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Wild-type transthyretin amyloidosis (ATTRwt) is an underdiagnosed and potentially fatal disease. Interestingly,
ATTRwt deposits have been found to deposit in the ligamentum flavum (LF) of patients with lumbar spinal stenosis
before the development of systemic and cardiac amyloidosis. In order to study this phenomenon and its possible rela-
tionship with LF thickening and systemic amyloidosis, a precisemethod of quantifying amyloid deposits in histological
slides of LF is critical. However, such a method is currently unavailable. Here, we present a machine learning quanti-
ficationmethodwith TrainableWeka Segmentation (TWS) to assess amyloid deposition in histological slides of LF. Im-
ages of ligamentum flavum specimens stained with Congo red are obtained from spinal stenosis patients undergoing
laminectomies and confirmed to be positive for ATTRwt. Amyloid deposits in these specimens are classified and quan-
tified by TWS through training the algorithm via user-directed annotations on images of LF. TWS can also be auto-
mated through exposure to a set of training images with user-directed annotations, and then applied] to a set of
new images without additional annotations. Additional methods of color thresholding and manual segmentation are
also used on these images for comparison to TWS. We develop the use of TWS in images of LF and demonstrate its po-
tential for automated quantification. TWS is strongly correlatedwithmanual segmentation in the training set of images
with user-directed annotations (R= 0.98; p=0.0033) as well as in the application set of images where TWS was au-
tomated (R= 0.94; p= 0.016). Color thresholding was weakly correlated with manual segmentation in the training
set of images (R = 0.78; p=0.12) and in the application set of images (R= 0.65; p=0.23). TWS machine learning
closely correlates with the gold-standard comparator of manual segmentation and outperforms the color thresholding
method. This novel machine learning method to quantify amyloid deposition in histological slides of ligamentum
flavum is a precise, objective, accessible, high throughput, and powerful tool that will hopefully pave the way towards
future research and clinical applications.
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1. Background

Wild-type transthyretin amyloidosis (ATTRwt) is likely an under-
diagnosed disease that has been studied in the context of cardiac amyloid-
osis and carpal tunnel syndrome.1–3 Lumbar spinal stenosis has been
increasingly indicated as a potential early manifestation of amyloidosis,
with ATTRwt found to deposit in the ligamentum flavum (LF) of spinal
stenosis patients.3–5 Previously, our group has shown that spinal stenosis
patients harboring wild-type transthyretin amyloid in histological samples
of LF have thicker LF than patientswithout amyloid.6,7 To enable further re-
search into understanding the possible relationship of amyloid deposition
with LF thickening and systemic amyloidosis, a method to quantify the pre-
cise amount of amyloid in histological specimens of LF is necessary.
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However, no optimal technique currently exists. The focus of this article
is to present a novel, objective, and accurate machine learning method of
quantifying amyloid deposition in histological LF specimens.

Previous studies have attempted to quantify amyloid deposition in liga-
mentous tissue, but methods thus far have not been adequately precise, re-
producible, and feasible. Some studies used qualitative methods based on
visual inspection of specimens and grouping them into broad categories
of amyloid load.8,9 One such study involving tenosynovial tissue from car-
pal tunnel release surgery qualitatively grouped amyloid deposition into
three grades of “mild”, “moderate”, and “severe”.10 More advanced quanti-
fication methods utilize computer software such as ImageJ to analyze digi-
tally scanned histology images. One study used ImageJ to quantify amyloid
deposits in the ligamentum flavum, but did not specify details.5 Another
St, Boston, MA 02111, USA
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study used the color thresholding function in ImageJ with detailed descrip-
tions, which we attempted to replicate.11 However, we encountered nota-
ble shortcomings of this method, such as significant overestimation or
underestimation of amyloid load, and the need to manually adjust
thresholding values for each scan due to inherent color variations from
Congo red staining. Ideally, the gold standard is for an experienced neuro-
pathologist tomanually circumscribe regions of amyloid deposits on digital
scans, but this process is too time-consuming for practical use. While the
above studies have attempted to quantify amyloid deposition in LF, their
methods remain qualitative, not clearly described, or imprecise.

