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Abstract
Telomerase is perceived as an immortality enzyme that might provide longevity to cells and whole organisms. Importantly, 
it is generally inactive in most somatic cells of healthy, adult men. Consequently, its substrates, i.e. telomeres, get shorter in 
most human cells with time. Noteworthy, cell life limitation due to telomere attrition during cell divisions, may not be as bad 
as it looks since longer cell life means longer exposition to harmful factors. Consequently, telomere length (attrition rate) 
becomes a factor that is responsible for inducing the signaling that leads to the elimination of cells that lived long enough to 
acquire severe damage. It seems that telomere length that depends on many different factors (including telomerase activity 
but also genetic factors, a hormonal profile that reflects sex, etc.) might become a useful marker of aging and exposition to 
stress. Thus in the current paper, we review the factors that affect telomere length in human cells focusing on sex that all 
together with different environmental and hormonal regulations as well as parental aspect affect telomere attrition rate. We 
also raise some limitations in the assessment of telomere length that hinders a trustworthy meta-analysis that might lead to 
acknowledgment of the real value of this parameter.
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Introduction

Telomere dynamics is associated with aging and senescence. 
Both terms often appear together, but they describe a bit 
different set of metabolic changes. Aging is the attenuation 
of physiological functions that comes with time and, even-
tually, leads to cell death. Primary drivers of aging are tel-
omere damage, epigenetic dysregulation, DNA damage, and 
mitochondrial dysfunction. Noteworthy, aging is the major 
risk factor for cancer, cardiovascular disease, diabetes, and 

neurodegenerative disorders as well as chronic obstructive 
pulmonary disease, chronic kidney disease, osteoporosis, 
sarcopenia, stroke and many others [1]. Consequently, some 
of these drivers can induce senescence that is the process of 
stable, irreversible growth arrest of cells. Apart from evident 
changes in the phenotype of an organism, senescence also 
causes chromatin remodeling, metabolic changes, increased 
autophagy, and release of numerous proinflammatory fac-
tors [2]. Senescence can occur due to aging or due to age-
related diseases and can be induced by therapeutic agents 
(e.g. chemotherapeutic drugs). It plays roles in normal devel-
opment, maintains tissue homeostasis, and limits tumor pro-
gression. Noteworthy, the primary role of senescence (an 
irreversible state) is to limit the proliferation of damaged 
cells that prevents potential malignant cell transformation 
[3]. However, it also has been implicated as a major cause 
of age-related diseases. In mammalian cells, two types of 
senescence may be listed, i.e., (i) intrinsic senescence—
induced by telomere attrition or dysfunction and (ii) extrin-
sic senescence—caused by external signals (from the outside 
of the cell or by signals that are telomere-independent) [4]. 
The most critical and widely recognized senescence markers 
are considered β-galactosidase/SAβ-gal, p16 INK4A, his-
tone modifications, and microRNAs profile alteration as well 
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as genomic instability and mitochondrial dysfunction that 
may reflect exposition to stress [5, 6]. Additionally, a pro-
inflammatory secretome (cytokines and matrix metallopro-
teinases) are also recognized as the senescence-associated 
secretory phenotype that may also contribute to aging [7, 
8]. Significantly, most of those hallmarks are regarded as 
characteristics of a cancer cell [6]. Interestingly, a strong 
relationship between short telomeres and mortality risk, par-
ticularly at younger ages, was suggested but without further 
clinical implications so far [9].

We are still looking for aging markers that might be con-
trolled so we could prevent or slow down this phenomenon. 
Importantly, age is one of the critical risk factors in cancer 
development that is associated with the increased exposi-
tion time to potentially harmful compounds and processes 
(including stress). Thus, it is crucial to be able to monitor 
both aging and senescence by using specific markers that 
would provide a diagnostic as well as predictive value. It 
seems that telomere length (TL) might be a good candidate 
for such a marker. However, due to large variability, huge 
dynamics, and assessment issues, the value of this parameter 
still seems to show a limited accuracy.

