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Abstract: This paper is an attempt to study the nonlinear vibration of a pre-stressed single-walled
carbon nanotube (SWCNT) with water-filled and simply supported ends. A new analytical formula is
obtained for the nonlinear model based on the simplified Donnell’s shell theory. The effects of internal
fluid on the coupling vibration of the SWCNT–water system are discussed in detail. Furthermore, the
influence of the different nanotube thicknesses and radiuses on the nonlinear vibration frequencies is
investigated according to the shell theory. Numerical calculations are done to show the effectiveness
of the proposed schemes. The results show that the nonlinear frequency grew with the increasing
nonlinear parameters (radius and thickness of nanotube). In addition, it is shown that the influence
of the nonlinear parameters is greater at the lower mode in comparison with the higher mode for the
same nanotube thickness and radius.

Keywords: nonlinear vibration; Donnell’s shell model; initial stresses; water-filled; single-wall carbon
nanotube (SWCNT)

1. Introduction

Carbon nanotubes have become one of the most important nanomaterials for nanotechnology;
they have distinguished mechanical and electrical properties, and have had notable applications in
nanodevices in recent years [1–7]. To understand the dynamic behavior of carbon nanotubes, numerous
researchers have conducted computational simulations to study the vibration and wave propagation
in carbon nanotubes [8–11]. Recently, beam and cylindrical shell models have been used to study the
bending, buckling and vibrational behaviors of carbon nanotubes [12]. Using Donnell’s shell equations,
Sun and Liu [13] have studied the free vibration of multi-walled carbon nanotubes (MWCNTs).
Asghar et al. [14] have studied the non-local effect on the vibration analysis of double-walled carbon
nanotubes based on Donnell’s shell theory. Yan et al. [15] have investigated the free vibration of
conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the
nanocomposite have been obtained by employing the shell model based on Donnell’s shell theory.
Zhang et al. [16] has studied the critical buckling strains of axial loads using both the beam and
cylindrical shell model. To know and take the necessary steps to control the structural vibration
response of nanodevices, nonlinear vibration analysis has become very important in designing the
structure of such nanodevices. The large amplitude (non-linear vibration) of carbon nanotubes, due
to the effects of the large deformation within the elastic limit on the carbon nanotubes, has received
considerable attention. Yan et al. [17] have modeled the nonlinear free vibration of double-walled
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carbon nanotubes using Donnell’s shell theory. Nowadays, the transport properties of water confined
in one-dimensional nanochannels are of great interest in physics and medicine. An ideal model for
these studies is water that is confined inside carbon nanotubes—specifically, single-walled carbon
nanotubes [18–23]. However, there is little systematic consideration concerning the initial stress effects
in water-filled CNTs in the literature. On the other hand, CNTs often suffer from initial stresses due to
residual stress, thermal effects, surface effects, mismatches between the material properties of CNTs and
surrounding mediums, initial external loads and other physical issues. In this field, the effects of initial
stress on the non-coaxial resonance of multi-walled nanotubes (MWNTs) have been investigated by the
theories of Euler–Bernoulli and Timoshenko beams, respectively, in Wang et al. [24] and Cai et al. [25].
Based on the Euler–Bernoulli beam theory, Zhang et al. [26] studied the transverse vibrations of DWNTs
under compressive axial load. They pointed out that the natural frequencies are dependent on the axial
load and decrease with an increase in the axial load, and that the associated amplitude ratios of the
inner to the outer tubes of DWNTs are independent of the axial load. Lu et al. [27] adopted a nonlocal
Euler–Bernoulli beam model to analyze the wave and vibration characteristics of one-dimensional (1D)
nanostructures with initial axial stress. Furthermore, Wang et al. [28] used a nonlocal Timoshenko
beam model to deal with the free vibration of micro- and nanobeams with initial stress. The vibration of
multi-wall carbon nanotubes (MWCNTs) and the wave propagation of double-wall carbon nanotubes
(DWCNTs) have been studied based on the Flügge shell equation [29,30]. Selim [31–33] demonstrated
how to construct and analyze the propagation of dilatation and transverse waves in a pre-stressed
plate and single-wall carbon nanotube using local and nonlocal scale effects.