We explore the use of Trainable Weka Segmentation, a machine learn-
ing algorithm plugin within Fiji/ImageJ, to quantify and analyze amyloid
deposits in histological slides of ligamentum flavum.12,13 Notably, the
TWS method enables analysis of microscope and histology images through
user-directed annotations that train the algorithm to recognize certain com-
ponents of an image.12 TWS learns from a limited number of manual anno-
tations and classifies the rest of the pixels of the image into different classes
of interest. The use of this algorithm arose from basic science research
where it has been used in studies to count colonies and track cells, analyze
stained mouse muscle sections, and recognize amyloid plaques in a mouse
model of Alzheimer’s disease.14–16 In clinical research, this method has
been emerging in various uses, such as to analyze human CT scans and to
delineate boundaries of breast carcinoma in human tissue.17,18Here,we de-
scribe the first use of the TWS machine learning algorithm to quantify am-
yloid deposits in histological samples of ligamentum flavum from patients
with spinal stenosis.

2. Methods

2.1. Histological Images of Ligamentum Flavum

An IRB-approved cohort of spinal stenosis patients undergoing
laminectomies had ligamentum flavum samples dissected and sent to pa-
thology. Formalin-fixed, paraffin-embedded ligamentum flavum sections
Fig. 1. Segmentation and quantification of amyloid deposits using Trainable Weka Segm
Fiji and openedwithin the TWS graphical user interface. (B) A fewmanual annotations a
learn the characteristics of each class through these annotations and segments the rest of
to the original image. Additional annotations may be added or prior annotations remove
tory fit with the overlay, a final image is generated that assigns the pixels of each class to
quantification of the total area of each component.
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were stained with Congo red and visualized under polarized light to
identify amyloid deposits, then typed by mass spectrometry (Mayo Clinic
Laboratories, Rochester, MN). All specimens used in this study were posi-
tive for ATTRwt per mass spectrometry-based proteomics. Ten slides of
ligamentum flavum sections were randomly selected, scanned, and digi-
tized using the VENTANA DP 200 slide scanner (Roche Diagnostics,
Rotkreuz, Switzerland) under bright field at 20× magnification, 1 focus
layer, and resolution of 0.465 micrometers per pixel.
2.2. Trainable Weka Segmentation

Trainable Weka Segmentation (TWS) is a plugin that can be accessed
within Fiji, a variation of ImageJ (Version 2.1.0/1.53c)withmore extensive
biology-specific plugins including Bio-Formats (Fig. 1A). Feature settings
are selected to include Gaussian blur, difference of Gaussians, and Sobel op-
erator. Four different tissue components are chosen as classes: amyloid,
glass slide, calcifications/bone dust, and ligamentum flavum tissue
(Fig. 1A). A LF image is opened within the TWS graphical user interface,
and a few manual annotations corresponding to each class of interest is
then drawn on the image (Fig. 1B). “Train classifier” initiates a process in
which TWS attempts to learn from these annotations and segments the
rest of the image into the preselected classes. An overlay of the segmenta-
tion result is generated, which the user visually inspects for fit (Fig. 1C).
Further annotations are then drawn for each class or previous annotations
are removed as necessary for any misclassifications, and the classifier is
re-trained. This fine-tuning process is repeated until an experienced neuro-
pathologist visually confirms the fit of the overlay of segmented classes
with the original image. A final image is then generated that turns the clas-
sified pixels of each class into different colors, which allows for calculation
of the area via counting the number of pixels of each color (Fig. 1D, E). To
quantify the percentage of amyloid deposition, the pixel count of amyloid is
divided by the sum of pixel counts of amyloid, tissue, and calcifications.
After segmentation of one image, the classifier and associated data can be
entation (TWS). (A) An image of the ligamentum flavum specimen is imported into
re drawn that correspond to each class of interest. (C) The classifier is then trained to
the image. An overlay is generated for the user to inspect the fit of the segmentation
d, re-training the algorithm as necessary until reaching desired fit. (D) After satisfac-
different colors. (E) Calculation of the numbers of pixels in each class then allows for
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saved and imported for use into a subsequent image. Further information
and links regarding this plugin can be found in the original TWS article.12

2.3. Manual Segmentation and Color Thresholding

Manual segmentation was performed using the freehand drawing tool
in Fiji to individually trace around each amyloid deposit. An experienced
neuropathologist visually confirmed each tracing to be accurate. Color
thresholding was performed by using the color threshold function in Fiji
to adjust the hue, saturation, and brightness levels of an image to capture
the relevant salmon-pink color values that correspond to amyloid
deposits.11 The color values are adjusted individually for each histological
specimen until reaching the best achievable fit, also visually confirmed by
an experienced neuropathologist.

