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Deep learned tissue “fingerprints” 
classify breast cancers by ER/PR/
Her2 status from H&E images
Rishi R. Rawat1, Itzel Ortega1, Preeyam Roy1, Fei Sha2, Darryl Shibata3, Daniel Ruderman1 ✉ 
& David B. Agus1

Because histologic types are subjective and difficult to reproduce between pathologists, tissue 
morphology often takes a back seat to molecular testing for the selection of breast cancer treatments. 
This work explores whether a deep-learning algorithm can learn objective histologic H&E features 
that predict the clinical subtypes of breast cancer, as assessed by immunostaining for estrogen, 
progesterone, and Her2 receptors (ER/PR/Her2). Translating deep learning to this and related problems 
in histopathology presents a challenge due to the lack of large, well-annotated data sets, which 
are typically required for the algorithms to learn statistically significant discriminatory patterns. To 
overcome this limitation, we introduce the concept of “tissue fingerprints,” which leverages large, 
unannotated datasets in a label-free manner to learn H&E features that can distinguish one patient 
from another. The hypothesis is that training the algorithm to learn the morphological differences 
between patients will implicitly teach it about the biologic variation between them. Following this 
training internship, we used the features the network learned, which we call “fingerprints,” to predict 
ER, PR, and Her2 status in two datasets. Despite the discovery dataset being relatively small by the 
standards of the machine learning community (n = 939), fingerprints enabled the determination of 
ER, PR, and Her2 status from whole slide H&E images with 0.89 AUC (ER), 0.81 AUC (PR), and 0.79 
AUC (Her2) on a large, independent test set (n = 2531). Tissue fingerprints are concise but meaningful 
histopathologic image representations that capture biological information and may enable machine 
learning algorithms that go beyond the traditional ER/PR/Her2 clinical groupings by directly predicting 
theragnosis.

Although deep learning (DL) has potential to teach us novel aspects of biology, the most impressive use cases to 
date recapitulate patterns that experts already recognize1–6. While these approaches may improve inter-observer 
variability and accelerate clinical workflows, our goal is to use DL to learn how morphology from hematoxylin 
and eosin (H&E) images can be used to predict biomarkers7, prognosis8 and theragnosis—tasks which are not 
currently possible for a pathologist to do by eye, but if possible, could improve our understanding of cancer 
biology. However, since DL learns from data, it needs large training sets to learn patterns. One of the biggest chal-
lenges is obtaining large, well annotated training sets.

While typical computer vision datasets contain on the order of millions of annotated images to learn statisti-
cally significant relationships1, clinical pathology case sets generally number in the hundreds. Moreover, noise in 
the clinical annotations dilutes the learning signal and increases the probability the network will learn spurious 
features like stain color, clinical site, or other technical variations9–11. To overcome this limitation, we developed 
the concept of “tissue fingerprints,” based on the hypothesis that molecular differences of the tumor are often 
translated into subtle differences in morphologic phenotypes. This idea is akin to the paradigm of precision med-
icine, where instead of grouping patients, individual patients are treated based on their specific molecular and 
environmental parameters. Hence, instead of training a network to distinguish between groups of samples, we 
first pre-configure the network to recognize, or “fingerprint,” individual tumors, a task which can leverage large, 
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unannotated datasets, which are widely available. After pretraining a network to fingerprint tissues, we expect 
that a smaller amount of annotated data will be necessary to adapt it to a clinical task.

To implement tissue fingerprints, we trained a neutral network to fingerprint pathologic tumor samples from 
a training set and then tested it on a simple matching task using tumor images from new patients. Briefly, multiple 
images were divided into halves, and a network attempted to learn a vector of features (a “fingerprint”) that could 
correctly pair the halves (Fig. 1). An important aspect of this work was using the matching task to learn stain- and 
site- invariant features of architecture. We controlled for these sources of noise by testing whether the fingerprints 
could match tissues from the same patients that had been stained and scanned at different sites. Optimizing on 
the task of matching, we performed experiments testing the impacting of training set size and methods of image 
normalization.

Once this training internship was accomplished, the features (fingerprints) were extracted from the pre-wired 
fingerprint network and used to classify between groups of tumors with biologically relevant molecular pathway 
annotations12,13. We looked at clinical estrogen receptor (ER), progesterone receptor (PR), and Her2 status in 
breast cancer, which are important predictive and prognostic molecular markers currently assessed by molecular 
immunohistochemistry (IHC) staining14. We tested whether a fingerprint-based hematoxylin and eosin stain 
(H&E) classifier could predict this molecular information from tissue architecture and visualized the regions that 
classifier used to reach a prediction.