Telomeres in stress

Telomeres protect the chromosomes’ integrity. They get 
shorter with every cell division in most cells since telomer-
ase is not active in the vast majority of human cells [10]. One 
might say that they “sacrifice" themselves. Especially since 
losing a telomeric sequence is not as critical for the current 
metabolic status of a cell as losing the sequence of DNA 
coding for a protein. Other functions of telomeres include 
preventing chromosomes from joining or being recognized 
as DNA double-strand breaks, which, in turn, would alert 
DNA repair mechanisms [11]. However, over time, telomere 
length in normal cells decreases until they become too short 
to play their role and keep cells capable of dividing. This 
results in cellular senescence that is one of the major causes 
of aging and aging-related disorders [12] associated with the 
end replication problem (Hayflick limit) [13].

Telomerase expression and activity in human cells 
decrease with age [14]. However, it is an individual phe-
nomenon and the telomere attrition rate is associated, 
among others, with the ability to conquer stress. As sug-
gested, physical activity (perceived as one of the main 
ways to attenuate stress level) is associated with healthy 
aging and reduced risk for several chronic disorders, pos-
sibly due to telomere restoration [15, 16]. At the cellular 
level, stress refers to the factors that can affect the metabo-
lism or can damage the cell. However, regardless of the 
level, stress accumulates progressively along with aging, 
and it may negatively affect the individual’s health and 

well-being. Importantly, antioxidants were shown to delay 
the onset of vascular senescence in a telomerase depend-
ent way. In an in vitro study, the reactive oxygen species 
(ROS) were shown to decrease the level of nuclear hTERT 
(human telomerase reverse transcriptase) protein (the key 
telomerase subunit) and telomerase activity in endothelial 
cells, which was followed by a senescent phenotype devel-
opment. At the same time, incubation with the antioxidant 
N-acetylcysteine blocked this nuclear export of hTERT 
into the cytosol, suggesting its role in stress response 
[17]. Another well-known antioxidant—a-Tocopherol, was 
shown to repress telomere shortening and retain telomer-
ase activity in brain microvascular endotheliocytes [18]. 
Similarly, Ginko Biloba extract (of high antioxidant poten-
tial) was shown to delay the onset of senescence through 
activating telomerase via PI3k/Akt signaling pathway [19, 
20]. Importantly, chronic stress results in an increased 
secretion of cortisol that is capable of suppressing telom-
erase activation in the immune system and, consequently, 
promoting telomere attrition [21].

The fact is that aging is accompanied by telomere attri-
tion, although its rate is highly heterogeneous between 
individuals, different types of cells but also different chro-
mosomes [22]. Especially the latest aspect leads to the con-
clusion that cells can undergo senescence prematurely, even 
when the average telomere length is "normal," but some 
specific chromosome ends are critically short. Since there 
are some biochemical pathways common to aging, stress 
response, and telomere attrition, we do believe that chro-
mosome ends are very sensitive stress markers and reliable 
indicators of cellular aging. However, it seems that the only 
way to acknowledge telomere length as a senescence/aging/
exposition-to-stress marker is to assess the length/attrition-
rate of individual single chromosomes and not measuring 
the total telomere length on average.

Another crucial report was demonstrated by Garrett-
Bakelman et al., who demonstrated a study associated with 
the exposition to decreased gravity. As shown, an astronaut 
(Scott Kelly), who spent almost a year on the international 
space station, experienced some severe syndromes (reduced 
body mass, instability in his genome, swelling in major 
blood vessels, changes in eye shape, metabolism shifts, 
inflammation and alterations in his microbiome) but also a 
significant telomere lengthening. Importantly, the chromo-
some ends shortened again after the astronaut landed and 
returned to nearly preflight levels within 6 months after 
return to Earth. However, the increased number of short tel-
omeres were observed, and the expression of some genes 
was still disrupted. At the same time, his identical twin 
brother (did not spend the time in space) was monitored as 
a reference showing no significant alterations in telomere 
length [23]. This case shows how complex telomere regula-
tion is.
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ALT in telomere homeostasis and aging