In this work, the nonlinear vibration of an initially stressed water-filled single-walled carbon
nanotube is investigated using shell theory. Furthermore, the influence of the different nanotube
thicknesses and radiuses on the nonlinear vibration frequencies is investigated according to Donnell’s
shell theory. Numerical calculations are done and shown graphically.

2. Formulation of the Problem

Assuming small strains and displacements, and considering the thin shell theory, Figure 1
illustrates the cylindrical coordinate system (x,θ, r) and the geometry of the model. u, v and w are the
axial, circumferential and radial displacements, respectively.
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Figure 1. Tube geometry and coordinate system used.

The nonlinear shallow-shell equations of motion based on Donnell’s theory are given by
Amabili [34]:

D∇4wt + ρt
∂2wt

∂t2 =
1
Rt

∂2F
∂x2 , (1)

η
∂2ws

∂x2 − ζs = ρs
∂2ws

∂t2 , (2)
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∇
4F = −

Eh
Rt

∂2wt

∂x2 , (3)

∇
4 =

[
∂2

∂x2 −
1

Rt2
∂2

∂θ2

]2

, (4)

ζs = Qs − P
∂2wt

∂x2 , (5)

Qs = ρs(
L

mπ
)

In(τs)

I′n(τs)

∂2ws

∂t2 , (6)

τs =
mπRs

L
, (7)

where Rt is the carbon nanotube radius, t is the time, wt is the radial displacement, ρt is the density, h is
the tube thickness, L is the length of nanotube, E is the Young’s modulus, D = Eh3

12(1−ν2)
is the bending

stiffness and ν is the Poisson ratio.
For the water shell, ρs is density, Qs is the flow pressure, Rs is the radius, ws is the radial

displacement, η is the carbon nanotube–water surface tension, P is the initial compression stress, In and
I′n are the modified Bessel function of order n and its first derivative with respect to the argument and
F is the unknown stress function, which will be determined. For the present study, the displacements,
slope, moments, shears, and stresses must all satisfy the continuity conditions:

wt(x,θ, t) = wt(x,θ+ 2πR, t), (8)

ws(x,θ, t) = ws(x,θ+ 2πR, t). (9)

3. Solution of the Problem

An approximate solution will be used to solve Equations (1) and (2). First, we choose a vibration
mode for w and solving Equation (2). Galerkin’s method will be used in Equation (1) to find F. We
should examine w and F throughout the calculations to verify the necessary continuity requirements
of Equation (3). By choosing the vibration modes of nonlinear vibrations, the nonlinear versions of
Equations (1) and (2) have the following solutions [35]:

wt =
2∑

m=1

Ωm,n(t) sin(mπx/L) cos(nθ) +
n2

4Rt
Ωm,n(t)

2 sin (mπx/L)2, (10)

ws =
2∑

m=1

Ωm+2,n(t) sin(mπx/L) cos(nθ) +
n2

4Rs
Ωm,n(t)

2 sin (mπx/L)2 (11)

where Ωm,n(t) is the unknown function of time m is the mth axial mode and n is the nth circumferential
mode. Equations (10) and (11) represent the deflection modes assumed in the present problem.

