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Abstract: Antagonistic interactions and co-evolution between a host and its parasite are known
to cause oscillations in the population genetic structure of both species (Red Queen dynamics).
Potentially, such oscillations may select for increased sex and recombination in the host, although
theoretical models suggest that this happens under rather restricted values of selection intensity, epis-
tasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect
the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular
oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the
host can be favored over the optimal constant recombination. Two forms of the host recombination
dependence on the parasite pressure were considered: either proportionally to the risk of infection
(prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms
of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes
with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under
either strong overall selection and high recombination rate in the host, or weak overall selection and
low recombination rate in the host. In the latter case, the system’s dynamics are considerably more
complex. The prevention strategy is favored more often than the remediation one. It is noteworthy
that plastic recombination can be favored even when any constant recombination is rejected, making
plasticity an evolutionary mechanism for the rescue of host recombination.

Keywords: host-parasite co-evolution; recombination plasticity; matching-phenotype interaction;
diploid selection; modifier model

1. Introduction

Antagonistic interactions, like those between a host and its parasite, are long recog-
nized to cause more or less regular oscillatory dynamics. In the early 1920s, Lotka [1]
and Volterra [2] theoretically predicted oscillations in the ecological dynamics of the an-
tagonists, i.e., in size/density of their populations. The anticipated pattern was then
observed in both field and lab [3–5]. Later on, Haldane [6] hypothesized, preceding from
general speculations on the negative frequency-dependent selection, that the antagonis-
tic interactions should cause oscillations also in the genetic dynamics of the antagonists,
i.e., in allele frequencies of their interaction-mediating genes. This phenomenon is now
known as the “Red Queen dynamics”, following the colorful terminology introduced by
Van Valen [7] and adopted by Bell [8]. It has become widely discussed before empirical
tests for its existence [9,10], and even for the existence of negative frequency-dependent
selection [11–13].

In the late 1970s–early 1980s, several authors speculated, more or less explicitly, that
the Red Queen dynamics might favor sex/recombination in the host (see [14] for a historical
review). Following Bell [8], this assumption is now referred to as the Red Queen hypothesis.
Although the first formal model did confirm it [15], further simulations showed that it
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is less generic than expected [16,17]. It is clear now that the emergence of selection for
sex/recombination under antagonistic interactions depends on various factors: interaction
type [18,19], antagonism severity [20], selection intensity, at least in the parasite [21],
epidemiological context [22], etc. In general, empirical studies support the Red Queen
hypothesis—although the evidence remains rather scarce for sex [23–29] and even more so
for recombination [30,31].

Here, we also examine the evolution of recombination under antagonistic interactions.
However, we do not aim to test the Red Queen hypothesis per se. Instead, we focus on a
more specific question: whether antagonistic interactions can favor recombination plasticity,
which is one of the most interesting features of recombination. By recombination plasticity,
we refer to the situation when the recombination rate of a given genotype varies across
environments. This phenomenon was first reported by Plough more than a century ago, for
fruit flies reared under a spectrum of temperature regimes [32,33]. To date, similar results
are obtained for many other species exposed to various environmental stressors (for recent
reviews, see [34,35]), including biotic stressors caused by interspecific antagonistic interac-
tions [36–39]. The consistent pattern in all such studies is that the organisms tend to display
a higher recombination rate in stressful than benign environmental habitats/periods.

In the current study, the stressor which can potentially induce a plastic response in
an organism’s recombination is its virulent pathogen, namely its presence inside the host
or its frequency in the external environment. Empirical evidence, although very limited,
indicates that pathogens may exert a recombinogenic effect on their hosts [36–39], but the
evolvability of plastic recombination in the host under this scenario has not been modeled
yet, to the best of our knowledge. Here, we numerically simulate the co-evolution of the
two antagonists under various parameter combinations. Whenever this co-evolution leads
to fairly regular oscillations, we test whether plastic, pathogen-inducible recombination in
the host can be favored over the optimal constant, pathogen-independent recombination.
We consider two forms of pathogen-inducible recombination: (i) with recombination
rate increased before the interaction, proportionally to the risk of infection (hereafter—
“prevention strategy”), and (ii) with recombination rate increased after the interaction,
based on the fact of infection (hereafter—“remediation strategy”).