It was reported that in some cases, telomeres could be 
restored even without the telomerase activity. This phe-
nomenon is known as an Alternative Lengthening of Tel-
omeres (ALT) and is based on the homologous recombi-
nation of telomeric DNA. As revealed, it is supposed to 
be present in 15–20% of tumors lacking active telomerase 
and was demonstrated to sufficiently overcome the replica-
tive senescence in mammalian somatic cells in vitro [24]. 
There are also some reports showing both mechanisms 
coexisting in the same cells, but it was suggested to result 
from the experimental design rather than to be a common 
phenomenon [25]. Interestingly, ALT was also demon-
strated in normal mouse somatic tissues [26]. It may be 
that this not very common mechanism is just turned on in 
some particular conditions or cell types. It is difficult to 
tell how this rescue system is controlled and if we could 
use it for aging delay or monitoring. Since this seems to 
be a marginal system and refers to cancer cells mainly, it 
may not constitute a base for a promising perspective in 
the context of modulation of telomere attrition, aging, or 
senescence.

(Re)activation of telomerase

It seems reasonable that aging symptoms could be limited 
while applying telomerase activators. Such factors would 
safely restore telomere length or stimulate cell resistance 
to apoptosis induced by oxidative stress and would even-
tually attenuate senescence [27]. The ability to modify 
telomerase activity was already reported [28–32]. Some 
reports show that aging could be reverted by telomerase 
reactivation not only in a mouse model [29] but also in 
human cells [30]. Moreover, it was shown that normal 
physiological aging could be delayed without increasing 
the incidence of cancer, as demonstrated in adult wild-type 
mice (pharmacological activation or systemic viral trans-
duction of telomerase) [31, 32]. As shown in an old rat 
model, telomerase induction mediated by irisin (a secreted 
myokine) was accompanied by autophagy induction and 
improved mitochondrial function in aged hepatocytes 
[33]. Another telomerase activator, TA-65 (extracted from 
Astragalus Membranaceus) that is capable of increasing 
average telomere length and decreasing the percentage of 
critically short telomeres, was studied in a mouse model. 
As demonstrated, it significantly improved particular well-
being indicators, including glucose tolerance, osteoporosis 
markers, and skin fitness, without significantly increasing 
global cancer incidence [31]. It was also shown to improve 

the metabolic activity of mouse cells as well as better 
dynamics of the immune system in humans. Similarly, 
another telomerase activator, AGS-499, was demonstrated 
to play neuroprotective effects in mice [30, 34]. Similarly, 
the same compound was shown to protect human bone 
marrow mesenchymal stem cells (hMSC) from apoptosis 
and DNA damage induced by H2O2, and from the toxicity 
caused by long term exposure to DMSO. Consequently, 
some regenerative potential of telomerase inducers was 
suggested [35]. It was also demonstrated that L-carnitine 
could improve the aging-related symptoms due to increas-
ing telomerase activity, decreasing aging, and changing 
the methylation status of hTERT promoter [36]. Similar 
results were shown in the study of MSCs isolated from the 
adipose tissue and an antioxidant, ZnSO4. The compound 
contributed to slower aging due to lengthening of telom-
eres, increasing hTERT expression and telomerase activity. 
Simultaneously, hTERT promoter methylation was altered 
[37]. Alternatively, a major component of cigarettes, coti-
nine, was shown to activate telomerase causing abnormal 
proliferation [38]. In addition, it was also reported that 
activation of telomerase could reactivate the proliferative 
capability of benign tumors [39]. Some other reports show 
that telomerase activity modulation could contribute to the 
control of cell migration, differentiation, senescence or the 
cell cycle (DNAzymes used as modulators) showing some 
non-canonical functions of telomerase and telomeres [40]. 
Consequently, some concerns about the safety of telomer-
ase restoration are raised and should be verified.