Methods
Tissue fingerprinting.  Dataset.  The tissue fingerprint network was trained on images of tissue microarray 
(TMA) cores. The tissue microarrays (TMAs) used in this study were obtained from supplier US Biomax, Inc. 
Array BR20823, containing 207 tissue cores from 104 patients, was used to train the fingerprint network. Array 
BR20819, containing 208 cores from a separate group of 104 patients, was used to test the trained model. We 
obtained one or two sections from each array (for BR20823 and BR20819, respectively), which were H&E stained 
using standard laboratory protocols, before scanning was performed at 40x resolution (0.249 microns per pixel) 
on a Carl Zeiss slide scanner. US Biomax, Inc. kindly provided us with images of serial sections of these microar-
rays that had been stained and scanned by their protocols on an Aperio slide scanner at lower resolution (0.49 
microns per pixel). Additional breast cancer tissue images were used to increase the size of the training set for 
experiments 2 and 4. These images are of breast cancer tissue from a variety of sources having distinct patients 
from BR20819 and BR20823.

Neural network training (experiments 1 and 2).  Neural networks were trained and run on NVIDIA P100 GPUs 
(Oracle Cloud Infrastructure BM.GPU2.2 instances). The fingerprint network was trained on image patches ran-
domly extracted from the BR20823 images. Each circular tissue core was isolated, scaled to 0.5 micron/pixel res-
olution (bilinear resampling), and cropped to a 1600 × 1600 pixel square. These squares were assigned a numeric 
index from 1 to 207, reflecting their position on the array. Each square was then divided into left and right halves. 
During training, a small image patch (224 × 224 px) was sampled from the left half, augmented through rotation, 
color spectrum augmentation1, color normalization6. It was then passed to a neural network trained to minimize 

Figure 1.  Networks are first trained to learn tissue fingerprints, which are patterns of cells and tissue visible on 
H&E images that can be used to distinguish between patients. Following this training internship, which can be 
scaled to very large numbers of patients without clinical outcome annotations, the fingerprints are repurposed 
to make clinically relevant predictions from small labeled datasets.
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cross entropy loss between patient identity and a predicted index. During training, we monitored progress by 
measuring how well the network could predict the core index from patches from the right halves of the tissue 
images, which it hadn’t seen. When this accuracy plateaued, we stopped training and tested the quality of the 
features on the tissue matching game. Experiments 3 and 4 used the more complex loss function described below.

In the four experiments described, we used the standard implementation of the Resnet34 architecture15 pro-
vided by the PyTorch library16. The network was randomly initialized and trained from scratch. Additionally, we 
trained larger networks, including Resnet50 and Resnet100, using the conditions of experiment 4, but found the 
same performance as Resnet34 (results not shown). The benefit of larger networks may depend on the size of the 
training dataset. Here we demonstrate the concept of fingerprinting with a relatively small dataset, but training 
on larger datasets may demonstrate added benefits of deeper networks.

Promoting style invariance by GAN-based style transfer (experiments 3 and 4).  Neural style transfer was per-
formed offline using CycleGAN17, a method of neural style transfer, that aims to alter the style of images while 
preserving fine details. Briefly, the CycleGAN approach consists of training two neural nets, a generator which 
takes an image A transforms it into an image of style B, and a discriminator which is trained to distinguish 
between generated images and real ones. The networks are trained simultaneously as adversaries. As the discrim-
inator improves, the generator is challenged to learn better transformations from style A to B. Conversely, as the 
generator improves, the discriminator is challenged to learn better features that distinguish real and generated 
images. In this project, we used the open-source CycleGAN code without modification. We trained the network 
to transfer styles between images of BR20823 that were stained by the array manufacturer (US Biomax) or at our 
site (style transfer between slides 1 and 2, respectively, as shown in Fig. 2). Thus, our original set of 13,415 cores 
was augmented to three-fold its original size via neural style transfer (each core has an original image, a virtual 
USC stain and a virtual Biomax stain). Following style transfer, we adapted the loss function to promote style 
invariance. The new loss function has two components, a cross entropy loss (abbreviated ‘CE’) to predict the iden-
tity of each patch, which was the loss term used in experiments 1 and 2, plus an additional loss term to minimize 
the distance of fingerprints from different styles. The additional loss term is the squared error (abbreviated ‘SE’) 

Figure 2.  CycleGAN normalizes the staining colors and styles of tissue images while preserving morphology. 
Top: the style of slide 1 is translated into the style of slide 2. Bottom: the style of slide 2 is translated into the style 
of slide 1.
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between the L2-normalized fingerprints, where a fingerprint is the 512-dimensional (512D) feature vector from 
the last layer of the Resnet.

