
estimated values for N1. The resulting AUCs, however, differed
somewhat from the values observed in Table 2, but their ranking
did not change, giving exactly the same conclusions for our
comparisons.

The quality measure proposed here could be used for different
types of comparisons, of which we illustrated two. As a first
example, we investigated how this quality measure could be used
to compare data sets that study the same conditions (in this case
ALL and AML) but that originate from different sources. After
comparing their AUCs, we concluded that the data from
Armstrong et al are more appropriate to discriminate between
genes that are and are not differentially expressed than the data
from Golub et al, although the last data set contained more
experiments than the first (72 vs 52). In our opinion, the
optimisation of the Affymetrix technology and protocol (year
2002 vs 1999) and perhaps a more optimal selection of the genes
arrayed on the chip for Armstrong et al could have contributed to
this difference in quality, which was accurately detected by the rise

Table 2 Results for the data from Golub et al (detection of differential expression between ALL and AML) and from Armstrong et al (detection of
differential expression between ALL and AML, between ALL and MLL and between MLL and AML)

Golub et al (ALL-AML) Armstrong et al (ALL-AML) Armstrong et al (ALL-MLL) Armstrong et al (MLL-AML)

N 7129 12 582 12 582 12 582
N0 3876 3084 8119 4527
N1 3253 9498 4463 8055
AUC (%) (95% CI) 91.39 (90.68–92.10) 95.13 (94.78–95.48) 85.98 (85.24–86.72) 94.83 (94.46–95.20)
aopt 0.18 (¼ p3429) 0.11 (¼ p8633) 0.22 (¼ p5193) 0.13 (¼ p7589)
SENSopt (%) 84.03 87.26 76.75 86.97
SPECopt (%) 82.06 88.56 77.97 86.78
SENSopt+SPECopt (%) 166.09 175.82 154.71 173.76

N¼ total number of genes; N0¼ number of genes without actual differential expression; N1¼ number of genes with actual differential expression; AUC¼ area under the ROC
curve; aopt¼ rejection level where the optimal balance between specificity and sensitivity is reached (i.e., the rejection level that maximises the sum of sensitivity and specificity –
for the first two columns, these are also the rejection levels associated with the points on the ROC curves in Figure 1 with tangent lines with slope 1); SENSopt¼ sensitivity at aopt;
SPECopt¼ specificity at aopt.

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

1 − specificity

se
ns

iti
vi

ty

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0

0

Golub et al AUC = 91.39 ± 0.36%
Armstrong et al AUC = 95.13 ± 0.18%

Golub et al

Armstrong et al

Figure 1 Receiver-operating characteristic curves for the data from
Golub et al and from Armstrong et al with respect to the detection of
differential expression between ALL and AML.

Detection of differential expression in malignancies

F De Smet et al

1163

British Journal of Cancer (2004) 91(6), 1160 – 1165& 2004 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s



in AUC. The methodology described here could be suited to
compare the performance of different microarray platforms (e.g.,
cDNA microarrays vs Affymetrix). It might also be a good idea to
use our procedure to detect whether there are differences in quality
between different data sets performed on an equal number of
samples captured on the same platform or chip set.

As a second example, we examined what the effect on the AUC
could be of a change in condition (replacement of ALL or AML
patients by MLL patients). The difference between MLL and AML
did not result in a significant decrease in AUC when compared to
the difference between ALL and AML, while the difference between
ALL and MLL did. The lower number of experiments that were
available for the analysis of the difference between ALL and MLL
(44 vs 52 for the analysis of the difference between ALL and AML)
could have partially caused the significant drop in AUC, but this
was, to a lesser extent, also true for the analysis of the difference
between MLL and AML (48 patients), which did not show a drop in
AUC. The behaviour of the AUC and the results in Table 2 suggest
that the degree of differential expression between ALL and MLL is
less pronounced than the degree of differential expression between
ALL and AML or between MLL and AML. This seems plausible,
because the leukaemic cells in MLL patients have a lymphoblastic
morphology and have previously been classified as ALL. Again,
this has been accurately detected by our analysis of the AUCs.

Note that the estimated values for N1 in Table 2 are considerable,
especially for the difference between ALL and AML in the data
from Armstrong et al (9498 genes out of 12 582 are calculated to be
actually differentially expressed). The fact that these estimates for
N1 also include the genes whose difference in expression is only
subtle (e.g., these might be the genes that do not really play a role
in the difference between the tumour types and whose expression
is only changed as a side effect downstream of the main biological
processes responsible for the different phenotypes) could explain
this. However, we cannot exclude that an experimental bias
between the two conditions not removed by adequate pre-
processing could partially be responsible for these observations.

The use of a cost function that minimises the sum of the
probability of a Type I and Type II error results in relatively large
values for aopt (in Table 2 between 0.11 and 0.22), which in turn
leads to the selection of a number of genes that is (too) high
(several thousands in Table 2). This result is inherent to the use of
microarray technology where a huge number of genes are analysed
at once and where, in the ideal case, one should be prepared to
accept a considerable number of genes that merit further
investigation. We realise however that, at this moment, the
validation of this large number of potential targets is difficult
and that in many practical settings a rejection level lower than the
optimal one has to be used. However, one should realise that the
choice of such a lower rejection level can and will lead to the loss of
many (or in some cases even the most important) targets. In our
opinion, calculation of the optimal rejection level is still useful in
this situation in order to evaluate how far we are removed from the
ideal case. Moreover, and in some specific research settings,
the optimal rejection level can effectively guide the selection of the
genes that could be useful to be included in further investigations
(for example, if one wishes to build a custom chip with a limited

number of genes tailored for a specific biological or medical
question). If the selection of a lower rejection level, however, is still
necessary, one could, as a second choice, try to formalise this
approach by the definition of a custom cost function. This is
illustrated in the study of differential expression between grade 2
and 3 breast tumours presented in the Supplementary online
material.

In our opinion, several other situations can be conceived where
a comparison of AUCs could be informative, although we did not
study them in detail in this manuscript. For example, one could
compare the AUCs of a data set for which the raw experimental
data have been pre-processed – in order to remove different
systematic sources of experimental variation from microarray data
– using different strategies (e.g., Lowess fit (Yang et al, 2002),
ANOVA-based methods (Kerr et al, 2000), etc) and select a pre-
processing strategy that results in a maximal AUC or maximal
discrimination between the genes that are and are not differentially
expressed.

Evaluation of the usefulness of additional experiments with
respect to the detection of differential expression is another
example where an ROC analysis could be valuable. Suppose one
has performed a basic set of microarray experiments (under one of
two or more conditions) and suppose one performs a set of
additional experiments in order to obtain a more optimal
identification of the genes that are actually differentially expressed.
Comparison of the AUCs of the basic set and of the basicþ
additional set could quantify whether this has succeeded and could
even help us to decide if more additional experiments would be
beneficial (e.g., if the set of additional experiments has not resulted
in a satisfactory rise in AUC, it could be expected that more
additional experiments also will fail to do this).
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Journal of Cancer website (http://www.nature.com/bjc).
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