Telomere length profiling

It must be emphasized that telomere length is not equally 
distributed among individual chromosomes. Thus it is cru-
cial to be aware that some of the methods would benefit 
only as screening methods but very accurate. The methods 
for telomere length assessment were revised elsewhere with 
all the advantages and disadvantages discussed thoroughly 
[41]. Briefly, there are two basic approaches used in tel-
omere length assessment, i.e. (i) evaluation of the average 
length of telomeres and (ii) evaluation of the range of indi-
vidual telomeres in respective chromosomes. The first group 
of methods gives a general idea about the telomere attrition 
while the second one is more precise that results from the 
fact that the shortening of individual chromosomes may be 
different and the shortest telomere is critical for cell viabil-
ity and chromosome stability [42]. The first group of the 
methods (average length assessment) covers southern blot 
(more precisely TRF—terminal restriction fragment) and 
qPCR (with some modifications). The length of individual 
chromosomes endings may be assessed with the use of more 
sophisticated methods (and their variants) like Q-FISH 
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(quantitative fluorescent in situ hybridization), Flow-FISH 
or STELA (single telomere elongation length analysis) [43]. 
They do differ in equipment and handling time requirements, 
but they also do give some different quality results. Conse-
quently, it is challenging to compare results from different 
laboratories that use diverse methods. They do correspond 
to each other relatively but not quantitatively. Thus, it gives 
an idea about the telomere length alterations (shortening rate 
in fact) but not about the real telomere length.

In conclusion, association studies of TL and human health 
or disease suffer from some methodological issues, including 
lack of reproducibility and diversity in handling methods. 
Importantly, telomere length, as a very dynamic parameter, 
can be altered by some environmental stimuli comprising 
hormonal profile fluctuations or therapeutic interventions. 
Thus, it is essential to integrate clinical data in the molecular 
studies of telomere length that would help in the evaluation 
of the factor as a significant disease(s) biomarker.

Telomere assessment and clinical outcome—
high hopes

An inverse relationship between age and telomere length 
is commonly known. Similarly, it is known that telomere 
length in leukocytes (LTL) is positively correlated with a 
number of years of disease-free living [44, 45], which may 
suggest leukocyte telomere length as a biomarker for healthy 
aging.

Since telomere length is perceived as a potential marker 
of cell metabolism, medical condition, resistance to stress, 
etc., it became a good candidate for a solid predictive and/
or diagnostic marker. The issue is that telomere attrition 
rate, although known as an average 20–50 nucleotides per 
year [46], is, first of all, not so easy to assess. As mentioned 
above, different methods give different results. Secondly, tel-
omere length that we are born with also varies, and the range 
is quite wide, i.e., 8 to 15 Kb [47]. Noteworthy, placenta-
derived material is a perfect source for the assessment of 
the primary newborns’ telomere length that enables further 
monitoring. Alternatively, telomere length assessment can 
be based on the analysis of liquid biopsy samples (blood 
cells), which makes it relatively easy to perform. Further-
more, as several studies showed, measurement of telomere 
length in placenta and blood has a great clinical value.

In the study monitoring telomere length from birth to 
adulthood, an inverse correlation between residential traf-
fic exposure and telomere length in the first two decades of 
life was shown [48]. Additionally, a correlation between the 
effects of prenatal exposures and maternal conditions such 
as obstetric complications, BMI, state of nutrition, stress 
and sociologic status during pregnancy, and disadvanta-
geous birth outcomes of offspring in telomere length manner 

was shown [49–51]. For example, the association between 
maternal stress during pregnancy and shorter offspring tel-
omere length was confirmed by many authors [52–54]. Other 
authors revealed an association between low birth weight 
and shorter telomere length in peripheral blood mononu-
clear cells in preschool aged children [55]. In another study, 
maternal exposure or perinatal complications was linked to 
shorter leucocytes telomere length in adulthood with some 
accelerated aging symptoms [56]. Also, the exposition to 
stress during pregnancy or early childhood was associated 
with shorter telomere length 70 years later but (survivors of 
the siege of Leningrad). Interestingly, the authors noticed 
no direct effect on the prevalence of cardiovascular diseases 
[57].

