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Simple Summary: Cancer is largely caused by genetic alterations such as mutations in a group of
genes known as cancer driver genes. Many of the key advances in cancer treatment in recent years
have involved blocking these driver genes using a new generation of anti-cancer drugs. Although p53
is the most frequently mutated gene in human cancers, historically, it has proved difficult to develop
drugs against it. However, recently, several new drugs have become available for neutralizing the
cancer-promoting effects of mutant p53. The aim of this article is to discuss the most promising of
these drugs, especially those that are being investigated in clinical trials.

Abstract: Mutant p53 is one of the most attractive targets for new anti-cancer drugs. Although
traditionally regarded as difficult to drug, several new strategies have recently become available
for targeting the mutant protein. One of the most promising of these involves the use of low
molecular weight compounds that promote refolding and reactivation of mutant p53 to its wild-type
form. Several such reactivating drugs are currently undergoing evaluation in clinical trials, including
eprenetapopt (APR-246), COTI-2, arsenic trioxide and PC14586. Of these, the most clinically advanced
for targeting mutant p53 is eprenetapopt which has completed phase I, II and III clinical trials, the
latter in patients with mutant TP53 myelodysplastic syndrome. Although no data on clinical efficacy
are currently available for eprenetapopt, preliminary results suggest that the drug is relatively well
tolerated. Other strategies for targeting mutant p53 that have progressed to clinical trials involve
the use of drugs promoting degradation of the mutant protein and exploiting the mutant protein for
the development of anti-cancer vaccines. With all of these ongoing trials, we should soon know if
targeting mutant p53 can be used for cancer treatment. If any of these trials show clinical efficacy, it
may be a transformative development for the treatment of patients with cancer since mutant p53 is
so prevalent in this disease.

Keywords: mutant p53; TP53; treatment; targeting; cancer; APR-246; statins; PC14586

1. Introduction

Molecularly targeted therapy has had a major beneficial impact on the outcome of
patients with several different cancer types in recent years. Thus, the use of drugs targeting
HER?2 amplification/overexpression in breast cancer [1], mutant EGFR in non-small cell
lung cancer [2] and mutant BRAF in melanoma [3] has significantly improved the prognosis
of patients with these respective cancer types. One highly prevalent cancer driver gene that
remains to be successfully targeted for clinical utility is mutant TP53 which encodes the
p53 tumor suppressor protein.

TP53 (p53) is the most widely studied gene in the human genome [4], with over
100,000 hits listed in PubMed. This intense investigation relates to the high prevalence
of TP53 mutations in most types of cancer. Indeed, across all human cancers, TP53 is the
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most frequently altered gene with mutations occurring in approximately 50% of cases [5-7].
Furthermore, with a small number of exceptions (e.g., cutaneous melanoma), TP53 is the
most frequently mutated gene in most types of solid tumors. Most of these mutations belong
to the missense type (70-80%) and are located in the DNA-binding region. Functionally,
these mutations may result in loss of function, exertion of a dominant-negative effect or
acquisition of a new ability [5-7]. Despite this high frequency, the presence of mutant p53
in tumors remains to be exploited and validated for clinical utility. This is especially true in
the context of targeting mutant p53 for cancer treatment.

Although there are currently no approved drugs for targeting mutant p53, several are
currently undergoing clinical trials. Most of these investigational drugs mediate their action
by either reactivating mutant p53 back to a form with at least some wild-type properties or
by promoting degradation of the mutant protein [8,9] (Figure 1). The aim of this article is
to review the emerging findings, focusing on the anti-p53 drugs currently in clinical trials.
Firstly, however, we briefly discuss the multiple reasons that make mutant p53 a highly
attractive target for drugs to treat cancer.

APR-246
COTL2 Normally folded p53
ATO TN Mt
PC14586
HSP 40/70/90, e . i,
statins y 0w

Degradation

Figure 1. Strategies used to target mutant p53. (a) Reactivation of mutant p53 to a form with wild-
type properties, (b) degradation and elimination of mutant p53. ATO, arsenic trioxide; HSP, heat
shock protein.

2. Mutant p53: A Highly Attractive Target for Cancer Treatment
2.1. High Prevalence in Cancer

As mentioned above, TP53 mutations are present in approximately 50% of all cancers.
Importantly, however, mutations occur at a particularly high prevalence (>80%) in some of
the currently most aggressive tumors such as high grade serous ovarian cancer [10], triple
negative breast cancer [11], esophageal cancer [12] and small cell lung cancer [13]. Thus, if
an effective anti-mutant p53 agent was identified, it could have a major beneficial effect on
the outcome of some of the cancer types that are currently difficult to treat.

