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Abstract 

Background:  Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the 
phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-
wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were 
performed by three complementary software programs including CNVpytor, DELLY and Manta.

Results:  A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV 
regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontol-
ogy and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs 
in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin 
cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic 
synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), 
and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, 
several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, 
EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3).

Conclusions:  This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in 
the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink 
behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new 
resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural varia-
tions are present.
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Background
Copy number variations (CNVs), mainly refer to dele-
tion or duplication of DNA segments, are a particular 
form of genomic structural variation ranging from 50 bp 
to several megabases (Mb) [1]. Although CNVs are less 
frequent compared to single nucleotide polymorphisms, 
due to their greater size, they might have large effects 
as a result of altering gene dosage, disrupting coding 
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sequence and modifyng gene expression [2], leading to 
significant impacts on phenotypes of economic inter-
est [3–5]. In addition, CNVs are associated with disease 
susceptibility [6–11], and might contribute to substantial 
part of missing heritability [12]. It was shown that CNVs 
play a critical role in regulating several complex diseases 
in human including autism [7], breast cancer [8], schizo-
phrenia [9], depression [10], and susceptibility to Coro-
navirus [11]. Similarly, CNVs have been suggested to be 
responsible for traits and diseases in domesticated ani-
mals, such as polled intersex syndrome in goats [13], sus-
ceptibility to melanoma in horses [14], osteopetrosis in 
cattle [15], and dominant white color in pigs [16].

The decreasing costs of whole-genome sequencing 
(WGS) have made it feasible to map CNV with high reso-
lution and accuracy [17]. Multiple approaches have been 
developed for WGS-based CNV detection, which use 
paired-end mapping, read-depth, and split-read [17]. The 
paired-end mapping method is applicable to paired-end 
reads and performs better in detection of CNVs in low-
complexity regions [17]. On the other hand, the read-
depth method relies on the depth of coverage in genomic 
regions and utilizes the changes in read depth to detect 
the CNV [18], and can identify large CNVs in complex 
genomic regions [19]. The split-read method refers to 
sequences that map to the reference genome only at one 
end, with other partially or unmapped reads providing 
the location of the breakpoint [17].

Characterisation of CNV has been widely studied in 
livestock species such as cattle [20–22], sheep [23–25], 
goat [26–28], pig [29–31], chicken [32–34], turkey [35, 
36], buffalo [37], yak [38, 39], and rabbit [40], indicat-
ing that CNVs might have significant impacts on the 
economically important traits [41–44]. However, to 
our knowledge, there is no genome-wide CNV study in 
American mink. Therefore, the objectives of the current 
study were to: 1) provide the first large-scale CNV map 
in American mink using whole-genome sequence data; 2) 
define sets of high confidence CNV regions (CNVR) by 
incorporating multiple approaches; and 3) examine the 
potential impacts of CNVR and their overlapped genes 
on traits of economic interest for mink selection pro-
grams through in-depth functional annotation analyses.

Methods
Animals and sampling
All procedures applied in this study were approved by 
the Dalhousie University Animal Care and Use Commit-
tee (certification# 2018-009, and 2019-012), and mink 
used were cared for according to the Code of Practice for 
the Care and Handling of Farmed Mink guidelines [45]. 
The study is reported in compliance with the ARRIVE 
guidelines.

All individuals were raised through standard farming 
condition and were euthanized in December 2018 [46]. 
Tongue samples were collected from two different farms, 
the Canadian Center for Fur Animal Research (CCFAR) 
at Dalhousie Faculty of Agriculture (Truro, NS, Can-
ada) and Millbank Fur Farm (Rockwood, ON, Canada). 
All mink from Millbank Fur Farm were Black in color 
(n = 15), and individuals from CCFAR varied in color 
types, including Demi (n = 32), Mahogany (n = 20), Black 
(n = 16), Pastel (n = 10), and Stardust (n = 7). To keep 
the relationship between individuals low, we checked 
the pedigree information and selected individuals with 
the lowest degree of kinship for the further analyses 
(median = 0.015; 1st–3rd quantile of relatedness = 0.008–
0.039). More details were provided about the studied 
individuals by Karimi et al. [47].