Both antagonists in our model are diploids. The focus is made on diploids for several
reasons. First, the recombinogenic effect of interspecific antagonistic interactions was
reported for diploids [36–39]. Second, we previously examined the evolution of plastic
recombination in diploids under abiotic fluctuations [40,41], which potentially allows us to
generalize the results of the current study.

It must be noted that, although recombination is an intrinsic component of canonical
meiosis, selection on recombination and selection on sex may occur under different param-
eter ranges, especially in diploids [42,43]. Until now, antagonistic interactions have been
tested only for the evolutionary advantage of plastic sex [44] but not plastic recombination.
Hence, here we focus on recombination per se, assuming obligate sex in both antagonists.

2. Model and Methods
2.1. Life Cycles

Both antagonists have infinite populations. Both reproduce sexually, with non-
overlapping generations. In both species, the life cycle includes maturation, meiosis,
and random mating. Let zt

ij and at
ij be, respectively, the frequencies of zygote and adult of

genotype ij (i and j stand for the parental haplotypes) in the current generation t. During
maturation, the genotypes demonstrate differential viability (Wij), so that selection changes
the frequency as follows:

at
ij =

zt
ij ·Wij

W
(1)
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where the denominator stands for the population’s mean fitness:

W = ∑
ij

zt
ij ·Wij (2)

The frequency of gamete k in the gamete pool, gk, can be calculated as:

gt
k = ∑

ij
at

ij · Pij→k (3)

where Pij→k is the probability to obtain gamete k from adult ij. Upon random mating, the
frequency of each zygote in the next generation is proportional to the frequencies of both
parental gametes in the current generation:

zt+1
ij = gt

i · gt
j (4)

2.2. Species Interaction

Each species bears two linked loci that determine its interaction with the antagonist
(hereafter—“interaction-mediating loci”): Ah and Bh in the host, Ap and Bp in the parasite.
Each locus is represented by two possible alleles: A1/A2, B1/B2; one of them is completely
dominant over the other, so the heterozygote displays a phenotype equal to that of one of
the two homozygotes. For simplicity, we assumed the same dominance at all interaction-
mediating loci within each antagonist. However, between the antagonists, we allowed both
the same and the opposite dominance; these two situations are referred to as “in-phase
dominance” and “anti-phase dominance”, respectively.

The encounter between a host and a parasite results in one of the two alternative
outcomes: either infection or resistance. If the antagonists differ at least at one selected
locus, the host “recognizes” the parasite and develops resistance; otherwise, the parasite
succeeds to infect. This scheme can be viewed as a diploid extension of the canonical
haploid “matching-genotype” interaction (see [19] for a review of the interaction types) and
can be referred to as “matching-phenotype” interaction. Table 1 summarizes the outcomes
for both in-phase and anti-phase dominance.

The encounter outcome (infection/resistance) defines finesses of both antagonists, ωh

and ωp. The host displays a reduced fitness when infected, while the parasite suffers from
a loss in fitness when fails to infect:

ωh =

{
1 resistance
1− sh infection

ωp =

{
1− sp resistance
1 infection

(5)

where coefficients sh and sp describe selection intensity in the host and the parasite, respec-
tively.

Both species are subject to frequency-dependent selection: the encounters between
host i and parasite j occur proportionally to their frequencies in the corresponding popula-
tions, hi and pj. Thus, the fitness of the whole class, Wh

i and Wp
j , can be calculated as the

expected values of ωh
ij and ω

p
ij:

Wh
i = ∑j ωh

ij · pj,
Wp

j = ∑i ω
p
ij · hi

(6)
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Table 1. Interaction matrix: the two possible outcomes of the interaction as a function of the antagonists’ genotypes. Red
and green cells stand, respectively, for infection (I) and resistance (R).