Loss is defined for a pair of images from tissue corei (1 ≤ i ≤ 207): Imagei1, and Imagei2. Imagei2 is a re-styled 
version of Imagei1 that contains the same morphological information. The loss is a sum of two cross entropy losses 
and a fingerprint distance loss. The symbol, γ, is a constant. In our experiments, we used γ = 0.5.

loss Image Image y i CE Image y CE Image y FPdist Image Image( , , ) ( , ) ( , ) ( ( , ))i i i i i i1 2 1 2 1 2γ= = + +

Cross entropy is defined using the classification vector produced from the network for each image. This vector 
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Creating heat maps of recognized regions.  We generated heat maps of tissue cores showing the parts of an image 
most predictive of tumor identity (Fig. 4). The region colors were determined as follows: each core image was 
divided into overlapping square patches (size 224 × 224 pixels, with 80% linear overlap). Each patch was passed to 
the neural network, and a probability vector was calculated predicting the identity of each core via Softmax. Since 
there are multiple cores per patient, we aggregated the 207 probabilities into 104 probabilities (one per patient) 

Figure 3.  (a) Representative tSNE visualization of fingerprints from the test set. In this visualization, left halves 
from slide 5 and right halves of slide 4. (b) Visualization of a representative pair. Left half presented on top, 
right half on the bottom, middle shows a heat map of fingerprint distance (distance from fingerprints from the 
bottom image to the average fingerprint of the top image). (c) Left, exploded displays of the original patches in 
the embedding show similar histologic features (nucleoli, micro-papillae, fat, mucin).
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by summing the probabilities of cores that came from the same patient. Each heat map shows the probability of 
predicting the correct patient and is shaded from 0 (blue) to 1 (red).

ER, PR, Her2 Classification from whole slides.  Datasets.  The whole slide images used in this study 
were obtained from The Cancer Genome Atlas12 (TCGA) and the Australian Breast Cancer Tissue Bank13 
(ABCTB). We included 939 cases Breast Carcinoma from TCGA and 2531 Breast Cancer cases from the ABCTB. 
Clinical characteristics are summarized in supplemental Table 1. Of note, molecular status of ER, PR, and Her2 
was assessed clinically, where annotations were made on the patient level.

Training a patch-based ER,PR,Her2 classifiers directly from images (control).  Similar to other deep learning 
approaches, we trained a patch-based classifier to predict molecular marker status. All experiments were con-
ducted using five-fold cross validation. First, each whole slide image was grossly segmented into foreground 
vs. background. The foreground areas were divided into non-overlapping squares of 112 × 112 microns, which 
were scaled to a final patch size of 224 × 224 pixels. 120 patches per patient were randomly selected and used for 
downstream analysis. To train the classifier, the entire set of TCGA patients was split into five groups. For each 
cross validation fold, three groups were used to train, one group (the “overfitting group”) was used to monitor 
overfitting and perform early stopping, and the remaining group was used to test the network’s final performance. 
To the train the network, patches were assigned a binary label per the patient-level annotation, but early stopping 
was implemented by averaging the predictions of all patches belonging to overfitting group and measuring the 
patient-level AUC (area under the ROC curve) score. These experiments used a standard implementation of 
Resnet34.

Training ER, PR, Her2 classifiers directly from fingerprints.  Using the same image patches and cross validation 
splits from the control experiment (described above) and the previously trained fingerprint network, we extracted 
512D fingerprints for each image patch and then trained a second “biomarker” neural network to predict marker 
status based on these fingerprints. The second network has the following structure: input, 512 × 8 linear layer, 
rectified linear unit nonlinearity, 8 × 1 linear layer, hyperbolic tangent nonlinearity. The parameters of this net-
work were trained in batches consistent with multiple instance learning (see Supplemental Methods). Similar 
to the control experiment, multiple patch predictions were pooled to make patient-level predictions, and the 
reported ROC curves compare patient-level score and clinical marker status. As a control for the features, we 

Figure 4.  (a) Heat maps of areas that lead to accurate patient classification. Higher probability regions (red) are 
more predictive of patient identity, and hence distinctive, than blue regions. (b) An exploded view of two cores 
from (a).
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also implemented the same workflow using image features extracted from a Resnet34 network pretrained on the 
ImageNet dataset. The parameters for this model were obtained from the torchvision Python library.

External validation of the whole-slide ER, PR, or Her2 classifier.  After the five-fold cross validation experiments 
on the TCGA dataset, we validated our classifier on an independent test set from the ABCTB. These images 
were processed like those from TCGA: 120 patches (112 × 112 microns, resized to 224 × 224 pixels) were 
extracted per patient, and fingerprints were calculated using the pre-trained fingerprint network. We then used 
the TCGA-trained biomarker network to predict marker status of patients in the ABCTB dataset. We calculated 
an AUC score from the ROC curve comparing the neural network predictions to clinical status from the ABCTB.