Quality control and read alignment
Using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, 
Germany), we extracted genomic DNA from tongue tis-
sue samples in accordance with the manufacturer’s pro-
tocol. Sequencing (100 bp pair-end reads) was performed 
by BGISEQ-500 platform at Beijing Genomics Institute 
(BGI, Guangdong, China). Low-quality reads and adapter 
sequences were removed by using the SOAPnuke software 
version 2.1.5 [48]. Then, high-quality reads were aligned 
to the latest American mink reference genome  (https://​
www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​02017​1115.1/) 
using Burrows-Wheeler Aligner version 0.7.17 [49] with 
default parameters. The conversion of aligned files to binary 
alignment map (BAM) format and subsequent sorting was 
performed with SAMtools version 1.11 [50]. Duplicates 
were then removed using the MarkDuplicates command 
tool of Picard version 2.0.1 [51]. Finally, the BAM files were 
indexed by SAMtools software version 1.15 [50].

Identification of CNV
To increase the accuracy of CNV detection, we employed 
three software programs, including CNVpytor version 
1.2.1 [52], DELLY version 0.9.1 [53], and Manta 1.6.0 [54]. 
The CNVpytor software applies a read-depth approach, 
and both DELLY and Manta use paired-end and split-
read methods. For each individual, the sorted BAM file 
was processed by CNVpytor [52], which is a Python ver-
sion of its ancestor CNVnator [18]. Although both per-
form the same procedures, we applied CNVpytor as it is 
considerably faster in computational time [52]. The CNV 
calling was carried out by setting a bin size of 100 bp, fol-
lowing the recommendation of Abyzov et  al. [18]. For 
improving the CNV detection accuracy, the following cri-
teria were set to filter false positive candidates: the CNV 
calls with P-value < 0.01, sizes greater than 1 kb, fraction 
of mapped reads with zero quality (q0) > 50%, fraction of 
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N bases (i.e., unassembled reference genome) within call 
region (pN) > 5%, and the distance to nearest gap in ref-
erence genome (dG) > 100,000. In the current study, we 
removed CNVs smaller than 1 kb to avoid noises, since 
most of the CNVs calling algorithms had low accuracy 
for small CNVs [17]. DELLY [53] and Manta [54] were 
performed with default parameters. The calls were fil-
tered by removing the following 1) calls that were flagged 
IMPRECISE, 2) calls that did not pass the quality filters as 
suggested by DELLY and Manta (flag PASS), and 3) calls 
that had sizes smaller than 1 kb. Although DELLY and 
Manta had the ability to detect translocations and inver-
sions events, we only considered deletions and duplica-
tions to have comparable results with the CNVpytor 
software. Only deletions and duplications were kept for 
further analyses. To generate a high-confident consensus 
call from different software, we implemented SURVIVOR 
version 1.0.3 [55] with default parameters, which merged 
the calls together with a maximum allowed distance of 
1 kb, and CNVs with at least two out of three callers were 
kept for further analyses. This procedure cut down the 
false positive rate, yet without significantly reducing the 
sensitivity [55].

Determination of CNVR
The CNVR were obtained by the CNVruler software 
version 1.2 [56], merging CNVs among individuals with 
at least 50% reciprocal overlap in their genomic coordi-
nates. For instance, considering two CNVs, CNV1 starts 
at position X and ends at position Y, and CNV2 from Z 
to W, with X < Z < Y < W. Then if the reciprocal over-
lap between the two CNVs is at least 50%, the software 
merges them as a CNVR that runs from X to W on the 
genome [57]. To reduce the false positive rate, only the 
CNVR found in more than two samples were considered 
for further analyses [58]. The CNVR were categorized 
as gain or loss. The overlapping “loss” and “gain” CNVR 
were merged into single regions and called “mixed” 
CVNRs.

Functional enrichment analysis of candidate genes 
overlapped with CNVR
A list of genes in the mink genome was downloaded 
from the NCBI website and Bedtools version 2.30.0 
(function:intersect) [59] and was used to catalogue genes 
in corresponding regions. The Gene Ontology (GO), 
functional annotation and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses [60] was car-
ried out using the g:Profiler [61]. Analyses were per-
formed using R packages including gprofiler2 version 
0.2.1 [62], clusterProfiler version 3.0.4 [63], enrichplot 
version 1.16.1 [64], and org. Hs.eg.db version 2.7.1 [65]. 
All enrichment functions were selected through false 

discovery rate corrections and pathways with adjusted 
P-values < 0.05 were considered to be significant.