2.4. Statistical Analysis

Statistical analysis was conducted using R version 4.1.1 and figures
were produced using the package ggpubr.19,20 Pearson correlation analysis
was used to assess the association between machine learning segmentation
and manual segmentation, as well as between color thresholding and man-
ual segmentation. A p-value of <0.05 was considered significant.

3. Results

3.1. Use of TWS in Single Images With Annotations and in Automated
Quantification

Ten specimens of ligamentum flavum were obtained from spinal steno-
sis patients undergoing laminectomies and confirmed to have amyloid by
Congo red staining demonstrating apple-green birefringence under polar-
ized light, then analyzed to have a peptide profile consistent with ATTRwt
via liquid chromatography tandem mass spectrometry (LC MS/MS, Mayo
Clinic Laboratories, Rochester, MN). The first ligamentum flavum image
was imported into Fiji and opened within the TWS graphical user interface
as described in themethods section and illustrated in Fig. 1. Of note, four or
fewer human annotations per class were needed until the classifier reached
a satisfactory level of fit through visual comparison to the original image.
Figure 1C demonstrates the machine learning algorithm learning to accu-
rately classify amyloid deposits and avoid misclassifying artifacts such as
the large creases within the tissue that share the same salmon-pink color.
The areas of amyloid in the final segmented image were confirmed
to match well to the areas in the original image via close inspection by an
experienced neuropathologist.

In addition to analysis of single histological images with annotations,
TWS allows for automated quantification. The classifier trained by the
first image can be saved and used in subsequent specimens of ligamentum
flavum. However, the use of a TWS algorithm trained only with one image
will likely be inaccurate, as Congo red staining across different specimens
varies slightly in the shade of salmon-pink amyloid. Therefore, the classifier
trained with the first image was used in a subsequent set of training images
and refinedwith additional annotations tofix anymisclassifications. On ad-
ditional images, the classifier was fine-tuned until an experienced neuropa-
thologist visually confirmed the fit of the segmentations to the original
images. This process was continued serially for the same classifier across
a total of five training images. Figure 2A shows an enlarged side-by-side
comparison of a LF specimen in its original form compared to its segmented
image in one of the training specimens. Using this trained model from the
initial five training scans, the classifier can then be used to automatically
segment new images of LF without any further human annotations. The re-
maining five LF images were used as the application set, and TWSwas used
to quantify the amyloid deposits in these application images. Figure 2B
shows an enlarged side-by-side comparison of a LF specimen in its original
form compared to its segmented image in one of the application images seg-
mented automatically by this process. Full-size images of the training and
application sets with their corresponding segmented images are available
3

in the appendix. The amyloid load, or percentage of amyloid deposition rel-
ative to the entire tissue, is calculated for all specimens and listed in Table 1.

3.2. Comparison of TWS to Color Thresholding Against Manual Segmentation

To compare TWS with other methods of quantifying amyloid in the
ligamentum flavum, manual segmentation and color thresholding were
also used to segment amyloid deposits in all ten images (Fig. 3). Manual
segmentation involved using the freehand drawing tool in Fiji to trace
around each amyloid deposit under the supervision of an experienced neu-
ropathologist (Fig. 3C). Color thresholding involved using the function in
Fiji to adjust pixel color values of hue, saturation, and brightness for each
image to capture the relevant color values that correspond to amyloid de-
posits, also performed under supervision of an experienced neuropatholo-
gist (Fig. 3D). The amyloid loads as quantified by these methods are
calculated and listed in Table 1.

To assess the accuracy of TWS in segmenting and quantifying amyloid
deposits, scatterplots compared how closely TWS correlated with manual
segmentation (Fig. 4).Manual segmentation is used as a gold-standard com-
parator in both as it allows the neuropathologist the best control over iden-
tifying amyloid deposits.21 The performance of TWS is compared to color
thresholding through their correlations with manual segmentation. Two
scatterplots were created, one of the set of five training scans (Fig. 4A),
and one of the other set of five application scans (Fig. 4B). A least squares
regression line was plotted, and Pearson correlation analysis performed to
determine how closely either the TWS or color thresholding methods
matched manual segmentation. In the training set, TWS is strongly corre-
lated with the manual segmentation and achieved statistical significance
(R = 0.98; p = 0.0033). Color thresholding is less strongly correlated
with the manual segmentation and did not reach statistical significance
(R=0.78; p=0.12). In the application set, TWS is also strongly correlated
with the manual segmentation and achieved statistical significance (R =
0.94; p = 0.016). The color thresholding is also less correlated with the
manual segmentation and did not reach statistical significance (R = 0.65;
p = 0.23).