2.2. Reactivation of Mutant p53 Can Potentially Induce Both Cell Intrinsic and Extrinsic
Anti-Tumor Effects

Mutant p53 is believed to promote cancer development via two main mechanisms,
i.e., cell intrinsic (direct effect on tumor cells) and cell extrinsic (direct effect on tumor
microenvironment) [14-16]. Cell intrinsic effects include prevention of cell cycle arrest,
enhancing proliferation, inhibition of apoptosis and blockage of DNA repair, while the
main cell extrinsic effect is the promotion of immune evasion [14-16]. Thus, the reactivation
of mutant p53 can potentially neutralize several different pro-cancer driving mechanisms
including reactivation of host immunity against the cancer undergoing treatment.
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2.3. Inhibition of Mutant p53 Function May Enhance Response to Standard Therapies

Available data suggest that several anti-cancer drugs act at least in part by promoting
apoptosis mediated via wild-type p53 [17]. Consistent with this notion, findings from cell
line and animal model studies show that the presence of mutant p53 confers resistance to a
range of different therapies, including cytotoxic agents, targeted therapies and radiotherapy
(for review, see refs. [17,18]). Reactivation of mutant protein to its wild-type configuration
might therefore be expected to also confer sensitivity to these treatments. Supporting
evidence for this possibility are the multiple reports showing that compounds that reactivate
mutant p53 enhance response to several different clinically used therapeutics [18-22].
Another mechanism by which mutant p53 may confer drug resistance is by inducing
expression of the drug efflux pump MDR1 (ABCB1), which promotes efflux of drugs out
of tumor cells [23]. Again, reactivating mutant p53 back to its wild-type form should be
expected to reverse this process, thus maintaining drug levels in the tumor cells.

2.4. Mutations in p53 Tend to Be Clonal

Clonal mutations, i.e., mutations that are present in all or most of the malignant cells
within a tumor are believed to be superior targets for drug treatment than non-clonal
mutations (mutations present in a subset of tumor cells). Based on available evidence,
mutations in p53 appear to occur early and are clonal in many different cancer types [24].

2.5. Mutant p53 Proteins Accumulates in Malignant Cells

Mutant forms of p53 possessing missense mutations tend to accumulate in malignant
cells. The accumulation may partly relate to the inability of the mutant protein to induce
expression of the E3 ubiquitin ligase MDM2, which targets p53 for proteasomal-mediated
catalyzed degradation [25,26]. In contrast, wild-type p53 promotes the expression of MDM2
in normal cells, thereby enhancing its degradation. Furthermore, mutant p53 is stabilized
by interacting with different heat-shock proteins (HSP) which prevents its degradation by
MDM2 and other E3 ubiquitin ligases [9]. Thus, levels of mutant p53 tend to be high in
tumor cells but low in unstressed normal cells. This differential in levels of the p53 protein
can result in a large therapeutic window, minimizing the possibility of therapy-related
toxicity from mutant p53 targeting drugs.

3. Difficulties in Targeting Mutant p53

While theoretically, mutant p53 is a highly attractive target for cancer therapy, there
are several difficulties in designing drugs to block its functioning. Indeed, it is considerably
more challenging to restore normal activity to a defective tumor suppressor protein such
as mutant p53 than to block the actions of a driver oncoprotein [27]. The difficulties in
targeting mutant p53 are summarized in Table 1 and discussed in more detail below.

Table 1. Reasons why mutant p53 is difficult to target.

Multiplicity of mutations with different structures and functions

Absence of a readily identifiable pocket suitable for binding of drugs *

Absence of enzyme activity which might be blocked by catalytic inhibitors

Predominantly nuclear localization prevents access by standard antibodies

* the Y220C mutant form of p53 is an exception as it contains a binding pocket.

3.1. Multiplicity of Mutations with Different Structures and Functions

Unlike several oncogenes which are usually mutated at a small number of hot spot
areas, p53 has been shown to undergo at least 2000 different mutations (giving rise to
>2000 mutant/variant proteins) [28]. Indeed, over 85% of the amino acids in p53 have
been found to be mutated, but no single mutation is found at a frequency of >6% [29,30].
Although approximately 90% of mutations in p53 are of the missense type, these are broadly
divided into 2 main types, contact and structural [31]. Contact mutations allow the protein
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to largely maintain its wild-type conformation. On the other hand, conformation (also
known as structural) mutations cause protein destabilization and unfolding at physiological
temperatures. Both these types of mutation result in defective p53 binding to DNA which
leads to defective transcription. Depending on the context of the malignant cell, this
defective transcription can result in loss of wild-type function, exertion of a dominant-
negative effect on the remaining wild-type allele or gain of an oncogenic property such as
promotion of metastasis or resistance to specific drugs [16,32].