Results
Detection of CNVs
We employed different software including CNVpy-
tor, DELLY, and Manta to detect CNVs in 100 Ameri-
can mink using WGS data. After merging the results 
of these methods, we retrieved a total of 164,733 CNV 
events (including 144,517 deletion and 20,216 duplica-
tion events) (Table 1), with an average number of 1647.3 
per animal. The length size of identified CNVs ranged 
from 1 kb to 4255 kb with an average size of 7.4 kb. The 
detailed information of detected CNVs is provided in 
Additional  file  1: Table  S1. The CNVs were distributed 
over 14 autosomes with varying numbers in each auto-
some (Fig. 1).

Number and distribution of CNVR
A total of 5378 CNVR were obtained by merging over-
lapping CNVs across all individuals that covered 47.3 Mb 
of mink genome corresponding to 1.9% of autosomal 
genome sequence (Table  2). The CNVR included 4073 
losses, 625 gains, and 680 mixed (loss and gain) events 
(Fig. 2). To achieve high-confident CNVR, we only con-
sidered CNVR identified in two or more samples. The 
size of CNVR varied from 1 to 3171.5 kb with an average 
of 8.9 kb. The largest number of CNVR were on chromo-
some 1 (683) and the lowest number were observed on 
chromosome 14 (82), which is in accordance with chro-
mosome lengths.

In total, 4103 out of 5378 CNVR (76.3%) had sizes 
within 1–5 kb interval, following by 1060 (19.71%) within 
5–10 kb, 91 (1.69%) within 10–20 kb, 56 (1.04%) within 
20–50 kb, and 68 (1.26%) greater than 50 kb in length 
(Fig. 3).

The number of individuals supporting the CNVR var-
ied from 2 to 98 out of 100 individuals, concentrating at 
40.2% with 2-10 individuals, and only 5.6% of detected 
CNVR were observed in more than 90 individuals. The 
detailed information of all detected CNVR is provided 
in Additional file 1: Table S2. Furthermore, the physical 

Table 1  Descriptive statistics of CNVs detected in American 
mink genome

CNV Length (bp)
Number Mean Minimum Maximum

Deletion 144,517 6432.2 1000 3,171,151

Duplication 20,216 14,655.3 1003 4,254,987

Overall 164,733 7441.3 1000 4,254,987
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Fig. 1  Numbers of CNVs identified across autosomal chromosomes of American mink

Table 2  Distribution of CNVR across autsomal chromosmes of American mink genome

Chromosome Chromosome 
length (bp)

CNVR count Length of CNVR (bp) Coverage (%) Max size (bp) Average (bp) Min size (bp)

1 317,036,279 683 4,071,099 1.3 371,616 5960.6 1003

2 240,416,976 522 4,470,485 1.9 858,878 8564.1 1016

3 235,645,773 508 3,550,404 1.5 1,786,562 6988.9 1003

4 231,359,643 433 2,209,544 1 234,143 5102.9 1003

5 167,246,402 324 4,406,049 2.6 3,171,454 13,598.9 1019

6 224,559,537 543 2,456,160 1.1 150,398 4523.3 1004

7 207,076,058 417 2,699,685 1.3 664,002 6474.1 1012

8 144,012,018 273 2,135,038 1.4 955,355 7820.7 1009

9 101,698,841 224 1,068,011 1.1 229,614 4767.9 1004

10 75,573,270 189 2,509,561 3.3 1,866,663 13,278.1 1005

11 220,349,319 569 11,245,345 5.1 2,939,814 19,763.4 1003

12 148,690,698 319 1,804,339 1.2 652,086 5656.2 1003

13 152,771,447 292 4,030,656 2.6 1,986,383 13,803.7 1004

14 46,742,321 82 633,928 1.4 367,849 7730.9 1018

Overall 2,513,178,582 5378 47,290,304 1.9 3,171,454 8859.5 1003
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locations of CNVR across the mink genome are pre-
sented in Fig. 4.