4. Discussion

TWS is a powerful machine learning tool to quantify amyloid deposits in
histological specimens of ligamentum flavum. Previous studies have been
imprecise and/or not clearly described. Some utilized qualitative methods
of visual inspection to distinguish amyloid deposits broadly into general
categories rather than calculate a numerical area value.8–10 Color
thresholding has been well described, but we found the method to be sub-
jective and difficult to reproduce.11 Manual segmentation is theoretically
the gold standard as it allows an experienced neuropathologist to maintain
the best control over identifying amyloid deposits. However, in practical
use this method is infeasible as it requires spending between 3 tototo 6
hours per specimen. This article details a machine learning method to ana-
lyze amyloid deposits that overcomes the limitations of previous methods.

When used on single images with user-directed annotations, TWS
proved to correlate closely with the gold standard of manual segmentation
(Fig. 4A). The classifier was sensitive at identifying amyloid and excluding
artifact (Fig. 1). In contrast, color thresholding correlated less well with
manual segmentation and thus performed worse than TWS (Fig. 4A). This
is likely because color thresholding forces the user to overcount artifacts
or undercount amyloid. Furthermore, it was remarkable how few annota-
tions were required for TWS. In each image, four or fewer annotations
per class were required to achieve a satisfactory fit by visual examination.
In images with user-directed annotations, TWS quantifies amyloid with
high accuracy and outperforms color thresholding.

Additionally, the TWSmethod allows for automation. Training the clas-
sifier across a training set of images generates a robust model that can be
used to segment new application images without further human annota-
tions. The training phase allows the classifier to capture the variations
inherent in Congo red staining across different specimens, reliably



Fig. 2. Comparisons of original and segmented ligamentum flavum images. (A) Enlarged representative image from the training set. Left: Original ligamentum flavum
histology specimen stained with Congo red. Right: Segmented image generated by the Trainable Weka Segmentation (TWS) machine learning algorithm after training
with annotations. (B) Enlarged representative image from the application set. Left: Original ligamentumflavumhistology specimen stainedwith Congo red. Right: Segmented
image generated by the trained TWS machine learning algorithm without additional annotations.

Table 1
Quantification of amyloid load in ligamentum flavum scans from TrainableWeka Segmentation (TWS), color thresholding, andmanual segmentation. The percentage of am-
yloid deposition relative to the specimen in each scan was calculated by taking the number of pixels of amyloid divided by the sum of the pixels from amyloid, calcifications,
and tissue. Amyloid load was calculated for each of the three methods used across all images.

TWS amyloid deposition % Color thresholding amyloid deposition % Manual segmentation amyloid deposition %

Training Scan #1 8.86% 9.77% 9.84%
Training Scan #2 4.11% 4.08% 2.91%
Training Scan #3 7.17% 8.17% 6.53%
Training Scan #4 2.68% 5.99% 1.24%
Training Scan #5 3.42% 2.44% 3.38%
Application Scan #6 3.83% 4.81% 3.33%
Application Scan #7 2.34% 1.65% 1.99%
Application Scan #8 0.61% 0.26% 1.33%
Application Scan #9 1.60% 2.28% 1.93%
Application Scan #10 0.71% 2.56% 0.59%
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Fig. 3. A single ligamentum flavum (LF) image from the application set segmented by the different methods of Trainable Weka Segmentation (TWS), manual segmentation,
and color thresholding. (A) Full-size original image of LF. (B) Segmented image after application of the trained TWSmodel. (C) Segmented image via manual segmentation of
amyloid deposits. (D) Segmented image via color thresholding.
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segmenting amyloid despite the color variations. This can be seen in
Fig. 2B, where the application image as segmented by the trained classifier
correctly identified amyloid deposits and excluded artifacts that shared the
same salmon-pink color. In contrast, color thresholding frequently fails to
distinguish artifact as it relies on the color values of each pixel, and many
artifacts share the same color value as amyloid (Fig. 3C). Figure 4B shows
that in the set of application images, automatic segmentation via TWS
still correlates well with results from manual segmentation, despite having
no further human annotations. In the same set of application images, color
thresholding continues to be less well correlatedwithmanual segmentation
(Fig. 4B). These results highlight the promising potential of automatic seg-
mentation via TWS.