Further complicating the impact of the different mutations is that the same mutation
might have different effects in different cell types, i.e., it is cell-context dependent. For
example, p53 has been reported to induce the transcription of different sets of genes in
different tissue types [33,34]. Indeed, in some situations, mutant p53 protein may not
function as an oncogene but behave as a tumor suppressor gene [35]. For example, in a
mouse model of intestinal cancer, Kadosh et al. [35] recently reported that a mutant form of
P53 had different consequences in different parts of the gut. Thus, in the distal part, mutant
p53 behaved as might be expected from a gene with oncogenic properties. In contrast, it
acted as a tumor suppressor in the proximal gut. Interestingly, the tumor-suppressive effect
of p53 was found to be eliminated by gallic acid produced by the gut microbiome.

Adding yet further diversity is that the mutant p53 protein can be post-translationally
modified at multiple amino acid residue sites. These alterations, which include phospho-
rylation, acetylation, methylation, ubiquitylation and glycosylation [36], may also impact
mutant p53 in several different ways such as altering stability and ability to interact with
DNA or specific transcriptional factors [36].

Developing a specific inhibitor against all of the different forms of mutant p53 might
be expected to be highly difficult, if not impossible.

3.2. Most Mutant Forms of p53 Lack a Suitable Pocket for High-Affinity Binding of Low Molecular
Weight Compounds

With the exceptions of Y220C, Y220S and Y220N, most mutant forms of p53 lack an
obvious deep pocket into which low molecular compounds can bind with high affinity and
specificity [37]. Despite this, several low molecular weight compounds (e.g., specific mild
alkylating chemicals) have been found to covalently bind to thiol groups in the core DNA
binding domain of p53 [38—41] and result in reactivation of the mutant protein. Indeed,
some of these compounds, such as eprenetapopt/methylene quinuclidinone (MQ) and
arsenic trioxide (ATO) are currently undergoing clinical trials in patients with different
types of cancer, see below.

3.3. Location of Mutant p53 in Tumor Cells Renders It Largely Inaccessible for Certain Types
of Drugs

Monoclonal antibodies are amongst the most specific drugs used to treat cancer, but
their current use is largely confined to targeting transmembrane proteins. However, as
mutant p53 is primarily located in the cell nucleus, it cannot be readily reached with the
current generation of these antibodies. A possible strategy for overcoming this problem,
however, is to target processed mutant p53 bound to MHC proteins on the cancer cell
membranes with so-called bispecific T-cell receptor mimic antibodies [42,43].

4. Mutant p53 Reactivating Drugs Undergoing Clinical Trials
4.1. Eprenetapopt/APR-246

By far, the most widely investigated mutant p53 reactivating drug is eprenetapopt
(previously known as APR-246). As the mode of action of this compound has been pre-
viously discussed in detail [44—46], it will be only briefly reviewed here. To mediate its
anti-cancer activity, eprenetapopt is first converted to MQ, which in turn binds to specific
thiol groups in the p53 DNA-binding domain [38,39]. The specific thiol residues modified
by MQ depends on whether p53 is present in a free state or attached to DNA [41]. Following
MQ binding, mutant p53 undergoes refolding back to its wild-type configuration. In doing
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so, it regains its wild-type properties, such as the ability to induce apoptosis and inhibit
cancer cell proliferation [44—46].

As might be expected from a small molecule that binds to thiol groups, eprene-
tapopt/MQ can also attach to other intracellular molecules containing these structures. In
particular, it can also attach to the tripeptide, glutathione (GSH) and the redox modulating
enzymes, thioredoxin reductase thioredoxin and glutaredoxin [47-50]. Binding to these re-
ducing molecules can lead to increased levels of reactive oxygen species (ROS). Since cancer
cells tend to have increased levels of ROS, they may be more likely than normal cells to un-
dergo cell death in response to the enhanced increase mediated by eprenetapopt/MQ [51].
The increased production of ROS, can in turn, potentially enhance the anti-cancer activity
of eprenetapopt. In addition, the high concentration of ROS may lead to the degradation of
mutant p53, potentially further enhancing the anti-cancer effects of eprenetapopt [52].