Functional annotation and gene enrichment analyses
Analysis of the CNVR gene content revealed 1391 genes 
within or partially overlapped with 1878 (34.9%) detected 
CNVR (Additional file 1: Table S3). The enrichment anal-
yses revealed 279 significant gene ontology (GO) terms 
(Additional file  1: Table  S4) and 21 significant KEGG 
pathways (Additional file 1: Table S5). The results of GO 
analysis revealed that CNVR were significantly enriched 
(P-value < 0.05) in different biological functions e.g., 
axon guidance, phospholipid binding, Fc receptor sign-
aling pathway, and GTPase regulator activity. The top 
ten significant GO terms enriched in CNVR-harbored 
genes were listed in the following GO categories (biologi-
cal process, cellular component, molecular function) as 
depicted in Fig. 5.

In addition, the KEGG pathway analysis revealed 21 
significantly enriched pathways (Fig.  6). These genes 
are mainly related to the axon guidance, glutamatergic 
synapse, regulation of actin cytoskeleton, cAMP signal-
ing pathway, sphingolipid metabolism, and regulation of 
lipolysis in adipocytes (Fig. 6). The results of GO enrich-
ment and KEGG analyses revealed the biological func-
tions of several genes associated with fur characteristics 

and development (MYO5A, RAB27B, FGF12, SLC7A11, 
and EXOC2), and immune system processes (SWAP70, 
FYN, ORAI1, TRPM2, and FOXO3).

Discussion
American mink (Neogale vison) is well-known as one of 
the most important sources of fur across the world [66]. 
It is essential for the mink industry to implement highly 
efficient breeding plans to meet sustainable production 
requirements [47]. Genome-wide identification of CNVs 
can provide new insights into genomic variations, which 
can assist in developing genomic breeding strategies for 
American mink. Numerous studies have been performed 
to identify CNVR in other species e.g., cattle [20], pig 
[43], goat [26], sheep [23], chicken [17], and buffalo [37]. 
Several studies indicated that CNVs could be highly asso-
ciated with economically important traits in these spe-
cies [29, 67–69]. To our knowledge, the current study 
provides the first genome-wide CNV detection in Ameri-
can mink.

We performed the CNV analyses on mink genome 
using WGS data. In total, we identified 164,733 CNV 
events (144,517 deletions and 20,216 duplications) with 
the average number of 1647.3 per mink. Similar results 
were reported in other livestock species e.g., dairy cat-
tle (182,823 CNVs) [70], yak (98,441 CNVs) [39], Nellore 

Fig. 2  Distribution of CNVR types in American mink
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cattle (195,873 CNVs) [71], and goat (208,649 CNVs) 
[26]. Some other studies reported a wide range of CNVs 
from 12 CNVs in chicken [72] to 1,747,604 CNVs in 
sheep [23]. This discrepancy might be due to the differ-
ences in the sample size, algorithms used for CNV call-
ing, and sequencing technology [73]. A considerable 
number of detected CNVs were deletions (88.7%) in our 
study, which was expected because of the limited ability 
of the current algorithms in detection of insertions [74]. 
In addition, the detection of insertion is more diffucult in 
end mapping methods, since they only detect the dupli-
cations when mapped reads are shorter than the frag-
mented length [74].

The results showed that 5378 CNVR covered around 
47.3 Mb (1.9%) of the mink genome, which falls within 
the range of several studies reported in other species, 
such as pig (1.72%) [75], cattle (2.5%) [42], chicken (1%) 
[32], quail (1.6-1.9%) [76], horse (1.3%) [77], and buf-
falo (2%) [37]. The CNVR covered the genome in dif-
ferent ranges in other species, including cat (0.3%) [78], 
pig (0.9%) [57], yak (6.2%) [38], [78] goat (10.8%) [26], 
chicken (12.8%) [69], and cattle (13%) [71]. Several rea-
sons might affect the quantity of CNVR detection such 

as the detection algorithm, population size, genetic back-
ground, the quality of applied technology, and the differ-
ences in genome size [73, 79].