When assessed from cells in the bloodstream, telom-
eres can show variation from their genetically predisposed 
lengths due to environmental-induced changes. These altera-
tions in telomere length act as indicators of cellular health, 
which, in turn, could provide disease risk status [58]. The 
common goal of such study is to assess alterations in tel-
omere length rather than absolute values. Importantly, even 
if the attrition rate may differ between individuals, it usually 
leads to a value of fewer than 4-kilo bases in old age [59]. 
Since it is a dynamic process, all the comparative studies 
must include the difference in age and sex (will be discussed 
further) of the individuals.

Concerning the usefulness of telomere length assessment 
and its clinical outcome, it must be emphasized that those 
studies are still more descriptive than mechanistic. Their 
length shows some correlations with various disorders [60] 
including obesity but also lower socioeconomic position, 
smoking, mortality, or sex [61–66]. Telomere metabolism 
and function are complex, and it may be challenging to 
obtain a full picture of the correlation. It seems that all those 
studies give just a general perspective on the postulated asso-
ciation, but considering the current state of knowledge on 
telomere biology, it may be very constructive.

How sex makes a difference—telomere 
length in women and men

The variations in TRF length among newborns are as wide 
as variations in TRF lengths among adults [47]. Addition-
ally, a faster telomere attrition appears in men than in women 
[67]. However, there is no consistency in the evaluation of 
the association between sex and telomere length in adults, 
and this hypothesis has evolved dynamically. Some studies 
show that white blood cell telomeres are longer in women 
than men [66, 68, 69]. It could result from the presence of an 
estrogen response element in the hTERT promoter region, 
which may affect the expression of this gene and contribute 
to telomere restoration [69, 70].



7185Molecular Biology Reports (2020) 47:7181–7188	

1 3

Noteworthy, the telomeric sequences (i.e., G-reach 
repeats) are particularly sensitive to oxidative stress [71]. 
Importantly, women show lower reactive oxygen species 
(ROS) than men due to higher levels of estrogen [69, 72]. 
This hormone reduces the production of ROS while also 
being a potent antioxidant and regulator of antioxidant 
genes [73]. It can also directly activate the hTERT pro-
moter [74] and indirectly affect DNA repair (p53-mediated 
pathway) [75] as well as activate telomerase through the 
phosphoinositol-3-kinase⁄Akt [76] and nitric oxide path-
ways [77]. These mechanisms could result in females hav-
ing higher telomerase activity. However, since telomerase 
is generally perceived absent in most somatic adult cells, 
it is difficult to evaluate how it affects telomere length in 
different tissues.

Conversely, testosterone does not show antioxidant 
properties but is associated with increased susceptibility 
to oxidative stress that may lead to telomere attrition [78]. 
Importantly, androgens are converted to estrogens in the 
presence of aromatase [79]. However, even untreated post-
menopausal women show slower leukocyte telomere attri-
tion than age-matched men [70]. Thus it seems that estrogen-
related control of telomerase activation is crucial but not 
the only one that contributes to this process. Altogether, a 
huge diversity of theories and reported results may come 
from differences in the age of study subjects, small study 
groups, different cell types subjected to DNA isolation, or 
different assessment methods. One of the most informative 
and wide meta-analyses was reported by Gardner et al., 
who analyzed 36,230 cases and showed that, on average, 
females had longer telomeres than males. Importantly, the 
difference significance was prone to assessment method with 
only Southern blot, but neither real-time PCR nor Flow-
FISH showing a significant difference [65]. Interestingly, 
an experiment concerning dizygotic twins confirmed that 
observation. It was demonstrated that female‐derived leu-
kocyte telomeres were generally longer than in the male 
twin [80]. Additionally, girls show a stronger relationship 
between exposure to air pollution and telomere shortening 
[81], which shows another aspect of the complex regulation 
of telomerase and telomeres.