Based on several preclinical studies showing anti-cancer activity [8,44], eprenetapopt
was investigated for potential toxicity in a phase I clinical trial [53]. This small trial involved
patients with acute myeloid leukemia (AML) (n = 7) or prostate cancer (n = 7). Overall,
eprenetapopt was found to be well tolerated, the most frequent adverse effects were fatigue,
dizziness, headache and confusion, all of which were reported to be reversible. Evidence
for reactivation of mutant p53 was the finding of cell cycle arrest, induction of apoptosis
and upregulation of p53 target genes in tumor cells from several treated patients.

Subsequently, eprenetapopt in combination with azacytidine was investigated in a
phase Ib/II trial in patients with TP53 mutant myelodysplastic syndromes (MDS) (n = 40)
or AML (n = 11) [54]. The overall response rate was 71% with 44% of the treated patients
achieving a complete response. For patients with MDS, 29 (73%) responded with 20 (50%)
having a complete response and 23 (58%) a cytogenetic response. In the patients with AML,
7 (64%) exhibited an overall response while 4 (36%) had a complete response. Interestingly,
patients with TP53 mutations exhibited a significantly higher complete response rate than
those lacking mutations (69% vs 25%; p = 0.006). Furthermore, patients achieving a response
had a reduction in both TP53 mutation levels (i.e., variant allele frequency) and p53 protein
levels. The most frequent adverse events (grade > 3) in this trial were febrile neutropenia
(33%), leukopenia (29%) and neutropenia (29%). Essentially similar findings were reported
with eprenetapopt plus azacytidine in a second phase II trial involving patients with MDS
or AML [55].

The above findings led to a phase III trial of eprenetapopt plus azacitidine versus
azacitidine for the frontline treatment of patients with TP53 mutant MDS. Although results
from this trial do not appear to have been published to date in the peer-reviewed literature,
according to the Aprea website (https://iraprea.com/node/7691/pdf, accessed on 1 June
2022), it failed to meet the primary statistical endpoint of complete remission. Complete
response rates however, tended to be higher in the combination arm, i.e., 33.3% of patients
receiving eprenetapopt with azacytidine achieved a CR versus 22.4% in the azacitidine alone
arm. However, the press release stated that with further follow-up, secondary endpoints
such as overall response rate and duration of response might favor the combination arm.

Despite this negative finding, eprenetapopt has received Breakthrough Therapy, Orphan
Drug and Fast Track designations from the US FDA for MDS, and Orphan Drug designation
from the European Commission for patients with MDS, AML and ovarian cancer.

4.2. COTI-2

COTI-2 is described as a third generation thiosemicarbazone drug with broad anti-
cancer activity [56-58]. Compared to eprenetapopt, it has been less investigated both
experimentally and clinically. However, similar to eprenetapopt, COTI-2 was found to
change the mutant conformation of p53 and return it to a form with specific wild-type
abilities [57,58]. Using the technique of surface plasmon resonance, COTI-2 was shown to
bind to mutant p53 with high affinity, although the specific binding amino acid residues
were not identified [57]. Furthermore, COTI-2 was reported to normalize wild-type p53
target gene expression and restore wild-type p53 binding to DNA [58].
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Other actions of COTI-2 include activation of AMP-activated protein kinase (AMPK)
and inhibition of mTOR signaling [58]. These effects may be secondary to reactivation of
mutant p53 to its wild-type counterpart, as wild-type p53 has been shown to both inhibit
mTOR and activate AMPK [59,60]. These effects of COTI-2 may further enhance the anti-
cancer potential of the drug. Indeed, inhibition of mTOR with drugs such as everolimus is
a well-established strategy for treating certain cancers such as estrogen-receptor-positive
metastatic breast cancer [61].

COTI-2 as a monotherapy or in combination with standard therapies has under-
gone evaluation for the treatment of several different types of recurrent cancers in a
phase I clinical trial (NCT02433626). According to the US National Library of Medicine,
ClinicalTrial.gov website (https:/ /clinicaltrials.gov/ct2 /show /results /NCT02433626, ac-
cessed on 1 June 2022), this trial “is designed primarily to assess the safety and tolerability
of COTI-2 monotherapy or combination therapy in patients with advanced and recurrent
malignancies to establish a recommended phase II dose for future studies”. Preliminary
data suggest that COTI-2 is well tolerated, the most frequent adverse effects being nausea,
vomiting, fatigue and abdominal pain. Of the 24 patients treated, only 2 (8%) were reported
to have to undergo a decrease in the dose of COTI2 administered [62]. So far, there appear
to be no published data with respect to tumor regression in patients treated with COTI-2.

