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Abstract

Objective: Hypothalamic hamartoma (HH) is a congenital anomalous brain

tumor. Although most HHs are found without any other systemic features, HH

is observed in syndromic disorders such as Pallister–Hall syndrome (PHS) and

oral-facial-digital syndrome (OFD). Here, we explore the possible involvement

of somatic mutations in HH. Methods: We analyzed paired blood and hamar-

toma samples from 18 individuals, including three with digital anomalies, by

whole-exome sequencing. Detected somatic mutations were validated by Sanger

sequencing and deep sequencing of target amplicons. The effect of GLI3 muta-

tions on its transcriptional properties was evaluated by luciferase assays using

reporters containing eight copies of the GLI-binding site and a mutated control

sequence disrupting GLI binding. Results: We found hamartoma-specific

somatic truncation mutations in GLI3 and OFD1, known regulators of sonic

hedgehog (Shh) signaling, in two and three individuals, respectively. Deep

sequencing of amplicons covering the mutations showed mutant allele rates of

7–54%. Somatic mutations in OFD1 at Xp22 were found only in male individu-

als. Potential pathogenic somatic mutations in UBR5 and ZNF263 were also

identified in each individual. Germline nonsense mutations in GLI3 and OFD1

were identified in each individual with PHS and OFD type I in our series,

respectively. The truncated GLI3 showed stronger repressor activity than the

wild-type protein. We did not detect somatic mutations in the remaining 9

individuals. Interpretation: Our data indicate that a spectrum of human disor-

ders can be caused by lesion-specific somatic mutations, and suggest that

impaired Shh signaling is one of the pathomechanisms of HH.
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Introduction

Hypothalamic hamartoma (HH) is a congenital anoma-

lous brain tumor associated with drug-resistant epilepsy,

gelastic seizures, cognitive deficits, behavioral abnormali-

ties, and precocious puberty.1,2 HH has intrinsic epilepto-

genesis;3,4 thus, elucidating the pathological basis of HH

development would facilitate understanding for its epilep-

togenesis. Although most HHs are diagnosed without any

other systemic features, HH is often observed as one of

the clinical features of different dysmorphic syndromes

including Pallister–Hall syndrome (PHS) and oral-facial-

digital syndrome (OFD) types I and VI; syndromes that

have overlapping phenotypes such as HH and poly-

dactyly.5–7 Truncation mutations in GLI3, a transcription

factor that modulates Shh signaling are known to cause

PHS.5,8–10 Full-length GLI3 functions as a transcriptional

activator in the presence of Shh, and is cleaved to form a

repressor in the absence of Shh.11 GLI3 mutations in PHS

patients are accumulated in the middle third of the

gene,5,8,10 suggesting that mutant GLI3 would function as

a constitutive repressor. Severe truncation mutations in

OFD1 are found in OFD type I, which is an X-linked

dominant disorder with male lethality.12,13 OFD1 encodes

a centrosomal/basal body protein that localizes to the base

of primary cilia.14–16 The primary cilium is required for

Shh signaling,17 and Ofd1-deficient male mice showed

reduced expression of the Shh target genes Ptch1 and

Gli1.18 Therefore, HH is found in two disorders that have

GLI3 and OFD1 mutations, both of which appear to

reduce Shh signaling. Autosomal recessive mutations in

C5orf42, an uncharacterized protein consisting of 3,198-

amino acids, have been reported to cause OFD type VI.19

Somatic mutation has recently been shown to be one

of the underlying causes for the phenotypic variation in

genetic diseases.20,21 For example, germline and somatic

mutations in genes involved in PI3K-AKT3-mTOR

pathway cause a spectrum of megalencephaly related dis-

orders.22,23 In HH, somatic chromosomal abnormalities

involving the GLI3 locus and a somatic GLI3 mutation

have been reported,24,25 suggesting that somatic mutations

are important factors in HH. In this study, we found

hamartoma-specific truncation mutations in GLI3 and

OFD1 in two and three individuals, respectively, suggest-

ing that impaired Shh signaling by germline and somatic

mutations can cause a spectrum of human disorders

related to HH.