Parasite
Genotype

Host Genotype

Ah
1 Ah

1 Bh
1 Bh

1 Ah
1 Ah

1 Bh
1 Bh

2 Ah
1 Ah

1 Bh
2 Bh

2 Ah
1 Ah

2 Bh
1 Bh

1 Ah
1 Ah

2 Bh
1 Bh

2 Ah
1 Ah

2 Bh
2 Bh

2 Ah
2 Ah

2 Bh
1 Bh

1 Ah
2 Ah

2 Bh
1 Bh

2 Ah
2 Ah

2 Bh
2 Bh

2

In-Phase Dominance (Ap
1 < Ap

2 ; Bp
1 < Bp

2 ; Ah
1 < Ah

2 ; Bh
1 < Bh

2 )
Ap

1 Ap
1 Bp

1 Bp
1 I R R R R R R R R

Ap
1 Ap

1 Bp
1 Bp

2 R I I R R R R R R
Ap

1 Ap
1 Bp

2 Bp
2 R I I R R R R R R

Ap
1 Ap

2 Bp
1 Bp

1 R R R I R R I R R
Ap

1 Ap
2 Bp

1 Bp
2 R R R R I I R I I

Ap
1 Ap

2 Bp
2 Bp

2 R R R R I I R I I
Ap

2 Ap
2 Bp

1 Bp
1 R R R I R R I R R

Ap
2 Ap

2 Bp
1 Bp

2 R R R R I I R I I
Ap

2 Ap
2 Bp

2 Bp
2 R R R R I I R I I

Anti-Phase Dominance (Ap
1 < Ap

2 ; Bp
1 < Bp

2 ; Ah
1 > Ah

2 ; Bh
1 > Bh

2 )
Ap

1 Ap
1 Bp

1 Bp
1 I I R I I R R R R

Ap
1 Ap

1 Bp
1 Bp

2 R R I R R I R R R
Ap

1 Ap
1 Bp

2 Bp
2 R R I R R I R R R

Ap
1 Ap

2 Bp
1 Bp

1 R R R R R R I I R
Ap

1 Ap
2 Bp

1 Bp
2 R R R R R R R R I

Ap
1 Ap

2 Bp
2 Bp

2 R R R R R R R R I
Ap

2 Ap
2 Bp

1 Bp
1 R R R R R R I I R

Ap
2 Ap

2 Bp
1 Bp

2 R R R R R R R R I
Ap

2 Ap
2 Bp

2 Bp
2 R R R R R R R R I

2.3. Recombination Strategies

Recombination rate in the parasite rp is fixed and treated as a parameter. Recombina-
tion rate in the host rh is determined by genotype at a selectively neutral locus (hereafter—
“modifier locus”). The modifier locus is unlinked from the interaction-mediating loci. The
interaction between any pair of modifier alleles is purely co-dominant.

The modifier alleles confer alternative recombination strategies: (a) constant
recombination—with a certain rate equal for all hosts; (b) plastic, pathogen-induced re-
combination —with the rate varying among the hosts. Within plastic recombination, two
sub-strategies are considered:

• prevention strategy—with recombination sensitive to the potential infection risk, so
that recombination rate of each host class increases proportionally to the frequency p
of the dangerous (exactly for this class) parasite class:

rh = rh
min + p ·

(
rh

max − rh
min

)
. (7)

• remediation strategy—with recombination sensitive to the actual infection status, so
that the infected hosts display an increased recombination rate (rh

max) compared to
their resistant counterparts (rh

min):

rh =

{
rh

min resistance
rh

max infection
(8)

Both sub-strategies imply a negative association between recombination rate and
conditions: poor conditions (either infection or its high risk) lead to a higher recombina-
tion rate.