Visualization of regions used to predict clinical ER score.  Generating heatmaps of predicted ER sta-
tus.  Given the high AUC for the ER classifier, we sought to make heatmaps showing the regions predicted to 
be highly ER-positive or negative across whole slides. We extracted every non-overlapping foreground patch 
(112 ×112 micron) from TCGA WSIs and compressed them into a 512D fingerprints using the pretrained fin-
gerprint network. Subsequently, we used the pre-trained ER network to make patch-level predictions across the 
entire slide. The predictions are shaded in grayscale. Black signifies a prediction of −1 (ER-negative), while white 
signifies +1 (ER-positive). Gray values correspond to scores close to 0 (indeterminate). All visualizations of ER 
predictions and features show the validation and test sets of one cross-validation split. Hence, none of the data 
reflect images that were used to update the values of the weights.

Heatmaps of tissue types.  TCGA whole slides were segmented into background, epithelium, stroma, and fat 
by training a patch-based classifier on a publicly available dataset of WSIs with tissue type annotations18. The 
segmentations were subsequently assessed for gross accuracy at 2x resolution, and a small portion of heatmaps 
(<5%) were manually corrected.

Visualizing the tSNE embedding of WSI fingerprints.  We used an efficient implementation of the tSNE algorithm 
to plot a 2D manifold of the fingerprints19. Each point represents one fingerprint, which corresponds to a single 
patch from a WSI. The color of the point represents the ER prediction, which is shaded from blue (−1, ER neg-
ative) to green (0, neutral) to red (+1, ER positive). Grossly, we appreciated the presence of regions containing 
a predominance of blue or red points. To assess the visual similarity of patches in these clusters, we manually 
selected 12 cluster centers and visualized five patches closest to these centers.

Results
In summary, the basic aim of this project was to develop a biologically meaningful set of H&E histologic features. 
We hypothesized that in the process of training a neural network to “match two halves” of tissue cores, it would 
learn a compact, but meaningful representation of tissue architecture. Following training of the fingerprint net-
work, which was influenced by the discovery of the importance of stain-normalization, we compared various 
methods of predicting molecular marker status from whole slides. We found that a fingerprint-based approach 
out-performed traditional transfer-learning and direct patch-based classification. Moreover, fingerprint-based 
classifiers continued to perform well on an independent, external dataset. When we applied the fingerprint-based 
classifier to a small collection of slides in the test-set, we found that they produced interpretable heatmaps, and 
predominantly focus on epithelial patterns to make predictions.

Learning fingerprints.  We trained the networks to learn fingerprints from tissue cores in TMAs. The TMA 
format makes it easy to process one set of tissues in multiple ways and allowed us to simulate the batch-effects 
that are commonly encountered at pathology labs. By staining and scanning one section at USC and another 
stained by the TMA supplier (US Biomax), we obtained paired images with the same architectural features, but 

Tissue Microarray Slides Slide 1 Slide 2 Slide 3 Slide 4 Slide 5

Section name BR20823_BM BR20823_16 BR20823_17 BR20819_BM BR20819_42

TMA section number 27 16 17 84 42

n patients from 20823 104 104 104 0 0

n patients from 20819 0 0 0 104 104

n cores 207 207 207 208 208

Site performing H&E 
stain US Biomax Inc. USC USC US Biomax Inc. USC

Original scan resolution 0.5 µm/pixel 0.24 µm/pixel 0.24 µm/pixel 0.5 µm/pixel 0.24 µm/pixel

Table 1.  Fingerprinting Datasets.
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different coloration. Our goal was to learn a fingerprint that summarized the architecture but ignored the staining 
differences.

We used one TMA to train (BR20823) and another TMA to test (BR20819, Table 1). Each TMA contains 
approximately 208 tissue cores from 104 patients, with no patient overlap between arrays. We used 3 serial sec-
tions of the training TMA. One section was stained/scanned by the TMA supplier (slide 1), the other two were 
stained at USC (slides 2, 3). We similarly collected 2 serial sections of the test array, stained at USC and by the 
TMA supplier (slides 4 and 5).

Stain normalization is necessary for fingerprinting.  We performed four experiments, varying training 
set size and image normalization, to determine how to best train a fingerprint network (Table 2). We hypothe-
sized that training on large numbers of cores would improve accuracy, and that image color normalization would 
greatly improve training on small data but have a smaller effect on larger datasets. In experiment 1, the baseline, 
we collected the 207 tissue cores from slides 1 and 2 (serial sections of the training TMA that were stained by the 
supplier and USC, respectively), divided them in half, and trained the network to recognize patients based on 
patterns in one of the halves. (We arbitrarily chose to train on the left halves). Each core was assigned a number 
from 1 to 207, and the network was trained to identify the number from a patch sampled from the image-half. In 
experiment 2, we scaled the dataset over 20-fold: adding 13,000 additional training images. Again, we trained the 
network to predict the index. In experiments 3 and 4, we used the same datasets as before, but included a color 
normalization procedure based on neural style transfer17,20. In the first two experiments, we predicted that, as the 
network was trained to recognize increasing numbers of images, it would automatically learn stain-invariant fea-
tures. In the second two experiments, we used the style transfer algorithm CycleGAN17 to recolor images (Fig. 2), 
making them appear as if they were prepared at a different site. CycleGAN can exchange the texture between two 
spatially similar image sets, while preserving overall structural information. Compelling examples include trans-
forming photographs into impressionist paintings and horses into zebras. Here, we use CycleGAN to transfer the 
H&E staining coloration from a reference site to images from other sites. Then we trained the networks to look at 
both images and predict the same features, cancelling out the effect of stain variation.