4.3. Arsenic Trioxide

Arsenic trioxide (ATO), a drug which has been used for several years to treat acute
promyelocytic leukemia, was recently shown to reactivate mutant forms of p53 possessing
structural mutations [63]. This activation resulted in the restoration of biological function
and inhibition of tumor cell growth, both in vitro and in vivo [63]. In contrast to eprene-
tapopt, ATO did not appear to activate mutant p53 possessing contact mutations or induce
the transcription of p53 target genes such as PUMA or CDKN1A in tumor cells with such
mutations. Similar to eprenetapopt, however, ATO was found to bind to thiol residues in
mutant p53 (C124, C135 and C141) [63]. Interestingly, the eprenetapopt metabolite, MQ
was also found to bind to C124 when mutant p53 was attached to DNA [41].

In addition, a reactivating p53, ATO, has also been reported to degrade the mutant
protein [64]. Thus, ATO appears to be able to neutralize the cancer promoting effects using
two different mechanisms.

A potential advantage of ATO over other mutant p53-reactivating drugs such as
eprenetapopt and COTI-2 is that its pharmaceutical and toxicological properties are well
established [65]. It should therefore be highly suitable for repurposing for the treatment of
other tumor types, especially those possessing structural p53 mutations. Indeed, recently,
ATO began to be evaluated for efficacy, safety and tolerability in a phase I trial (PANDAtrial)
involving patients with refractory ovarian and endometrial cancers possessing structural
p53 mutations (ClinicalTrials.gov Identifier: NCT04695223).

4.4. PC14586

In contrast to the mutant p53 reactivating drugs discussed above, PC14586 specifically
reactivates mutant p53 proteins containing the Y220C mutation [66]. As mentioned earlier
in this article, this mutation creates a small pocket in the p53 protein, rendering it thermally
unstable and unable to bind to DNA. This mutation, however, is relatively rare in human
cancers, being present in only approximately 2% of all tumors [37]. Nevertheless, according
to Fersht and colleagues [67], targeting the Y220C mutation is an ideal test case for the
binding of potential low molecular weight inhibitors to mutant p53 as the tyrosine-cysteine
mutation creates a specific surface pocket that is druggable with small molecules.

In mutant cell lines, PC14586 was found to reactivate and stabilize the p53 Y220C
mutant protein [66]. In turn, this resulted in transcription of the p53 wild-type target
genes, BAX, PUMA, MDM?2 and CDKN1A (encodes p21) as well as induction of cell cycle
arrest. Consistent with the ability of mutant p53 to induce immunosuppression (see above),
administration of PC14586 was found to enhance immunity by increasing influx of immune
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cell such as CD4+ T cells, CD8+ T cells, T-regulatory cells and natural killer T cells into
tumors [68]. In mice models of gastric cancer possessing the Y220C, administration of
PC14586 led to dose responsive anti-tumor effects, while in a C57Bl/6] syngeneic xenograft
model possessing a Y220C mutation, administration of PC14586 was found to result in
complete tumor regression in 80% of the treated mice [66].

PC14586 monotherapy is currently being investigated in a phase I/1I clinical trial in
patients with advanced cancers harboring the p53 Y220C mutation (NCT study identifier
NCT04585750). The aim of this multicenter dose escalation study is to evaluate PC14586
safety, pharmacokinetics, pharmacodynamics and possibly efficacy in patients with ad-
vanced solid tumors possessing a p53 Y220C mutation. Preliminary findings presented
at the 2022 American Society of Clinical Oncology conference suggest that PC14586 is
generally well-tolerated with only grade I/1II adverse events which were found in 79% of
the treated patients [69]. The most frequent adverse events were nausea (34%), vomiting
(24%), fatigue (21%) and increased aspartate aminotransferase activity (17%). Using RECIST
v1.1 criteria, overall responses were observed in 8/25 (32%) of the patients treated with
higher doses of the drug (i.e., ranging from 1150 mg daily to 1500 mg twice daily).

Recently, the US FDA granted Fast Track designation to PC14586 for the treatment
of cancer patients with locally advanced or metastatic solid tumors possessing a TP53
Y220C mutation.

The advantage of mutant-specific drugs such as PC14586 over other mutant p53
reactivators such as eprenetapopt is that they are unlikely to bind to wild-type p53 or
indeed to other intracellular proteins. The main disadvantage, however, is that the p53
Y220C mutation is relatively rare in cancer, being only the 9th most frequent mutation.
Despite this low frequency, the Y220C is estimated to be responsible for in excess of
100,000 cases of cancer per year, worldwide [37].