2.4. Experimental Design

All recombination strategies are compared in terms of the modifier approach [45,46].
Specifically, to compare two arbitrary recombination strategies, S1 and S2, we examined
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the competition between the corresponding modifier alleles, M1 and M2. The system first
evolved during 10,000 generations with modifier allele M1. Upon this “burn-in” period,
required for the system to establish the oscillation, the competing allele M2 was injected
in low frequency (0.05) at both within- and between-locus equilibria, and its dynamics
were traced over 10,000 additional generations. The same procedure was also repeated
from the opposite side: the system first evolved with allele M2, and then the allele M1 was
introduced in rarity. Based on these two tests, strategy S1 was recognized more favorable
over strategy S2 if allele M1 succeeded to spread in the population while allele M2 failed
to do this. If both alleles succeeded to spread, leading to a stable polymorphism at the
modifier locus, the partial advantage was ascribed to each strategy.

For the analysis, we generated a set of 10,000 random parameter combinations, each
defined by three parameters: selection intensity in the host (sh), selector intensity in the
parasite (sp), and recombination rate in the parasite (rp). The values of sh and sp were
distributed uniformly from 0 to 1 while those of rp—from 0 to 0.5. This set was applied
to both in-phase and anti-phase dominance, leading to a total of 20,000 regimes analyzed.
For each regime, we first assessed the optimal constant recombination rate in the host
(rh

opt)—the rate that was favored over both lower and higher rates. To this end, we used
two series of pairwise comparisons: one starting from recombination rate 0 and moving
upwards, and the other starting from recombination rate 0.5 and moving downwards.
Together, these two series gave a lower and an upper estimate for the sought rh

opt. This
procedure was then repeated four times, each with higher accuracy, to obtain a further
narrow gap between the two estimates (ε).

For further analysis, we focused only on regimes leading to fairly regular oscillations.
As an operational criterion for such regularity, we used the accuracy of the estimated
rh

opt, by requiring ε ≤ 0.001. For the chosen regimes, we tested whether each of the two
plastic strategies, the prevention and remediation ones, was favored over the found optimal
constant strategy. Under plastic strategies, the recombination rate varied around rh

opt with
magnitude ∆r: from rh

min = rh
opt − ∆r to rh

max = rh
opt + ∆r. For regimes where constant

recombination was rejected (rh
opt = 0), recombination rate under plastic strategies varied

from rh
min = 0 to rh

max = ∆r. We considered four magnitudes of plasticity: ∆r = 0.001,
∆r = 0.0025, ∆r = 0.005, and ∆r = 0.01.

Additionally, we examined in more detail the case of obligate parasitism, implying
that the parasite survives only if it succeeds to infect (sp = 1). Importantly, since the
proportion of selection regimes favoring plastic recombination depends on the chosen
parameter range, such percentages should only be compared for the same range (e.g., when
alternative plastic strategies are examined).

The code for the simulations is written in GNU Octave 6.1 (Supplementary File S1).
The simulations were deployed at the Galileo platform for remote computations. The
obtained results were statistically analyzed using JASP 0.14.

3. Results
3.1. The System’s Dynamics and the Optimal Constant Recombination in the Host

The system’s dynamics considerably depended on the three examined parameters
(sh, sp, and rp), as well as recombination rate in the host (rh). Under weak selection (sh,
sp < 0.1), the oscillations had low amplitude, if they emerged at all. Stronger selection in
each of the antagonists led to more pronounced and more regular oscillations. Interestingly,
the most complex dynamics was observed under intermediate selection: sh, sp = 0.4 . . . 0.6.
All other things equal, higher recombination rate in the parasite (rp) usually made the
dynamics more regular (Supplementary Figure S1).

In its turn, the complexity of oscillations affected the estimation of the optimal constant
recombination in the host (rh

opt). The used algorithm returned the lower and the upper
estimates of rh

opt, and we limited our further analysis only to regimes where rh
opt could

be estimated with sufficient accuracy: ε ≤ 0.001 (about one-third of the total tested set of
parameter combinations). Moreover, in a considerable proportion of regimes (~20–40%,
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depending on in-phase vs. anti-phase dominance), there existed two local optima for
rh. The oscillations in the vicinity of the lower optimum (rh

opt
∼= 0) were often rather

complex. In contrast, the upper optimum could typically be estimated accurately given the
fairly regular oscillations. For such regimes with bistability, only the upper optimum was
included in further analysis.