To compare the quality of the fingerprints learned in the four experiments, we performed tissue matching on 
the test TMA sections. Using the thus-trained NN, we calculated fingerprints for left halves of cores from one 
section (stained by the array manufacturer, slide 4) and the right halves from the other (stained at USC, slide 5), 
and matched each left fingerprint to the nearest right fingerprint in 512D fingerprint space. Since there were 208 
cores in the test set, we report a core-level accuracy (acc. = number of cores matched correctly/208). The null 
accuracy by chance is 0.4% (1/208 cores).

While fingerprints from all four experiments matched cores better than chance, the accuracy was highest 
in experiment 4, which used a large training set with stain normalization. The fingerprints from this method 
matched cores with 63% accuracy (131/208 cores). Surprisingly, stain normalization seems to be necessary to 
get the performance gains of larger training sets. Comparing the results of experiments 2 and 3 to the base-
line, increasing training set size in the absence of stain-normalization (experiment 2) provided only a miniscule 
improvement in matching accuracy over the baseline. However, stain-normalization nearly doubled the accu-
racy. It’s important to note that in all four experiments we used standard image augmentation during training. 
Immediately before the image was shown to the fingerprint network, it was randomly adjusted for brightness and 
contrast and converted to grayscale. Even with these procedures, which were intended to make networks invar-
iant to color differences between images6, doing an additional style normalization step before the augmentation 
provided a significant improvement.

When we examined the mistakes from the network in experiment 4, we noticed that a large portion of them 
were due to an aspect of the study design, using a test set with 2 cores per patient. Several of the misclassified cores 
were incorrect at the core level but correct at the patient level. This is because some tumors are morphologically 
homogeneous and have similar patterns across cores. Thus, we also calculated a pooled accuracy, which uses the 
fingerprints from both left cores to match both right cores and found that fingerprints could match patients with 
93% accuracy (see methods for details).

Encouraged by the high patient-level accuracy of the matching, we started studying the features of the final 
neural network layer. When the network is shown an image, this layer produces a 512D vector of real numbers, 
the tissue fingerprint. In the remainder of the work, we apply the network to extract fingerprints and explore how 
they can be used to link histologic patterns to clinical subgroups of breast cancer.

# Description

Dataset Size N. 
Training Cores 
(N. Patients)

Neural 
Style 
Transfer Network

# Test 
Cores

CV 
Acc.

Test: 
Core 
Acc.

Test: 
Patient 
Acc.

1
Small Dataset/
No Style 
Transfer

414 (104) − Resnet 34 208 77% 22% −

2
Large Dataset/
No Style 
Transfer

13415 (3302) − Resnet 34 208 77% 26% −

3 Small Dataset/
Style Transfer 414 (104) + Resnet 34 208 93% 43% −

4 Large Dataset/
Style Transfer 13415 (3302) + Resnet 34 208 95% 63% 93%

Table 2.  Fingerprinting Results.
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Fingerprint visualizations reveal style-invariant histologic patterns.  As both a control and as a 
starting point for understanding the features in the fingerprints, we performed two-dimensional fingerprint vis-
ualization. We took the left and right halves of cores from the test slides, which had been stained at different 
sites, and calculated fingerprints for patches from the halves. Next, we embedded the fingerprints in a tSNE plot 
(Fig. 3a). tSNE is a technique that compresses high dimensional vectors into a 2D space while preserving local 
structures in the data21. Its primary utility in this work is to approximate the relationships within a high dimen-
sional space and make them accessible for visual analysis. After using tSNE to compress the fingerprints into 2D 
coordinates and plotting each coordinate as a point colored by patient index, we observed that the left and right 
halves from the same patient are close in the embedding space. Since points that are nearby on a tSNE plot also 
tend to be nearby in the original space, this visualization provides evidence that fingerprints of similar tissues are 
similar in spite of differences in staining. Moreover, visualizing the same embedding as a map of image patches, 
instead of colored points, reveals that different regions of the map contain different architectures, such as nucleoli, 
fat, micropapillary growth, and mucin patterns (Fig. 3c). Thus, in the embedding space, fingerprints are clustered 
by histologic patterns even if the patches they come from exhibit markedly different colorations and styles.