Mother effect

Since telomere length seems to be a useful stress marker, 
it can be expected that telomere length in the newborn is 
associated with maternal exposures during pregnancy. 
This dependency was observed among male newborns, not 
females. Shorter telomere length was linked to risk factors 
as smoking during pregnancy, high mother’s BMI, mater-
nal depressive state, and sexual abuse [82]. Another asso-
ciation between telomere length in mother and newborn is 

mediated by the hypothalamic–pituitary–adrenal axis dur-
ing pregnancy. There is no association along with maternal 
cortisol level and telomere length of the newborn. However, 
it was noticed that cortisol levels in third trimesters were 
higher at mothers of males infants than females. Presumably, 
this phenomenon affects telomere attrition rate depending 
on sex, and precisely, male offspring seem to be influenced 
predominantly [83].

It may be that this results from the fact that maternal hor-
mones (naturally occurring or released in response to a stress 
etc.) during pregnancy are associated with epigenetic modi-
fications of the fetal glucocorticoid receptor coding gene, 
NR3C1. Noteworthy, male and female fetuses develop dif-
ferent responses to adapt to this exposure [83]. But except 
for only some cases, the general observations indicate equal 
telomere length in both sex newborns.

Father effect

It was demonstrated that the age of the father at concep-
tion was positively correlated with a longer leukocyte tel-
omere length in newborns. This, in turn, is associated with 
a reduced risk of atherosclerosis and longer, healthy life 
(noteworthy, it also correlates with a higher risk of achon-
droplasia, Marfan syndrome, as well as neurodevelopmental 
disorders, e.g., autism) [84]. These observations were con-
firmed in studies accompanied by sperm telomere length 
assessment using Southern blot, Q-FISH, and flow-FISH 
[85]. Interestingly, the correlation was linear, indicating a 
father’s age a crucial factor in the determination of new-
borns’ LTL. It may be associated with the mechanisms that 
affect telomere elongation in sperm, but the detailed mecha-
nism is not known yet. Importantly, this correlation appears 
even in spite of the "reprogramming" during embryonic 
development [86–88].

Summary

The studies of the molecular basis of aging and telomere 
length suggest that there may be some important factors 
that do affect the inborn telomere length but also the rate 
of chromosome end attrition. An important issue is prenatal 
exposure to environmental conditions but also the hormonal 
profile and age of parents. It may be that pollution, increased 
inflammation processes, and oxidative stress in adulthood 
may indeed accelerate telomere length attrition. However, 
the association between parents’ and newborns’ telomere 
length seems to be a critical factor as well. We should not 
forget that telomere length reflects the entire life history of 
the individual from birth onward. Importantly, early child-
hood is associated with higher metabolic turnover, and 
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consequently, faster shortening of telomeres [89]. It must 
be noted that telomere metabolism is a very dynamic process 
that is controlled by genetic as well as environmental deter-
minants and is very individual. Even if it seems too simpli-
fied, it may be that slowing down telomere attrition could 
result in postponed senescence and aging. Alternatively, the 
induction of telomerase in healthy patients might also bring 
similar results. We are still not sure about the potential of 
telomerase activity, and the role of individual subunits of 
the complex, especially since some important non-canonical 
functions are postulated when hTERT is reported. It may 
also be that telomere length could become o good predic-
tive or diagnostic marker in the assessment of the human’s 
health condition, but till that time, we need first to learn how 
telomeres are metabolized and how to reliably assess this 
parameter. On the other hand, telomerase and telomeres are 
still recognized as good cancer therapy targets, which only 
shows how complex is the whole signaling network. There 
is a concern raised when telomerase restoration is consid-
ered that is associated with the safety precautions since the 
enzyme may lead to the immortality of cancer cells. On the 
other hand, it is well established that physical activity slows 
down telomere attrition, and it is generally perceived as a 
good manifestation of a healthy lifestyle. But other factors 
must be included in those studies like exercise intensity and 
BMI that may significantly affect the observations.

To conclude, we still need to learn how telomerase and 
telomeres work. We also need to work on some new diag-
nostic methods that would enable telomere assessment over 
life, to become good predictive, diagnostic markers.
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