The predominant proportion of regular regimes appeared to favor non-zero recom-
bination in the host. Among these regimes, the values of rh

opt were on average slightly
higher under in-phase than anti-phase dominance: ~0.17 against ~0.15. Moreover, in-phase
dominance allowed higher maximum values of rh

opt than anti-phase dominance: up to
~0.44 against ~0.33. Only rarely, under very weak selection in at least one of the antagonists,
recombination in the host was rejected (rh

opt = 0).
We then used multivariate linear regression to estimate the relative effects of the three

examined parameters (sh, sp, and rp) on rh
opt. All three tended to increase rh

opt regardless of
dominance. At that, sp and especially sh appeared much more influential than rp (Table 2,
Models A). Moreover, to a certain extent, selection intensities in the two antagonists
“compensated” one another, so that close values of rh

opt occurred either under low sh and
high sp or under high sh and low sp. Regression models allowing parameter interactions
confirmed that the overall selection intensity (sh · sp) affects rh

opt stronger than any of the
two, sh and sp, alone (Table 2, Models B). Yet, the interaction between sh and sp seems
more complicated than their product sh · sp, since considering both parameters and their
combinations further increased the models’ performance (Table 2, Models C). Overall,
the models succeeded to explain ~89% to 96% of the variation in the dependent variable
(Table 2).

Table 2. The relative effects of the examined parameters (sh, sp, and rp) and their combinations on the optimal constant
recombination rate in the host (rh

opt).

Parameters/Combinations
In-Phase Dominance (n = 2856) Anti-Phase Dominance (n = 3307)

Model A Model B Model C Model A Model B Model C

Selection Intensity in the Host (sh) 0.787 - 0.137 0.810 - 0.238
Selection Intensity in the Parasite (sp) 0.425 - −0.040 0.479 - 0.029

Recombination Rate in the Parasite (rp) 0.023 0.022 0.037 0.032 0.040 0.049
Overall Selection Intensity (sh · sp) - 0.974 0.889 - 0.970 0.775

R2-Adjusted 0.891 0.949 0.961 0.901 0.942 0.962

Additionally, we examined in detail the case of obligate parasitism, implying that
the parasite survives only if it succeeds to infect (sp = 1). This case seems to be of high
biological importance. Moreover, as we mentioned above, higher values of sp considerably
regularized the system’s dynamics, making it much easier to interpret. Here, the optimal
constant recombination rate in the host (rh

opt) appeared to be mostly determined by its
selection intensity (sh): rh

opt monotonously increased with sh. The recombination rate in the
parasite (rp) had a minor effect on rh

opt but strongly affected the complexity of the system’s
dynamics, so that rather regular oscillations occurred mostly under moderate-to-high rp.
As a result, the estimation of rh

opt often failed under rp < 0.2 (Figure 1).
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Figure 1. The effect of recombination rate in the parasite (rp) on the estimation of the optimal constant
recombination rate in the host (rh

opt). The colored curves show the lower (blue) and the upper (red)
estimates. All simulations are conducted for the case of obligate parasitism (=1).

3.2. Selection for Plastic Recombination in the Host

Whenever the optimal constant recombination rate in the host was estimated with suf-
ficient accuracy, it was compared with the two above-described forms of plastic, pathogen-
inducible recombination: prevention strategy—with recombination rate increased pro-
portionally to the risk of infection, and remediation strategy—with recombination rate
increased upon the fact of infection.