3.1. Application of Galerkin’s Method

The particular solution of the function F is determined by substituting Equations (10) and (11)
into Equation (2), giving us

Fp = Eh
[

2∑
m=1

(
c1Ωm,n(t) sin(mπx/L) cos(nθ) + c2Ω2

m,n(t) cos(2nθ) + c3Ω3
m,n(t) sin(3mπx/L) cos(nθ)

)]
, (12)

where
c1 = Ehm2π2L2

(m4π4+2m2π2n2L2+n4L4)
, c2 = −Ehm2π2

32n2L2 , c3 = Ehm2π2n4L2

4

(
1

(9m2π2+n2L2)2 −
1

(m2π2+n2L2)2

)
. (13)
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To solve Equation (1), we will substitute Equations (10)–(12) into Equation (1). Galerkin’s
procedure provides a very powerful approximation method by employing any set of basic functions ϕ,
which transform a system of nonlinear partial differential equations to a solvable system of nonlinear
ordinary differential equations. Equations of motion (1) and (2) may be expressed as:

(
D∇4wt + ρt

∂2wt

∂t2 = . . . ,φ
)
=

∫ 2π

0

L∫
0

(
D∇4wt + ρt

∂2wt

∂t2 = . . .

)
×φ. (14)

Galerkin’s weighting function is obtained from the first derivative of Equation (10) with respect
to time.

φ =
2∑

m=1

sin(mπx/L) cos(nθ) +
n2

2Rt
Ωm,n(t) sin (mπx/L)2. (15)

After evaluating the integral in Equation (14), the ordinary differential system with unknown
functions Ωm,n(t) is given as:

d2Ω1,n(t)
dt2 + δ2

1nΩ1,n(t) = 0, (16)

d2Ω2,n(t)
dt2 + δ2

2nΩ2,n(t) = 0, (17)

d2Ω3,n(t)
dt2 +

γπ2

L2(ρs + m3n)
Ω3,n(t) = 0, (18)

d2Ω4,n(t)
dt2 +

4γπ2

L2(ρs + m4n)
Ω4,n(t) = 0, (19)

where

δ2
1n
=

Eh
ρt

 1
12(1− ν2)

(
π2h
L2 +

√
εn

Rt

)2

+
π4R2

t(
π2R2

t + n2L2
)2

, (20)

δ2
2n
=

Eh
ρt

 1
12(1− ν2)

(
4π2h

L2 +

√
εn

Rt

)2

+
16π4R2

t(
4π2R2

t + n2L2
)2

, (21)

m3n =
ρsLIn(

πRs
L )

πI′n(
πRs

L )
, (22)

m4n =
ρsLIn(

2πRs
L )

πI′n(
2πRs

L )
, (23)

where εn =
(

n2h
Rt

)2
is the nonlinearity parameter (for εn = 0, the vibrations become linear).

3.2. The Method of Averaging

The non-linear ordinary differential Equations (16)–(19) can be solved approximately by using the
method of averaging [36]. This method is used to obtain simpler relationships between the first and
second order derivatives of a function Ωm,n(t) with a slowly varying amplitude Um,n(t) and phase β(t).

Ωm,n(t) = Um,n(t) cos(ωt + β(t)). (24)

∴
dΩm,n(t)

dt = −ωUm,n(t) sin(ωt + β(t)) + dUm,n(t)
dt cos(ωt + β(t)) −Um,n(t)

dβ(t)
dt sin(ωt + β(t)). (25)
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By applying the assumptions that steady state vibrations and Um,n(t), β(t) are slowly varying
functions of time, we get

dUm,n(t)
dt

cos (ω t + β(t)) −Um,n(t)
dβ(t)

dt
sin (ω t + β(t)) = 0. (26)

dΩm,n(t)
dt

= −ω Um,n(t) sin(ωt + β(t)), (27)

Then
d2Ωm,n(t)

dt2 = −ω2Um,n(t) cos(ωt + β(t)) = −ω2 Ωm,n(t). (28)

By substituting (26–28) into Equations (16–19), we get

ω2
1n
= δ2

1n
=

Eh
ρt

 1
12(1− ν2)

(
π2h
L2 +

√
εn

Rt

)2

+
π4R2

t(
π2R2

t + n2L2
)2

, (29)

ω2
2n
= δ2

2n
=

Eh
ρt

 1
12(1− ν2)

(
4π2h

L2 +

√
εn

Rt

)2

+
16π4R2

t(
4π2R2

t + n2L2
)2

, (30)

ω2
3,n =

γπ2

L2(ρs + m3n)
, (31)

ω2
4,n =

4γπ2

L2(ρs + m3n)
. (32)

4. Numerical Simulation Procedure

Equations (29) and (30) were used to evaluate the first and second modes of the nonlinear frequency
of a SWCNT, which has been modeled by Donnell’s nonlinear model. For simplicity, it is assumed
that SWCNTs are geometrically and physically identical and the numerical calculation has been done
for Equations (29) and (30) using the geometries of SWCNTs (Tables 1 and 2) that were reported by
Gupta et al. [37].