Subjects and Methods

Subjects

Biopsy specimens of HH and peripheral blood leukocytes

were obtained from 18 individuals who underwent stereo-

tactic radiofrequency thermocoagulation.26 Clinical fea-

tures of the 18 individuals, including three cases with

digital anomalies, are summarized in Table 1. All partici-

pants underwent clinical evaluations for the presence of

congenital anomalies; HH and other brain malformations

were evaluated by brain magnetic resonance imaging

(MRI). Subjects or their families provided us with written

informed consent for participation in this study. The

Institutional Review Boards of Yokohama City University

and Nishi-Niigata Chuo National Hospital approved this

study. Biopsy specimens were immediately frozen in a

deep freezer. Nail and hair root samples were obtained

from 4 individuals with somatic GLI3 and OFD1 muta-

tions (9355, 10743, 12118, and 12618).

DNA extraction and whole-exome
sequencing

Genomic DNA of peripheral blood leukocytes was

extracted using QuickGene-610L (Fujifilm, Tokyo, Japan)
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according to the manufacturer’s instructions. Genomic

DNA from biopsy specimens was extracted by sodium

dodecyl sulfate-based lysis solution with proteinase K fol-

lowed by phenol-chloroform extraction. DNA from nails

and hair roots was isolated using a DNA extraction kit

(ISOHAIR, Nippon Gene, Tokyo, Japan). Ethanol precipi-

tation was performed with Ethachinmate (Nippon Gene).

In 140814, whole-genomic amplification using the Illu-

mina GenomiPhi V2 DNA Amplification Kit (GE Health-

care, Buckinghamshire, UK) was performed because of

the low amount of genomic DNA, and the combined

DNA (700 ng genomic DNA and 500 ng amplified DNA)

was used for whole-exome sequencing. DNA was captured

using a SureSelect Human All Exon V5 Kit (Agilent Tech-

nologies, Santa Clara, CA) and sequenced on an Illumina

HiSeq 2500 (Illumina, San Diego, CA) with 101 bp

paired-end reads. Read bases below the Phred quality

score of 20 were trimmed from the 30 end of reads.

Cleaned reads were aligned to the human reference gen-

ome sequence (UCSC hg19, NCBI build 37) using Novoa-

lign (Novocraft Technologies, Petaling Jaya, Malaysia).

Variant calling for germline variants of blood DNA were

performed as previously described using GATK Uni-

fiedGenotyper,27,28 and mutations in three genes responsi-

ble for syndromic HH were screened (GLI3 in PHS,

OFD1 in OFD type I, and C5orf42 in OFD type VI).9,13,19

Somatic mutation calling using paired data

Paired exome sequence data (hamartoma and blood) in

16 individuals without germline mutations of GLI3,

OFD1, and C5orf42 were analyzed to detect somatic

mutations in hamartoma. For this purpose, we first ana-

lyzed by GATK UnifiedGenotyper to screen high-preva-

lence somatic mutations after exclusion of likely false

positive variant calls that met following criteria: variants

Table 1. Summary of the clinical features and genetic data for 18 individuals with hypothalamic hamartoma.

Individual Sex Digit anomaly Oral anomaly

Maximum

diameter of

HH (mm)

Other brain

anomalies

Mean read

depth (Blood/

Tumor)

UnifiedGenotyper
MuTect/Varscan2

Germline

Mutation

Somatic

Mutation

Focused four

candidate genes

8505 F – – 18 – 188/150 – – –

8931 M – – 16 – 190/136 – – –

8990 F Polysyndactyly

in bil. H and

Ft

Multiple

frenula

22 – 91/– GLI3 – –

9355 M – – 14 – 192/152 – OFD1 –

9877 M – – 17 – 210/179 – – –

10104 F – – 34 Subependymal PH,

pachygyria

lissencephaly, cyst

in HH

142/171 – – –

10283 M – – 19 – 143/145 – – OFD1

10658 M – – 17 – 152/135 – – –

10743 M – – 13 – 161/135 – GLI3 –

10875 F – N.D. 21 – 145/137 – UBR5 –

11392 M – N.D. 22 – 162/142 – – –

12118 M Polydactyly in

bil. Ft

N.D. 10 Multiple arachnoid

cysts in posterior

cranial fossa

78/69 – OFD1 –

12574 F – – 30 – 163/150 – – –

12618 M – – 30 – 213/174 – GLI3 –

12676 M – – 19 – 206/142 – – –

12698 F – – 15 ACC, MTS 87/96 – ZNF263 –

13606 F – – 28 – 78/85 – – –

14024 F Syndactyly in

bil. H,

duplicated

hallux

Lobulated

tongue, cleft

lower lip

25 ACC, heterotopias,

Multiple

interhemispheric

cysts, Dandy–walker

malformation

72/– OFD1 – –

N.D., not described; F, female; M, male; HH, Hypothalamic Hamartoma; bil., bilateral; H, Hands; Ft, Feet; PH, periventricular heterotopias; MTS,