We found plastic recombination is favored over non-zero optimal constant recombina-
tion quite infrequently, in ~9–11% of regimes. They were located in two quite distinguish-
able areas of the parameter space (Figure 2). The first area was presented by regimes with
strong selection in both antagonists: sh > 0.7, sp > 0.7 (a compact cluster of colored points
at the top right corner of the coordinate plane sh–sp). The overall selection in such regimes
was moderate-to-strong: sh · sp > 0.5. Regimes of this type ensured a moderate-to-high
recombination rate in the host: rh

opt > 0.1. The second area was presented by regimes with
weak-to-moderate selection in the host and moderate-to-strong selection in the parasite:
sh < 0.6, sp > 0.4 (an arc-shaped cluster of colored points at the diagonal of the coordinate
plane sh–sp). At that, the overall selection was still relatively weak: sh · sp < 0.3. Such
regimes ensured a low recombination rate in the host: rh

opt < 0.05. In general, plastic recom-
bination was favored more often under anti-phase than in-phase dominance. Moreover,
the prevention strategy was favored more often than the remediation one, especially under
anti-phase dominance. Specifically, under in-phase dominance and strong selection, the
prevention strategy was favored only partially, while the remediation strategy was not
favored at all (Figure 2).
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Further analysis showed that the two above-described groups of regimes favoring
plastic recombination (with moderate-to-strong and weak overall selection) considerably
differed in the system’s dynamics. In the area of strong overall selection, the oscillations
were highly regular, with a rectangular-like phase portrait for allele frequencies and a linear
phase portrait for mean fitnesses (Figure 3a). Moreover, under extremely strong overall
selection, the phase trajectories tended to become partially “punctuated” (Figure 3b). In
contrast, in the area of weak overall selection, the oscillations were much more irregular,
with spiral-like phase portraits. Such a pattern emerged regardless of which of the two
selection intensities, either in the host or in the parasite, was weak (Figure 3c,d).
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Figure 3. The system’s dynamics under different regimes favoring plastic recombination. The plots show the last 500 out
of 10,000 generations of the competition between the optimal constant recombination and plastic recombination; yet, the
pattern is qualitatively similar also for other time windows. The colored curves stand for the host (green) and the parasite
(orange). A, B and M denote, respectively, the two interaction-mediating loci and the modifier locus while W denotes the
population’s mean fitness. All examples stand for anti-phase dominance and prevention strategy: (a) A regime with strong
overall selection: sh ≈ 0.88, sp ≈ 0.91. The optimal constant recombination in the host is high: rh

opt ≈ 0.25. The oscillations
are fairly regular. The modifier allele for plastic recombination generally increases in frequency, again with fairly regular
oscillations; (b) A regime with extremely strong overall selection: sh ≈ 0.98, sp > 0.99. The optimal constant recombination
in the host is high: rh

opt = 0.32. The oscillations are regular. The modifier allele for plastic recombination generally increases
in frequency, again with fairly regular oscillations; (c) A regime with weak overall selection due to weak selection in the host:
sh ≈ 0.14, sp ≈ 0.70. The optimal constant recombination in the host is very low: rh

opt < 0.01. The oscillations are irregular.
Although the modifier allele for plastic recombination generally increases in frequency, its oscillations are substantially
irregular; (d) A regime with weak overall selection due to weak selection in the parasite: sh ≈ 0.85, sp ≈ 0.16. The optimal
constant recombination in the host is very low: rh

opt < 0.01. The oscillations are irregular. Although the modifier allele for
plastic recombination generally increases in frequency, its dynamics are considerably irregular; in certain time windows
(like here), the decline of the modifier allele for plastic recombination may even temporally prevail.
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In the additionally examined case of obligate parasitism (sp = 1), selection for plastic
recombination was observed only under anti-phase dominance. Regimes favoring plastic
recombination were characterized by strong selection in the host: sh > 0.8. In total, their
proportion reached ~20%.