Table 1. Simulation parameters.

Young’s Modulus
E(Gpa)

Mass Density
ρt(kgm−3)

Poisson’s Ratio υ Tube (n,m) Tube Length
L (nm)

1060 2270 0.25 (40,0) 10

Table 2. The parameters used for modeling (SWCNT).

Radius of Single-Walled Carbon Nanotube (Rt) (nm) Nanotube Wall Thickness (h) (nm)

0.7420 0.0878

1.1129 0.1340

In this section, the effects of the nonlinear parameter εn =
(

n2h
Rt

)2
on the first and second mode of

the frequency are studied.
Figure 2 shows the influence of the nonlinear parameters (radius and thickness of nanotube) on

the frequency of the first mode of vibrations, when the nanotube is filled with water.
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Figure 2. Nonlinear parameters versus frequency for the first mode of vibrations (A) h = 0.0878 nm,
h = 0.1251 nm and (B) Rt = 0.7420 nm, Rt = 1.1129 nm.

Figure 2A shows the variation in the vibration frequency for the different values of the nanotube
thickness (h). The results show that the effects of the nanotube thicknesses are notable at low
vibration frequency.

Figure 2B shows the variation in the vibration frequency for the different values of the nanotube
radius (R). The figure shows that the nonlinear frequency grew with the increasing nanotube radius
(R). From this figure, it is also clear that the small change in the nanotube radius corresponds to a
notable change in the vibration frequency.

Figure 3 shows the variation in the nonlinear parameters (radius and thickness of nanotube)
versus the frequency for the second mode of vibrations, when the nanotube is filled with water.
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h = 0.1251 nm and (B) Rt = 0.7420 nm, Rt = 1.1129 nm.

Figure 3A shows the variation in the vibration frequency for the different values of the nanotube
thickness (h). The results show that the nonlinear frequency grew slowly with the change in the
nanotube thickness compared with the case of the first mode of vibration.

Figure 3B shows the variation in the vibration frequency for the different values of the nanotube
radius (R). From this figure, it is clear that the small change in the nanotube radius corresponds to a
small increase in the vibration frequency compared with the same case of the first mode of vibrations.

From Figures 2 and 3, the results show that as the nonlinear parameters (radius and thickness of
nanotube) increase, the vibration frequency increases. In addition, it is shown that the influence of the
nonlinear parameters is greater at the lower mode in comparison with the higher mode for the same
thickness and radius of the nanotube.

5. Conclusions

In this paper, the nonlinear vibration of pre-stressed fluid-filled single-walled carbon nanotubes
with simply supported ends is investigated based on von Karman’s geometric nonlinearity and
Donnell’s simplified shell model and the effects of the different nanotube thicknesses and radiuses
on the nonlinear vibration frequencies have been discussed in detail. Galerkin’s procedure was
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used to discretize the governing partial differential equations into ordinary differential equations of
motion. A nonlinear analytical formula was obtained for the model and the effects of internal fluid on
the vibration of single-walled carbon nanotubes with the different nonlinear parameters have been
discussed. As a case study, the mechanical and dimensional properties of the SWCNT were obtained
from Gupta et al. [37]. The results show that as the nonlinear parameters (radius and thickness of
nanotube) increase, the vibration frequency increases. In addition, it is shown that the influence of the
nonlinear parameters is greater at the lower mode in comparison with the higher mode for the same
thickness and radius of the nanotube.
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