Molar tooth sign; ACC, agenesis of corpus callosum.
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registered in dbSNP 137, except for clinically associated

single nucleotide polymorphisms (flagged), variants regis-

tered in Exome Variant Server or our 575 in-house con-

trol exomes, variants located on segmental duplication, or

synonymous variants. After obtaining four candidate

genes (GLI3, OFD1, UBR5, ZNF263), paired data were

further analyzed by MuTect29 and VarScan 2,30 and was

searched for possible low-prevalence mutations in the

four candidate genes. Common somatic single-nucleotide

variants called by two programs were considered as candi-

dates. Somatic frameshift insertion/deletion variants were

only called by VarScan 2. Candidate variants were manu-

ally inspected by Integrative Genomics Viewer software.

Validation of mutations

Candidate germline and somatic mutations extracted

from exome sequence data were validated by polymerase

chain reaction (PCR) encompassing the mutations fol-

lowed by Sanger sequencing. GLI3 and OFD1 somatic

variants were also validated by deep sequencing of PCR

amplicons using DNA extracted from hamartoma, blood,

nail, and hair root samples (as a template) except for

10283, in which nail and hair root samples were unavail-

able. Sequencing libraries were prepared using the Nex-

Tera DNA Library Prep Kit (Illumina) and sequenced on

a MiSeq (Illumina) with 150 bp paired-end reads. Trim-

ming and alignment of reads were performed as described

above. Allele count was performed with UnifiedGeno-

typer. PCR conditions and primer sequences are shown in

Table S1.

Expression vectors

A full-length human GLI3 cDNA clone (amino acids 1–
1580, clone ID: pF1KE1055) was purchased from Kazusa

DNA Research Institute. Site-directed mutagenesis was per-

formed using a KOD-Plus Mutagenesis kit (Toyobo, Osaka,

Japan) according to the manufacturer’s protocol to generate

two GLI3 mutants: c.3172C > T (p.Arg1058*) and c.2326_

2329dup (p. His777Argfs*25). GLI3 cDNAs were cloned

into pCIG vector31,32 to express GLI3 protein as well as

nuclear-localized EGFP.

Luciferase assay

Eight repeated copies of the Gli-binding site of HNF3b
minimal floor plate enhancer (30GliBS: 50-GAACACCCA-
30) and a mutant sequence of the 30Gli-BS motif (mis30-
Gli-BS: 50-GAAGTGGGA-30)33 were cloned into the

pGL3-d51 luciferase reporter34 to produce 8 9 30GliBS-
pGL3-d51 and 8 9 mis30GliBS-pGL3-d51, respectively.

C3H10T1/2 cells were provided by the RIKEN BioRe-

source Center through the National BioResource Project

of the MEXT, Japan. Cells were plated into 12-well plates

at 3 9 104 cells/well and cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine

serum for 2 days. Cells were then cotransfected with

900 ng of expression vector of pCIG-GLI3-WT or either

of the mutants (Arg1058* and His777Argfs*25) and

100 ng of 8 9 30GliBS-pGL3-d51 or 8 9 mis30GliBS-
pGL3-d51 reporter vector. For a control experiment, par-

ental pCIG and pCIG-aII-spectrin35 were used instead of

GLI3 expression vectors. 5 ng of Renilla luciferase vector

(pRL-SV40, Promega, Madison, WI) was also cotrans-

fected to normalize for transfection efficiency. DNA trans-

fection was performed with Lipofectamine 3000

(Invitrogen, Carlsbad, CA). The cells were lysed 24 h after

transfection by passive lysis buffer (Promega), and lucifer-

ase activity was measured with GloMax 20/20 (Promega).