Fingerprints can be used to visualize similar regions between tissues.  In Fig. 3b, we focus on a 
specific Left/Right pair from the test set. We calculated the average fingerprint of the right half and plotted a heat 
map showing the similarity (defined as 1 - normalized Euclidean distance) from each patch in the left half to the 
average fingerprint of the right half (red is similar, blue is dissimilar). The overlay (bottom) shows that similarity 
between the right and left halves is highest in a discrete region that appears to contain epithelial cells. This obser-
vation is consistent with the abundance of epithelial cells in the right image, suggesting that fingerprint similarity 
may have utility in histologic search.

Fingerprints combine epithelium and stromal features.  To directly visualize the image components 
comprising its fingerprint, we generated heat maps of tissue cores, highlighting image regions that most accu-
rately predict patient identity (Fig. 4a). We show the original H&E images alongside heat maps of patient predic-
tion accuracy using corresponding image regions. Red areas identify the patient accurately, and blue ones do so 
poorly. Based on the presence of both red and blue areas, some core regions are more predictive of patient identity 
than others, meaning their patterns are specific to that patient’s tumor. Figure 4b shows an exploded view of two 
cores. The red-colored regions demonstrate the classifier looks at a combination of stromal and epithelial areas.

Fingerprints relate to molecular status of breast cancer.  Because each tumor has unique genetic and 
microenvironmental interactions, we hypothesized that networks trained to recognize patients would implicitly 
learn features that reflect the underlying biological processes. For breast cancer, ER/PR/Her2 status is among the 
most important indicators of prognosis. Hormone-receptor (ER/PR) positive tumors tend to be less aggressive and 
occur in older patients. Additionally, ER-positive tumors can be treated effectively with drugs that target the estro-
gen axis. Similarly, Her2-positive tumors can be treated with drugs that target the Her2 axis. For these reasons, the 
NCCN task force mandate22 that ER, PR and Her2 status be measured for every new case of breast cancer.

While ER, PR, and Her2 status is routinely assessed by immunohistochemistry (IHC) staining for the recep-
tors (Her2 can also be measured by FISH staining), we explored whether H&E morphology, quantified via finger-
prints, could serve as a surrogate marker of these proteins. Initially, we queried this hypothesis on a set of breast 
cancer images curated TCGA12. These samples consist of H&E whole slide images (WSIs) from 939 patients at 
40 sites. First, scaled the images to 20X resolution, randomly extracted 120 image patches per image, and fed 
them through the fingerprint network to calculate fingerprints (Fig. 5a, step 1). Then, we trained a second neural 
network to compress the fingerprints (512D vectors) into a patch-wise prediction score of a particular receptor 
from −1 to +1 (Fig. 5a, step 2). For simplicity, the figure indicates the process for predicting ER; however, the 
same procedure was used for PR and Her2. Finally, we averaged the predictions across the image to estimate the 
patient’s receptor status (Fig. 5a, steps 3-4). We trained on the TCGA dataset with five-fold cross validation. The 
patients were split into five groups: three were used to train the second network; one was used to monitor training 
progress and decide when to stop training; the remaining group was tested. The plot in Fig. 5b (left) shows the 
ROC curve for a representative test set from the TCGA data, for ER classification. The average AUC of the test 
sets was 0.88 (n = 183, per test set). This is the highest ER classification score we have observed, including our 
previous work using nuclear morphometric features (0.72 AUC)23 and other recent works that predict molecular 
characteristics of breast cancer from H&E tissue microarray images24–26. To validate these findings, we obtained 
WSIs of 2531 breast cancers from the ABCTB13, and tested whether the TCGA-trained classifier could predict 
ER-status in this group. We measured an AUC of 0.89 on this dataset (n = 2531). Applying the same pipeline to 
PR and Her2, we found that fingerprints could predict PR in the TCGA dataset with an average test set AUC = 
0.78_(n = 180, per test set), and AUC = 0.81 (ABCTB, n = 2514) (Fig. 5B, center and left). The results for Her2 
were AUC = 0.71 (TCGA, n = 124) and AUC = 0.79 (ABCTB, n = 2487). As a methodological control, in addi-
tion to these experiments, we trained a classifier to predict ER status directly from image patches and measured 
an AUC = 0.82 (TCGA, n = 138).