5. Mutant p53 Degrading Drugs Undergoing Clinical Trials

Another strategy for targeting “difficult to drug” driver oncoproteins such as mutant
p53 is to treat with compounds that promote their degradation and thus their elimination
from tumor cells. Such drugs in everyday clinical use include fulvestrant which acts by
degrading the estrogen receptor and is used for the treatment of patients with estrogen
receptor-positive metastatic breast cancer [70] and lenalidomide which induces cereblon
to degrade the transcription factors, IKZF1 and IKZF3 [71]. Lanalidomide is used in the
treatment of multiple myeloma.

Proof of principle that the presence of mutant p53 was necessary for the maintenance of
malignancy emerged from knockdown studies which showed that depletion of the mutant
protein reduced oncogenicity [72]. Amongst the earliest pharmaceutical drugs shown to
degrade mutant p53 protein were heat-shock protein (HSP) inhibitors [73]. To mediate
oncogenic activity, mutant p53 must be stabilized and maintained in tumor cells [74]. As
mentioned above, one of the main mechanisms of stabilization is achieved by binding with
HSP such as HSP40, HSP70 and HSP90. HSPs appear to prevent mutant p53 degradation
by blocking the binding of E3 ubiquitin ligases such as MDM2 or CHIP to the mutant
protein [75,76]. Thus, inhibiting the interaction between a HSP and mutant p53 might be
expected to lead to mutant p53 degradation and thus suppression of cancer growth.

These observations led to the testing of low molecular weight HSP inhibitors as
potential drugs for cancer treatment. Early work using preclinical models confirmed that
treatment with low molecular weight HSP90 inhibitors such as ganetespib, 17-allylamino-
17-demethoxygeldanamycin or geldanamycin did indeed result in the degradation of
specific forms of mutant p53 and inhibition of tumor cell growth [73]. In contrast to
the findings in p53 mutant cells, the HSP inhibitors failed to block proliferation in p53-
null cells [72]. However, in clinical trials, one of the most potent HSP90 inhibitors, i.e.,
ganestespib, was found to have unacceptable toxicity and to lack efficacy [77-79]. Thus,
research into these compounds was largely abandoned.
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More recently, treatment with a group of widely used drugs known as statins, was also
shown to result in degradation of mutant p53 [80-83]. Statins are extensively used to treat
high levels of cholesterol, especially the cholesterol bound to low density lipoprotein, thus
helping to minimize the occurrence of heart disease and stroke. They decrease cholesterol
levels by inhibition 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting
enzyme in its formation. However, while lowering cholesterol levels, statins also decrease
levels of multiple metabolites in the cholesterol biosynthetic pathway, including mevalonate
phosphate (MVDP) [84].

Several studies have recently shown that decreased production of MVP leads to
the degradation of mutant p53 [80-83]. The decreased formation of MVP resulting from
treatment with statins promotes the release of mutant p53 from HSPs which in turn leads
to degradation of the mutant protein. In one of these studies, Parrales et al. [80] reported
that treatment of malignant cells with the statin, lovastatin decreased the binding of
P53 containing conformational mutations to a HSP40 isoform known as DNAJA1. This
decreased binding to DNAJAT1 led to the degradation of mutant p53 but not wild-type
p53, mediated by the ubiquitin E3 ligase, CHIP. In a further report, treatment with the
statin, cerivastatin was found to result in the dissociation of mutant p53 from HSP90 and
degradation by MDM2 [81].

Consistent with their ability to degrade mutant p53, several different statins when
used alone have been shown to inhibit the in vitro and in vivo growth of cancer cells
in model systems [80-83,85]. Although lovostatin was reported to promote mutant p53
degradation only in tumor cells harboring p53 with conformational mutations [80], other
statins were shown to have inhibitory effects on cell lines independent of the type of p53
mutation [85].

Clinical evidence supporting an anti-cancer role for statins are multiple epidemio-
logical studies showing that patients with a range of different cancer types undergoing
treatment with statins have a superior outcome compared with those not receiving these
drugs [84,86-88]. However, contradictory results have also been published [89]. Possible
reasons for the conflicting results include the type of statin used (lipophilic statins being
more readily taken up by cells than hydrophilic statins), dose administered, length of treat-
ment, co-administered drug(s), whether the treatment was started before or after diagnosis
and whether or not the tumor undergoing treatment contained p53 mutations (and possibly
the type of mutation). It is important to state however, that there is currently a lack of
data from randomized clinical trials demonstrating that patients with cancer receiving
statins have an enhanced outcome compared to those not receiving the drug. However,
at least three such clinical trials that include the prior measurement of the p53 mutational
status/protein levels are currently ongoing.