The results showed that 1391 genes in the mink genome 
were harbored within the detected CNVRs (34.9% of 
the total detected CNVRs). The GO and KEGG enrich-
ment results suggested that the CNVs might contribute 
to various biological processes related to growth (regula-
tion of actin cytoskeleton, and cAMP signaling pathway), 
lipid metabolism (phospholipid binding, sphingolipid 
metabolism, and regulation of lipolysis in adipocytes), 
behavior (axon guidance, circadian entrainment, and glu-
tamatergic synapse), and immune response (Wnt signal-
ing pathway, Fc receptor signaling pathway, and GTPase 
regulator activity). For instance, the most significantly 
enriched GO terms and KEGG results were related to 
axon guidance known as the key step in the formation of 
the neuronal network [80]. Interestingly, it was reported 
that CNVs might contribute to axonal growth, which 
has been connected with autism spectrum disorders 
[81]. The enrichment of several pathways related to lipid 
metabolism implied that CNVs might contribute to the 
fur growth and quality as fat metabolism is an important 

Fig. 3  Distribution of CNVR sizes in American mink
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process during furring [82]. Circadian entrainment is an 
essential part of behavior and adaptation since it plays a 
fundamental role to assists organisms in adapting to daily 
environmental cycles [83]. Several studies demonstrated 
that the annual reproductive cycle in mink is under pho-
toperiodic control, and is initiated by decreasing the 
daylength [84, 85]. It is well-documented that photoregu-
lation of reproductive activity is associated with the cir-
cadian rhythm of photosensitivity, leading to a proper 
photoperiodic response in mink [86, 87]. Boissin-Agasse 
et al. [87] identified that seasonal testis activity in mink 
initiated in the Fall when the daily light period is decreas-
ing and exposure to light at this period inhibited testicu-
lar development. Zschille et  al. [88] reported different 
circadian activity rhythm in male and female mink, and 
observed active males during the night, and females with 
high activity during the day. Gender differences in circa-
dian activity rhythms of wild American mink increases 
the female hunting successes as it allows females to be 
in a patch in different time than males to avoid the com-
petitive pressure from the males [88]. In addition, several 
studies in mink have shown that decreasing the photo-
period in the Fall initiates winter fur growth and starting 

the hair growth in summer is associated with increasing 
photoperiod in spring [89–91]. Recently, Nandolo et  al. 
[27] reported enrichment of circadian entrainment path-
way among genes detected across the CNVs in African 
goats, supporting the importance of circadian entrain-
ment in goats during the adaptation to unstable environ-
ment. Notably, it is well-documented that Wnt signaling 
pathway plays a key role in hair growth and development 
of hair follicles [92, 93]. The maintenance of Wnt signal-
ing pathway is a critical part to hair-inducing activity of 
dermal papilla through regulating the β-catenin pathway, 
and thereby required for follicle regeneration and growth 
of the hair shaft [94, 95]. Interestingly, Yuan et  al. [23] 
demonstrated the contribution of Wnt signaling pathway 
to the hair follicle development process in Alpine Merino 
sheep by identifying Wnt-related signaling pathways 
associated with CNVR-harboring genes [23].

In addition, GO enrichment and KEGG analyses 
identified several key genes (MYO5A, RAB27B, FGF12, 
SLC7A11, and EXOC2) participating in a wide range 
of pathways associated with fur characteristics and 
development. In this study, the MYO5A gene (CNVR_
Chr13:75.88–75.89 Mb), a class of actin-based motor 

Fig. 4  Genomic landscape of CNVR in American mink
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proteins, was enriched in several pathways such as actin 
filament organization, actin-based cell projection, calm-
odulin binding, actin binding, and cytoskeletal motor 
activity. The MYO5A gene is found in pigment-producing 
cells, which produce melanin and eventually provides 
the pigment required for normal color of hair, skin, and 
eye [96]. It has been suggested that MYO5A gene plays a 
key role in the industrial Silverblue coat color in Ameri-
can mink [97]. Several studies reported that the MYO5A 
gene can cause diluted (grey) coat color phenotype in 
different species, e.g., rabbit [98], horse [99], dog [100], 
and mice [101]. The RAB27B, which overlapped with 
CNVR_Chr3:143.66–143.67 Mb, is part of the small 
GTPase Ras-associated binding family that regulates the 
membrane trafficking and secretion of exosomes. It was 
indicated that RAB27B and its paralogue (the RAB27A), 
played some roles in the transport of melanosomes, 
and the knockout of this gene might cause silvery gray 
hair [102–104]. Recently, Ku et  al. [105] reported that 
RAB27A/B played a regulating role for hair growth dur-
ing the hair cycle in human. The FGF12 gene overlapped 
with CNVR (Chr6:114.36–114.37 Mb), was related to hair 
growth development. Fibroblast growth factors (FGF) 