The fingerprint-based ER classifier learned epithelial patterns.  To understand the regions that were 
used to make biomarker predictions, we applied the trained ER to whole slides. Our first question was whether 
the ER classifier worked best on epithelium vs. stroma vs. fat. Briefly, we divided each whole slide image into 
non-overlapping patches and performed image segmentation to classify each patch as epithelium, stroma, fat, or 
background. Additionally, we calculated a 512D tissue fingerprint for each patch and made ER predictions for 
each patch. When the patch-predictions were averaged across the entire slide, they were able to classify ER with 
an AUC of 0.88 (histogram shown in Fig. 6a). We also subset the patches by tissue type and calculated the AUCs 
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after averaging patches of different types (Fig. 6b). We found that the classifier was most accurate when we pooled 
predictions from epithelium patches, followed by stroma, followed by fat. Moreover, pooling across epithelium 
only, or epithelium and stroma was essentially equivalent to pooling across all patches.

These findings were visually supported by heatmaps generated from the slides (Fig. 6c). We present repre-
sentative slides that were correctly and incorrectly classified: H&E thumbnails, tissue type segmentations, and 
ER-prediction heatmaps shaded from black to white representing a prediction of −1 to +1. We observe that while 
most areas in the slide have a score of approximately 0 (gray), regions that are strong predictors (white or black) 
tend to lie in epithelial regions (green). Even when the predictions are inaccurate, the classifier makes mistakes 
based on misclassifying epithelial regions. For instance, false positive and false negative slides, shown on the 
upper-left and lower-right quadrants of Fig. 6c show strong white and black signal in epithelial regions.

A low dimensional embedding of fingerprints reveals histologic patterns that predict ER sta-
tus.  To test the hypothesis that tissues predicted to be ER-positive or negative may have similar visual charac-
teristics, we embedded fingerprints from whole-slides into a low dimensional space using a fast implementation 
of the tSNE algorithm. tSNE is an unsupervised non-linear technique which compresses high dimensional vec-
tors into a low dimensional space, while preserving local structures in the data. In our case, we used tSNE to com-
press a matrix of fingerprints (512D) into a 2D embedding space (Fig. 7). Each point in this embedding represents 
a fingerprint from a single patch, and there are 120 patches (points) per WSI on this plot.

When we shaded the points by the ER score predicted by the ER-classifier, we noticed that most points fail to 
strongly predict ER status (colored green, prediction approx. 0). However, there were several noticeable clusters of 
points predicted to be ER-negative (blue) or ER-positive (red). Of these clusters, we manually selected 12 areas to 
explore (six ER-negative, and six ER-positive), and present the five patches from each cluster. Of note, each patch 
is from a different patient (detailed image in supplemental data). Examination of the image patches reveals shared 
histologic features within each cluster. For instance, cluster 1 reveals regions of necrosis and relatively sparse cells. 
Patches in cluster 2 include patches with large quantities of immune cells, and cluster 7 contains nests of tumor cells.

Discussion
Deep learning is transforming computer vision and cancer pathology. As training sets scale, there are substan-
tial increases in accuracy on diagnosis, prognosis and theragnosis27. However, the biggest gains are likely to 
come when we learn to leverage a greater spectrum of available pathology images, including the vast majority 
of images which are mostly or completely unlabeled. Here, we illustrate a novel first step, using tissue matching 

Figure 5.  (a) Illustration of whole slide clinical ER classification. An analogous procedure was used for PR and 
Her2 classification. Fingerprints were extracted from 120 random image patches, and a second ER-classifier, 
acting on the fingerprints, made local predictions, which were averaged to produce a continuous whole-slide-
level ER-score. (b) Receiver operating characteristic curves (ROC) for clinical ER (left), PR (center), and 
Her2 prediction (right). The TCGA ROC curve reflects a test set from five-fold cross validation, and the AUC 
corresponds to the average area under the ROC curves of all five TCGA test sets. All samples in the ABCTB 
dataset are test samples and were never seen during training. Sample sizes vary depending the availability of 
clinical annotations.
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to discern features that are distinctive for a patient but differ between individuals. While tissue matching is not a 
skill formally taught in pathology training, it allows a neural network to discover key discriminating histologic 
features from a large set of unannotated images. Interestingly, these discriminatory features, or fingerprints, tend 
to reside at the interfaces between epithelial and stromal cells, and may reflect tissue specific genetic and microen-
vironmental parameters. While this study used serial sections of a TMA to design a rigorous implementation of 
core-matching, the resulting network trained in experiment 4 demonstrates that a training paradigm that incor-
porates style normalization may benefit significantly from histology images of any type, not just matched TMA 
images.

Training a network on the task of tissue identification also improves the interpretability of DNNs and provides 
insights about the elusive “black box” of deep learning. The ground truth (tissue identify) is indisputable, and 
visualizations reveal cohesive, biologically interpretable patterns that leverage parameters which are likely to 
reflect unique underlying genetic and microenvironmental interactions. Hence, we anticipate that fingerprints, 
which identify features that discriminate between individuals, will be useful when applied to tasks that seek to 
discriminate between groups of biologically different tissues.