This novel application of TWS to quantify amyloid in LF specimens has
many advantages. Fiji and the TWS plugin are free to download and easily
accessible by anyone with a regular laptop or computer, avoiding the ex-
pense of commercial machine learning algorithms. Also, the algorithm
5

runs quickly, allowing users to quickly obtain segmentation results and rap-
idly re-train the algorithm during the fine-tuning process. This speed also
enables use for high-throughput automation at scale for research and clini-
cal use. Further broadening its accessibility is its easy-to-use graphical user
interface that does not require special programming knowledge and its
open-source distribution. These factors enable easy validation of data by
other groups and encourages greater collaboration. If one master classifier
were to be trainedwithmany LF specimens and shared across different cen-
ters, this master classifier would allow researchers and clinicians to seg-
ment future samples without the need to train their own classifier.

TWS may open the door to future applications for research and clinical
use. Our group hopes to use this method to explore the relationship of amy-
loid deposition in the LF with LF thickness and the progression of systemic
amyloidosis. Precise quantification of amyloid load may enable correlation
with clinical biomarkers and facilitate investigation into the histopathological
development of amyloidosis. In this article, we have only described the use of



Fig. 4. Comparison of Trainable Weka Segmentation (TWS) to color thresholding against manual segmentation. Scatter plots were made of the fractional area of amyloid
deposition as quantified via TWS and color thresholding against that via manual segmentation. Pearson correlation analysis was used to compare the performance of TWS
and color thresholding against manual segmentation. (A) In the training set of images where TWS received user-directed annotations, the segmentation is strongly
correlated with the manual segmentation (R = 0.98; p = 0.0033). The color thresholding is less strongly correlated with the manual segmentation (R = 0.78; p = 0.12).
B) In the application set of images where TWS was automated without additional annotations, the machine learning segmentation is strongly correlated with the manual
segmentation (R = 0.94; p = 0.016). The color thresholding is less correlated with the manual segmentation (R = 0.65; p = 0.23).
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TWS to calculate the area of amyloid deposits, but this powerful technology
can also study other characteristics of amyloid deposition such as the number
of deposits, the differing sizes of deposits, and the presence of other notable
substances such as calcifications. These other characteristics may have
some currently unknown significance. Future research may also indicate a
clinical use in patient care. One possible use might be as a screening tool to
identify which spinal stenosis patients are at higher risk for developing car-
diac amyloidosis and may benefit from further clinical follow-up. Outside
of studying amyloid in the ligamentum flavum, the detailed workflowwe de-
scribed for using TWS may be easily applied to studying other pathological
processes of interest on any histological image.

This study has several limitations. One limitation is that machine learning
is a “black box” and its segmentation process is not easily understood. We
attempted to overcome this limitation by validating TWS in an application
set of scans and comparing those results to othermethods.With a limited train-
ing dataset, users will still likely need to visually check the segmentation of
each image when automating, as the trained algorithm has not yet encoun-
tered all the possible variations among Congo red stains. Perhapswith a larger
training dataset, there would be more confidence to reach the point at which
visual confirmation would not be necessary. Another technical limitation is
our use of only a few features for segmentation, which includes Gaussian
blur, difference of Gaussians, and Sobel operator. The TWS plugin includes a
wide range of features to use including edge detectors, texturefilters, noise re-
duction filters, and membrane detectors.12 Our decision to use just an impor-
tant fewwas due to running the programon a standard laptop or desktopwith
a smaller amount of processing power, which may be addressed if powered
through more advanced desktops or research computing clusters.

In summary, TWS is a powerful tool for accurately quantifying amyloid
deposits in ligamentum flavum specimens. TWSwith annotations can accu-
rately identify amyloid and exclude artifacts. TWS can also be automated
with a training subset of images and deployed in an application set without
the need for further human adjustment. Training with five images was
enough to create a robust model that was accurately deployed on five
new images. TWS performed similarly well to the gold standard of manual
segmentation and was superior to color thresholding. These results high-
light this machine learning algorithm to be a quantitative, precise,
6

unbiased, accessible, and high-throughput method to quantify amyloid in
the ligamentum flavum. We present TWS as a novel, precise, objective, ac-
cessible, and high-throughput method to quantify amyloid deposits in his-
tological slides of ligamentum flavum stained with Congo red. We find its
efficacy to be comparable to that of manual segmentation and to outper-
form color thresholding. This robust method of quantifying amyloid in
the ligamentum flavum may pave the way towards a variety of future re-
search and clinical applications.
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