are a family of growth factors that are involved in the 
regulation of hair morphogenesis and cycle hair growth 
[106, 107]. Lv et  al. [108] reported a regulating role of 
FGF12 gene in the sheep hair follicle development pro-
cess. In addition, our finding supported by Wang et  al. 
[109] study that reported the role of FGF12 gene in hair 
follicle development in cashmere goats. The SLC7A11 
gene (CNVR_Chr7:73.54–73.57 Mb) is an amino acid 
transporter which mediates the extracellular cysteine in 
exchange for glutamate [110]. It is well documented that 
the SLC7A11 gene plays a critical role in changing the 
fur and skin color formation in animals through regulat-
ing the production of pheomelanin pigment [111–114]. 
The amino acid cysteine is necessary for the formation of 
disulfide bonds and crosslinking between cysteines in the 
keratins and hair keratin-associated proteins is proved to 
be as an important step in forming the fineness, length, 
flexibility and other physical properties of hair and wool 
fibers [115]. Thus, it was shown that the differences in 
the cysteine content leads to various structure of the 
hair fiber among species [116]. Cysteine is an integral 
part of the pheomelanin synthesis to construct yellow or 
red hair color in humans and animals as it regulates the 

Fig. 5  The top ten significant gene ontology terms enriched in CNVR-harbor genes
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conversion of dopaquinone to pheomelanin in hair fol-
licle melanocytes [117, 118]. Chintala et  al. [119] found 
that the subtle gray mouse pigmentation mutant is under 
the genetic control of a mutation form of SLC7A11 gene 
as it affects the rate of extracellular cystine transport into 
melanocytes, which reduces pheomelanin production 
and consequently, the loss of yellow pigment. Moreover, 
Song et  al. [120] identified the SLC7A11 gene as one of 
the key genes associated with the development of black 
and white coat color in farmed mink. The EXOC2 gene 
(CNVR_Chr1:123.59–123.60 Mb) has been previously 
found to be associated with pigmentary phenotypes 
such as hair color and skin pigmentation [121–123]. 
Our results suggested that these CNVR-harboring genes 
might be the potential candidate genes for fur character-
istics and development in American mink.

Our results also revealed several CNVR-harbored 
genes related to the immune system process (SWAP70, 
FYN, ORAI1, TRPM2, and FOXO3). The SWAP70 gene 
(CNVR_Chr11:157.8–157.9 Mb), is essential for nor-
mal B-cell migration that immobilizes F-actin filaments 
on phagosomes, contributing to immune regulation 
such as maturation and differentiation of immune cells 

[124, 125]. Interestingly, Karimi et al. [126] reported the 
SWAP70 gene as a potential candidate gene for response 
to Aleutian mink disease virus infection. The FYN gene 
(CNVR_Chr1:20.84–20.85 Mb), which is involved in vari-
ous signaling pathways, plays a critical role in apoptosis 
and immune response by regulating neuronal develop-
ment and signaling in T and B cells [127, 128]. Zanella 
et al. [129] suggested the FYN gene as a functional can-
didate gene associating with immune response to vac-
cinated pigs against influenza virus. The ORAI1 gene 
(CNVR_Chr3:234.70–234.71 Mb) was the other gene 
associated with immune response, which is an important 
signaling component required for T cell activation and 
function [130]. The ORAI1 gene plays a role in maintain-
ing a tick resistance status during the cattle tick infection 
[131]. Recently, Xue et al. [132] reported that the ORAI1 
might have regulating functions in the immune response, 
exacerbates inflammation and endoplasmic reticulum 
stress in bovine hepatocytes.

The TRPM2 gene (CNVR_Chr6:1.82–1.83 Mb), which 
is a Ca2+-permeable cation channel, is highly expressed in 
immune cells, primarily polymorphonuclear leukocytes, 
monocytes/macrophages, and T-cells [133, 134]. It was 

Fig. 6  The KEGG pathways enriched in CNVR-harbor genes
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