All luciferase experiments were performed in triplicates,

and transfections were performed in duplicates. Statistical

analyses were performed by nonrepeated Measures analy-

ses of variance (ANOVA) followed by Student–Newman–
Keuls test.

Results

Identification of germline and somatic GLI3
and OFD1 mutations in individuals with
hypothalamic hamartoma

A flow chart of our analysis is illustrated in Figure 1. We

initially screened for germline mutations in three genes

responsible for syndromic HH (GLI3 in PHS, OFD1 in

OFD type I, and C5orf42 in OFD type VI)9,13,19 with

blood leukocyte DNA, and identified de novo GLI3 and

OFD1 mutations in two individuals with digital and oral

anomalies (a GLI3 mutation in 8990 and an OFD1 muta-

tion in 14024, Table 1 and Fig 2A and B). Consistent

with previous reports,5,8,10,12,13 individuals 8990 and

14024 were diagnosed with PHS and OFD type I, respec-

tively, with characteristic brain MRI findings such as age-

nesis of corpus callosum, multiple interhemispheric cysts,

subcortical heterotopias, and Dandy–Walker malforma-

tion in 1402436 (Fig 2C and D). Exome sequencing of

hamartoma DNA samples was performed for the remain-

ing 16 individuals, and somatic mutations were examined

with GATK UnifiedGenotyper.28 We detected six high-

prevalence somatic mutations in four genes including

GLI3 and OFD1 with mutant allele ratios that ranged

from 15 to 32% in exome data (Table 1). Somatic GLI3

and OFD1 mutations were all truncating, and those in

UBR5 and ZNF263 were missense mutations predicted to

be deleterious by online databases (Table S2). All the

identified mutations were validated by Sanger sequencing
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(Fig. 2A, B and data not shown). These findings

prompted us to further investigate low-prevalence somatic

mutations that could be detected by MuTect29 and

VarScan 230 in the four candidate genes. This analysis

identified an additional somatic OFD1 mutation in

another individual (10283). All somatic GLI3 and OFD1

mutations were validated by deep sequencing of target

amplicons showing mutant allele rates of 7–54% in

hamartoma DNA (Table 2). Somatic truncation muta-

tions in GLI3 were identified in two individuals (10743

and 12618) with no digital and oral anomalies, further

supporting involvement of somatic GLI3 mutations in

sporadic HH.24,25 Somatic truncation mutations in OFD1

were identified exclusively in three male individuals.

While two individuals (9355 and 10283) presented no

anomalies, one individual (12118) had multiple arachnoid

cysts in the brain (Fig 2E and F) and polydactyly in both

feet that had been previously corrected by plastic surgery.

These features suggested that somatic mutations might be

found in tissues other than HH. To test this hypothesis,

especially in the ectodermal lineage, DNA extracted from

blood leukocytes (lateral plate mesoderm), and nails and

hair roots (surface ectoderm)37 were analyzed by deep

sequencing of target amplicons in the four individuals

with somatic GLI3 and OFD1 mutations (Table 2). How-

ever, somatic mutations were not detected in these tissues

(threshold was set to 1%), suggesting that these somatic

mutations might have occurred after differentiation of the

neural tube.37 Comparison of the maximum size (diame-

ter) of HH in GLI3 and OFD1 mutation-positive cases

(n = 7) and negative cases (n = 11) showed no statistical

difference.

Mutant GLI3 showed stronger repressor
activity than the wild-type protein

The two somatic GLI3 truncation mutations were located

in the middle third of the gene as previously reported in

the PHS patients,5,8,10 suggesting that the mutated GLI3

may function as constitutive repressors. To examine the

transcriptional properties of mutant GLI3, we performed

luciferase assays using reporters that contained eight

copies of the GLI-binding site of the floor plate enhancer

of HNF3b (8 9 30GliBS) and a mutated control sequence

that disrupts GLI binding (8 9 mis30GliBS)33. Comparing

the fold increase in luciferase activity from the

8 9 mis30GliBS-reporter (no binding of GLI3) to the

8 9 30GliBS-reporter (binding of GLI3) correlates with

the degree of suppressor activity of GLI3. Wild-type GLI3

showed a 6-fold increase in 8 9 mis30GliBS-reporter
expression in C3H10T1/2 cells, a cell line known to

respond to Shh signals,38 while two control vectors (pCIG

and pCIG-aII-spectrin) showed only twofold background

increase, demonstrating that GLI3 suppresses transcrip-

tion of the reporter constructs (Fig 2G). This finding is

consistent with a previous report using Shh-responsive

MNS70 cells.33 As expected, the two truncated GLI3

mutants showed robust increases in 8 9 mis30GliBS-
reporter expression (14-fold), indicating stronger repres-

sor activity than wild-type GLI3 (P < 0.01).