Our experiments demonstrate the significant predictive power of such fingerprints to predict the molecular 
status of a tumor. Taking the fingerprint network, we extracted fingerprint features from whole slide images and 
used them to predict ER, PR, and Her2 status from two independent breast cancer cohorts. We initially trained 
and validated our algorithms on images from The Cancer Genome Atlas (TCGA), with cross-validation. Then, 
performed independent validation on samples from the Australian Breast Cancer Tissue bank (ABCTB, n = 
2351) achieving the following areas under the curve: 0.89 (ER), 0.81 (PR), and 0.79 (Her2). These metrics are 
higher than all previously published attempts to predict molecular information from H&E images. The improved 
performance is secondary to the implementation of tissue fingerprinting. The performance we found is similar to 
previous studies assessing the correlation between IHC and microarray assessments of ER and PR, which found 
good concordance between frozen and IHC for ER (93%) and lower for PR (83%)22,28. We believe that using tissue 
fingerprints will ultimately enable direct treatment response prediction in breast and other cancers, to an accu-
racy above that provided by current molecular approaches.

While classification accuracy is an important metric for an algorithm’s utility, the significance of fingerprinting 
extends beyond this because it enables the interpretation of the histologic patterns learned by deep neural net-
works. At present, if interpretability is the goal, deep learning is not necessarily the best approach. Using human 
designed, handcrafted, pre-extracted features such as cell shape, cell neighborhood statistics can provide rapidly 
interpretable insights about the tissue properties that correlate to a clinical or molecular outcome29,30. However, 
the downside of these approaches is introduction of human bias and the challenge of building workflows to accu-
rately extract these features.

Figure 6.  (a) Histogram of ER-predictions from the TCGA test set averaged across the entire slide (AUC 
= 0.88). (b) AUC scores obtained by pooling ER predictions from different regions within slides. (c) 
Representative heatmaps of correctly and incorrectly classified whole slides. WSI prediction was obtained by 
averaging over all patches (epithelium, stroma, fat). Each slide visualization consists of an RGB thumbnail, a 
tissue type segmentation, and an ER prediction heatmap.

https://doi.org/10.1038/s41598-020-64156-4


1 1Scientific Reports |         (2020) 10:7275  | https://doi.org/10.1038/s41598-020-64156-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

While the flexibility and automaticity of deep learning makes it effective for black box usage in a number of 
scenarios, interpretability is essential for developing testable hypotheses that advance basic biomedical research. 
Thus, we were encouraged by the interpretability of our fingerprint-based ER classifier. The prediction heatmaps 
shown in Fig. 6c demonstrate that the network learned to make positive, negative, and neutral predictions. Thus, 
it automatically learned to ignore some regions (e.g. neutral, gray areas), while paying attention to others. In this 
case, it learned to pay attention to areas of tissue epithelium.

A second insight came from plotting the tSNE embedding of fingerprints and discovering natural clusters of patches 
with similar histologic characteristics predicted to be ER-positive, ER-negative, or neutral (Fig. 7). There is a significant 
history of histological classification of breast cancer patterns. Numerous attempts have been made to develop histologic 
typing schemes, but these are subjective, difficult to reproduce, and a large number of slides frequently fall into the “no 
specified type” category (lacking distinctive characteristics of any pre-defined type). The embedding we present in Fig. 7 
provides preliminary support for the development of machine-automated histologic typing, in which tissue patches are 
clustered by visual/histologic similarity. Of note, our algorithm learned this embedding without knowing the molecular 
status of the tissues, and the embedding is not sensitive to differences in staining colors. Patches in these clusters have 
different shades of pink and purple H&E but share core histologic features.

The observation that some of the clusters seem to correlate with ER status suggests a link between tissue archi-
tecture and clinical ER status. This view suggests that only a subset of patches/tissue architectures contain useful 
diagnostic information for making this prediction. Future work will determine whether predicted fingerprints 
can be used to make biomarker predictions while providing confidence scores based on the quantities and types 
of tissues present in the slide. Assigning a confidence score to a prediction may facilitate triage and workup of the 
most relevant biological markers for a particular patient.

An additional area to focus on is how these visualizations can be used to improve a classifier with interme-
diate accuracy. A potential limitation of this approach is that we demonstrate its application with respect to ER 
classification, but not PR or HER2. We made this decision believing that focusing on the ER classifier, which had 
the highest accuracy, would reduce the chances of mis-interpreting the visualizations. However, based on our 
findings, we believe that using these visualization techniques may provide diagnostic information to troubleshoot 
difficult classification questions.

Figure 7.  Left: tSNE embedding of fingerprints from patches extracted from TCGA whole slides, shaded by 
ER prediction score. 12 clusters with high positive or negative enrichment were selected for manual inspection. 
Right: H&E patches closest to the cluster centers. Each patch is from a different patient. High resolution image 
in supplemental information.
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