One of these is a window-of-opportunity trial to determine if administration of ator-
vastatin decreases levels of p53 with conformational mutations in patients with differ-
ent solid tumor or AML (NCT03560882). Another is a phase II trial investigating the
effect of atorvastatin for treating patients with ulcerative colitis who have a dominant-
negative missense TP53 mutation and are at risk of developing large intestinal cancer
(ClinicalTrials.gov Identifier: NCT04767984). A third trial (also a phase II trial) is investiga-
tion the benefit of neoadjuvant atorvastatin plus zoledronate in patients with triple negative
breast cancer (YAPPETIZER; ClinicalTrials.gov Identifier: NCT03358017). In this study;,
response is being related to the level of cellular p53. In addition to these trials, several
studies are investigating if statins have anti-cancer activity irrespective of p53 status (https:
/ /clinicaltrials.gov/ct2 /results?cond=&term=statins&cntry=&state=&city=&dist=) (ac-
cessed on 1 June 2022).

Should any of these trials produce positive findings, statins might be expected to
rapidly enter clinical use for the treatment of cancer. As with ATO (see above), statins
have been in clinical use for several years. Thus, their pharmaceutical and toxicological
properties are also well established. Since they are relatively safe, inexpensive and off-
patent, they would be ideally suitable for repurposing for the treatment of cancer.
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Before concluding this section, it is also important to add that in addition to degrading
mutant p53 via downregulation of the mevalonate pathway, there are several other mecha-
nisms by which statins could exert anti-cancer activity (for review, see ref. [90]). Indeed,
the lowering of cholesterol levels per se by statins may have anti-cancer activity [91]. For
example, in a recent report, Wang et al. [92] showed that use of a non-statin drug (ezetimibe)
to reduce cholesterol levels resulted in enhanced anti-tumor immunity in several different
mouse tumor models. It would be interesting to investigate if statins might also promote
anti-tumor immunity.

6. Exploiting Mutant p53 for Vaccination

A further strategy for targeting mutant p53 that has progressed to clinical trial investi-
gations is vaccination against the mutant protein. The aim of therapeutic cancer vaccination
is to stimulate a patient’s adaptive immune system against tumor (neo)antigens and thus
block tumor growth. As TP53 is mutated in a large proportion of human cancers, it would
be expected to act as a neoantigen and promote an immune response, thereby opening up
the potential of exploiting it as an anti-cancer vaccine. Evidence from mice models and
patients with cancer showed that administration of certain p53 neo-epitopes containing
hot-spot mutations did indeed provoke the generation of specific T cell (CD8+ and CD4+
cells) responses against p53 peptides containing the hot-spot mutations [93,94]. Thus,
cytotoxic T lymphocytes recognizing the p5325_35, p53110-124, P53149-157 and p5364-272 have
been observed in experimental systems [93,94]. These findings led to the development
of several different vaccines for enhancing T cell responses against tumors possessing
mutant p53 [93,94]. Since these vaccines were generally well tolerated when administered
to mice models, they were tested in multiple phase I/1I clinical trials across different cancer
types [93]. Although some of these vaccines promoted a p53-specific immune response,
little clinical activity has been observed to-date [93].

Before concluding this section, it should be stated that these negative clinical findings
are not unique to mutant p53 as a cancer vaccine [95]. Despite the enormous amount
of research devoted to the development of anti-cancer vaccines, only two have so far
been approved for clinical application, i.e., Sipuleucel T for advanced prostate cancer and
talimogene laherparepvec (T-VEC) for the treatment of melanomas. This failure appears
to be at least partly due to a lack of sufficient immunogenicity in the vaccines tested for
inducing an appropriate clinical response for tumor elimination [95].

Future research on anti-cancer vaccines including p53 vaccines should therefore focus
on optimizing delivery of the vaccine to the appropriate cellular location, selecting the
optimum adjuvant to be co-administered with the vaccine, identifying the optimum dose
and treating patients with early cancer (where immunosuppression would be expected to
be limited) rather that patients with advanced cancer (where immunosuppression would
be expected to be strong).