Discussion

It has been suggested that OFD1 mutations that truncate

the protein before Asn630 are embryonic lethal in males

and cause OFD type I in females.16,39 All the identified

mutations caused truncations prior to Asn630 (Fig 2B,

dashed line). Because somatic OFD1 truncation mutations

were exclusively identified in male individuals, OFD1

function must be severely impaired in all cells possessing

the mutation, suggesting that an absence of OFD1 activity

is required for hamartoma formation. Ofd1-deficient male

mice have reduced expression of Shh target genes in their

neural tubes,18 indicating that OFD1 is essential for

appropriate Shh signaling. Interestingly, both Ofd1-defi-

cient neurons and limb mesenchyme showed increased

levels of full-length and reduced levels of cleaved Gli3

proteins.40,41 However, defective Shh signaling was

demonstrated by downregulation of the Shh target genes

Ptch1 and Gli1 in Ofd1-deficient limb buds.40 These data

suggest that abnormal GLI3 processing caused by Ofd1

Figure 1. Experimental flow chart for detecting somatic mutations in

individuals with hypothalamic hamartoma. The flow of analysis in this

study is outlined.
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defects led to a reduction in Gli3 activator, resulting in

downregulation of the Shh target genes. We demonstrated

in vitro that the GLI3 mutants identified in hamartoma

samples can act as stronger repressor compared with wild

type. Another report has also suggested that mutant GLI3

protein from PHS can repress target gene expression

in vitro.42 These in vitro experiments and findings of

Ofd1-deficient mice suggest that somatic GLI3 and OFD1

mutations are likely to cause impaired Shh signaling,

which may lead to HH formation.

It remains unknown how a hamartoma is formed in

the hypothalamus. Gli3 mutant mice (Gli3Δ699, encoding

699 amino acids followed by 21 additional residues)

mimicking human GLI3 alleles that cause PHS were pro-

posed as a model of PHS.43 However, unlike humans,

heterozygous Gli3Δ699 mice only showed postaxial fore-

limb polydactyly at low frequencies (6%), and homozy-

gous mutant mice did not show HH or pituitary

dysplasia, though imperforate anus, epiglottis and larynx

defects, and digital anomalies were observed. Therefore,

this mouse model cannot elucidate the pathomechanism

of HH formation. However, HH can be found in several

human disorders; in addition to PHS and OFD, giant

diencephalic hamartomas and other midline brain and

facial malformations observed in five fetuses have been

proposed as a new syndrome in humans.44 The develop-

ment of the diencephalon may be different in humans

and mice: thus establishing a HH model in humans, for

example, utilizing induced pluripotent stem cells may be

required.

UBR5 encodes an E3 ubiquitin ligase, and somatic

truncation mutations in UBR5 have been reported in

mantle cell lymphoma.45 ZNF293 is an uncharacterized

gene that may play an important role as a transcriptional

repressor (UniProtKB, O14978). Because somatic mis-

sense UBR5 and ZNF263 mutations were only identified

in a single case, the pathological significance of these

mutations are currently unknown.

De novo mutations can occur at any time in the life of a

cell.20,21 De novo mutations in GLI3 and OFD1 occurring

in the gamete of one parent, at fertilization or immediately

after fertilization cause HH along with other systemic fea-

tures. Mutations occurring after neural tube differentiation

cause sporadic HH, revealing that different timing of de

novo mutations can cause a spectrum of human disorders.

Although we did not detect somatic mutations in the nails

and hair roots of individual 12118, he showed other brain

and digital anomalies, raising the possibility that somatic

mutations may be found in these tissues.

In conclusion, somatic GLI3 and OFD1 mutations were

identified in HH, suggesting that impaired Shh signaling

by germline and somatic mutations can cause a spectrum

of human disorders related to HH.
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Measures ANOVA followed by Student–Newman–Keuls test. Error bars, S.D.
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