As mentioned above, under sufficiently weak overall selection (sh · sp < 0.1), any
constant recombination in the host was rejected (rh

opt = 0). Remarkably, even in such
conditions, plastic recombination was favored rather frequently: in ~34–37% of regimes.
This happened even though it shifted the population’s mean recombination rate from zero,
i.e., from the optimum in the class of constant strategies for the considered parameter
combinations. Regimes favoring plastic recombination were characterized by the strongest
(among those rejecting any constant recombination) overall selection. Moreover, they had
a rather high recombination rate in the parasite: rp > 0.2 (yet, the latter constrain probably
resulted from the earlier filtering, since higher values of rp tended to regularize the system’s
dynamics). Again, the prevention strategy was favored easier than the remediation one—
similar to regimes with non-zero optimal constant recombination (Figure 4).
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partially (triangles).

The observed evolutionary advantage of plastic recombination substantially depended
on the magnitude of recombination plasticity (∆r), i.e., the difference in recombination rate
between the infected and non-infected hosts. Specifically, plastic recombination was the
most favored under ∆r = 0.0025, while both lower and higher magnitudes decreased the
proportion of regimes favoring plastic recombination by 2–4 times, depending on strategy
and dominance (Figure 5).
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4. Discussion

The Red Queen hypothesis predicts that antagonistic interactions, like those between
a host and its parasite, generate negative frequency-dependent selection on the interaction-
mediating genes, which can give rise, at least under certain conditions, to indirect selec-
tion on recombination. Several empirical studies have indeed supported this assump-
tion [30,31]. Moreover, the increased recombination seems to evolve easier within the
clusters of infection-related genes [47–49]. Sometimes, such local induced-recombination
hotspots occur in genomes with on average quite a low recombination rate, feeding the
concept of so-called two-speed genome evolution [50].

Plastic, pathogen-inducible recombination might be viewed as another mechanism
for differential, fine-tuned recombination evolution. Empirical studies, in general, confirm
pathogens’ ability to increase the hosts’ recombination [36–39] (but see [51,52]). In the
current study, we tested whether recombination’s sensitivity to pathogens could evolve
as an adaptive strategy of the host. We examined the so-called “matching-phenotype”
interaction—one of the standard types of interactions, implying that infection develops
upon the complete phenotypic matching between the two antagonists (see [19] for a review
of the interaction types). In the considered model, a certain recombination rate in the
host was typically favored over all other, both lower and higher, rates. Sometimes, the
system’s dynamics demonstrated bistability, i.e., two recombination rates appeared locally
optimal. This phenomenon is well-known also for other types of recombination evolution
models [53,54]. Anyway, plastic, pathogen-inducible recombination in the host under
certain parameter combinations appeared even more favorable than the optimal (either
globally or locally) constant recombination.

There exist several explanations for the evolutionary advantage of plastic recombina-
tion. The first, the so-called “abandon-ship” mechanism, appeals to the “selfish” benefits of
the recombination modifier capable to adjust its linkage to the selected system [55,56]. The
alternative, although non-exclusive mechanism claims that plastic recombination within
the selected system helps protect advantageous allele combinations. Since here we in-
tentionally excluded selfish benefits by assuming unlinked modifier locus, the observed
evolutionary advantage of plastic recombination should be ascribed entirely to the benefits
for the selected system.

Importantly, the population’s mean recombination rate under a plastic strategy may
depart from the optimal constant recombination rate—even if this plastic strategy implies
that the recombination rate varies around the optimum. Thus, a plastic strategy may be
favored just due to a “better” (i.e., closer to the true optimum) mean recombination rate,
rather than to the above-mentioned benefits of recombination-rate plasticity. To exclude
such a trivial effect, we applied the “two-reference” test offered by Aggarwal et al. [56].
Specifically, we accomplished the “fringe” plastic strategy, implying recombination vari-
ation around the optimal rate rh

opt (i.e., from rh
min = rh

opt − ∆r to rh
max = rh

opt + ∆r), by
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two “one-sided” strategies: (1) with recombination varying below the optimum (i.e., from
rh

min = rh
opt − ∆r to rh

max = rh
opt), and (2) with recombination varying above the optimum

(i.e., from rh
min = rh

opt to rh
max = rh

opt + ∆r). The observed evolutionary advantage of a
plastic strategy should be ascribed to the benefits of recombination plasticity per se only if
both one-sided strategies, recombination-increasing and recombination-decreasing ones,
are also favored over the optimal constant recombination. This criterion is very strict since
each of the two one-sided strategies moves the population’s mean recombination rate from
the optimum much stronger than the fringe strategy. Yet, the predominant proportion
(~73–83%, depending on dominance) of regimes favoring plastic recombination succeeded
to pass the two-referee test, proving the benefits of recombination plasticity.