7. Other Strategies for Targeting Mutant p53

Several other strategies for targeting mutant p53 are currently undergoing investiga-
tions, most of which are still at a preclinical level (Table 2). Gene therapy with Gendicine
(a recombinant human adenovirus containing wild-type p53) in combination with radio-
therapy, however, has been approved for the treatment of head and neck squamous cancer
in China but apparently not in any other country. This approval followed several clinical
trials reporting that Genidicine was well tolerated and improved outcome in patients with
advanced head and neck cancers (as well as in other cancer types [96]).
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Table 2. Different strategies for targeting mutant p53 for cancer therapy.

Strategy Example of Drug Refs.

Eprenetapopt, COTI-2, arsenic

Reactivation to WT form [8,44,46,57,58,63,66]

trioxide, PC14586
Degradation of mt 53 Ganetespib, statins [73,80-83]
Vaccines targeting mt p53 p53-SLP, p53MVA [93,94]
Gene therapy Gendicine * [96]
P53 mt-specific antibodies anti-R248Q antibody [97]
P53 mt-specific siRNAs [98]
T-cell receptor mimic antibodies H2-scDb [42]
synthetic Lhaliy with mt £53 WEEL ATR, CHK1 (99
Induction of therapeutic
hypothermia via temperature CHA [100]
sensitive mt forms of p53
Molecular glues/PROTACS Manumycin polyketides [101]
CRISPR/Cas9 [102,103]

* recombinant human p53 adenovirus; WT, wild-type; mt, mutant; p53-SLP, synthetic long; CHA, Né6-
cyclohexyladenoxine; PROTACS, proteolysis targeting chimeric.

8. Targeting Mutant p53 Looking to the Future

Going forward, one of the most promising approaches for targeting mutant proteins
such as mutant p53 is likely to be the use of bispecific T-cell receptor mimic antibodies, i.e.,
antibodies in which one end binds to a mutant epitope on a tumor cell and the other end
to a T-cell. It was mentioned above that the present generation of monoclonal antibodies
cannot readily access nuclear proteins such as mutant p53. However, peptides derived
from such mutant proteins can be processed by the proteasome system and converted into
small peptides. These peptides can attach to HLA proteins located on the cell membrane
and hence be recognized by T-cell via their T-cell receptors.

To target such peptides, Hsiue et al. [42] developed an antibody specific for one of
the most frequently occurring mutations in the TP53 gene, i.e., the R175H mutation. The
bispecific single chain antibody, named H2scD, bound to both the specific mutant p53
peptide attached to an HLA allele (A*02:01) and the T-cell receptor. By binding to both
sites, the bispecific antibody was able to activate T cells and consequently eliminate cancer
cells possessing the specific mutant peptide. Theoretically, this strategy could be used
to target other mutant forms of p53 as well as other mutant proteins such as KRAS [42].
Although the use of single chain antibodies such as the type used in this report is promising
for targeting mutant proteins, because of its relatively small size, it is likely to be rapidly
cleared by the kidneys. Thus, methods to stabilize the antibody may be necessary.

Another potential strategy for targeting cancer-specific mutations is the use of CRISPR/
Cas9 gene editing. This technology uses genetic engineering to alter the cells” genome [102].
In one of the most successful attempts to date to target mutant p53 using CRISPR, Sayed,
et al. [103] used the recently introduced adenine base system to target a pancreatic cancer
cell line (PANC-1) expressing the TP53 mutation, R273H. Evidence of gene correction
was the induction of several canonical p53 target proteins such as p21, MDM4, PUMA
and GADDA45A. Further work by Sayed et al. [103] showed that this methodology also
successfully corrected the TP53 R175H mutation in a cell line derived from a colorectal
cancer organoid. The challenge will be to translate this technology to patients with cancer.

Other potential strategies for targeting muting mutant p53 include the use of PRO-
TACs/molecular glues which can lead to degradation of specific mutant proteins [101],
induction of therapeutic hypothermia in tumors possessing temperature sensitive TP53
mutations [100] and exploitation of synthetic lethality for cancer containing gain of function
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mutations [99]. Although all the above-mentioned strategies for targeting mutant p53 are
promising, they still require optimization and further validation prior to any clinical trial

9. Conclusions

With the multiplicity of ongoing clinical trials, we should soon know whether targeting
mutant p53 has clinical efficacy in cancer. The recent demonstration of response to PC14586
provides some optimism that mutant p53 may eventually be targeted for cancer treatment.
However, irrespective of the outcome of the ongoing trials, mutant p53 remains a highly
attractive target for cancer treatment (see above). We, therefore, encourage academic
researchers and pharma companies to intensify their research into exploiting the most
frequently mutated gene in cancer for therapeutic potential. The ultimate reward could be
a drug with wide application across a broad range of cancer types.
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