Since the evolutionary advantage of a plastic strategy is determined by the trade-
off between the benefits of recombination plasticity and the costs of departure from the
optimal rate, it must be sensitive to the magnitude of recombination plasticity. In our
simulations, plastic recombination was the most favored under an intermediate magnitude
(∆r = 0.0025). This suggests that under lower magnitudes, the benefits of recombination
plasticity are weaker, while under higher magnitudes, the departure from the optimal rate
becomes too costly.

Earlier, the evolutionary advantage of plastic recombination was theoretically demon-
strated under forced oscillations, associated with the periodical abiotic environment, both
for haploids [55] and diploids [40,41]. Usually, such abiotic fluctuations are fairly regular;
however, even the model with stochastic, Markov-chain fluctuations led to qualitatively
similar results [40]. Herein presented findings extend the conclusions of the previous
studies to more complex auto-oscillations caused by antagonistic interactions. However,
the evolutionary advantage of plastic recombination under antagonistic interactions was
observed less frequently than in the above-mentioned models with forced oscillations:
up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obli-
gate parasitism. Moreover, they required lower magnitudes of recombination plasticity.
This discrepancy probably arises from considerably longer periods in the current study:
even under the strongest overall selection, they exceeded 25 generations (see Figure 3b),
whereas the cycles considered in [40,41] were up to 20 generations. Potentially, plastic
recombination would evolve under a wider parameter range given further strengthening
selection pressure, e.g., by assuming several generations of the parasite per generation of
the host [57,58], similarity selection [59], or external abiotic selection [60].

The existence of two groups of regimes favoring plastic recombination (see Figure 2b)
requires further in-depth analysis. Probably, in the area of low overall selection, where the
system’s dynamics appeared much less regular, the complex oscillations can be presented
as a superposition of several components with different periods. In this case, the evolution
of recombination is likely determined by the longest-period component (“low-frequency
filter”) [54,61]. Moreover, the peculiarities of the system’s dynamics probably explain
a more frequent selection for prevention than remediation strategy. It turned out that
the oscillations of mean fitness usually have a more complex profile than those of allele
and genotype frequencies, with an about twice-higher frequency (see Figure 3b,c). Thus,
the prevention strategy likely benefits from a finer “sensing” the whole population of
the parasite.

Regimes where plastic recombination was favored over zero optimal constant recom-
bination seem to be of special evolutionary importance. They suggest that recombination
plasticity can serve as an evolutionary rescue for recombination, which otherwise would
have disappeared from the host population. Notably, in such situations, plastic recom-
bination is favored despite the above-discussed cost of moving the population’s mean
recombination rate from the optimum. This finding expands our recent results showing
that fitness-dependent recombination can save recombination from disappearing under
purifying selection in mutation-selection models [62,63].

Several further directions are promising. First, in our model, we assumed only a
diploid pathogen. With full dominance within the selected loci, the herein used matching-
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phenotype interaction becomes very similar to the matching-genotype interaction used in
haploid models. Yet, an explicit comparison is desirable. Second, the considered pathogen-
induced plasticity of recombination represents only one aspect of a wider phenomenon—
condition dependence of recombination. The other aspect is whether and to which extent
recombination per se and its plasticity to environmental stressors, including pathogens, are
modulated by genotype fitness. To address this question, we need to model larger genetic
systems, with at least three selected loci, which can provide the required variation in fitness
across genotypes [41,62].
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