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Enhanced Effect of Tendon Stem/Progenitor
Cells Combined With Tendon-Derived
Decellularized Extracellular Matrix
on Tendon Regeneration

Haixin Song1,2, Zi Yin3,4, Tao Wu1, Yangzheng Li1, Xun Luo5,6,
Mingzhu Xu2,7, Lihong Duan2,8, and Jianhua Li1

Abstract
Decellularized extracellular matrices have been clinically used for tendon regeneration. However, only a few systematic
studies have compared tendon stem/progenitor cells to mesenchymal stromal cells on the tendon-derived decellularized
matrix. In the present study, we prepared extracellular matrix derived from porcine tendons and seeded with tendon stem/
progenitor cells, embryonic stem cell-derived mesenchymal stromal cells or without stem cells. Then we implanted the
mixture (composed of stem cells and scaffold) into the defect of a rat Achilles tendon. Next, 4 weeks post-surgery the
regenerated tendon tissue was collected. Histological staining, immunohistochemistry, determination of collagen content,
transmission electron microscopy, and biomechanical testing were performed to evaluate the tendon structure and bio-
mechanical properties. Our study collectively demonstrated that decellularized extracellular matrix derived from porcine
tendons significantly promoted the regeneration of injured tendons when combined with tendon stem/progenitor cells or
embryonic stem cell-mesenchymal stromal cells. Compared to embryonic stem cell-mesenchymal stromal cells, tendon stem/
progenitor cells combined with decellularized matrix showed more improvement in the structural and biomechanical
properties of regenerated tendons in vivo. These findings suggest a promising strategy for functional tendon tissue regeneration
and further studies are warranted to develop a functional tendon tissue regeneration utilizing tendon stem/progenitor cells
integrated with a tendon-derived decellularized matrix.
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Introduction

Tendons are connective tissues that transmit force from

muscle to bone. They are injured frequently due to rigorous

activities and sports. It is well known that tendons naturally

heal with the formation of fibrotic scars rather than regen-

eration tissue owing to their vascular deficiency and lack of

highly differentiated tenocytes, with limited proliferation

capability and metabolic rate1. Therefore, the natural ten-

don healing process always leads to poorer tendon quality

and mechanical properties2. A variety of treatment modal-

ities have been employed, such as xenografts3, autografts4,

allografts5, suture techniques6, tendon-to-bone fixation7,

and tendon prostheses8. However, these options are accom-

panied by limited donor resource, poor integration graft and

high cost of medication.

Tissue engineering provides an alternative with a high

potential for treating injured tissue. Cells (stem cells), scaf-

folds, and bioactive molecules are three fundamental ele-

ments; their internal coordination and external interplay

with the surrounding tissue of the implantation site induce

the native, regenerative healing of injured tissues and

organs. Scaffolds play a crucial role during the tissue-

regeneration process; the various scaffolds include artifi-

cial synthetic and naturally derived materials. Recently,

native organs have become a popular alternative as they

contain extracellular matrix in which the composition,

organization, mechanical properties, and/or geometry sup-

port the viability and phenotype of tissue-specific cells.

Considering that many native organs are not suitable for

transplantation, particularly for xenograft, decellularized

organs and scaffolds show enormous potential to work as

instructive matrices for tissue-engineering applications.

For tendons, many such scaffolds have been approved by

the US Food and Drug Administration9.

Currently, stem cells with the capability of multi-lineage

commitment and self-renewal are an ideal cell source for

tissue engineering. For tendons, tendon stem/progenitor cells

(TSPCs) and mesenchymal stem cells (MSCs) are the most

popular10,11. Since their discovery in rats in 200712, TSPCs

have been isolated from various mammals13–15. As a local

stem cell, mounting evidence shows that TSPCs have the

potential for tendon tissue engineering16. TSPCs could reg-

ulate inflammation in tendon healing via JNK and STAT3

signaling17, and serve as a potential target for the prevention

or treatment of tendinopathy via inhibiting the P16 teno-

genics of the microRNA signaling pathway18. The shortcom-

ings of TSPCs are the lack of sources and the difficulty in

obtaining them. In contrast, MSCs are relatively easy to

acquire and can be isolated from a variety of tissues. They

can commit toward the expected cell lineages in situ, or

secrete trophic molecules, for instance, chemotactic mole-

cules and growth factors, which can recruit extra reparative

cells into the lesion site19.

A previous study showed that TSPCs possessed more

potential for tenogenic expression compared to MSCs in

vitro20; however, there has not yet been any systematic study

that compares TSPCs to MSCs on the tendon-derived decel-

lularized matrix. In the present study, we hypothesized that

the TSPCs as the resident stem cells of tendons and inte-

grated with a tendon-derived decellularized matrix will

express high tenogenics, produce more tendon-like tissue,

and improve structural and biomechanical properties of

regenerated tendons much better than MSCs or without seed

cells in vivo.

Materials and Methods

This study was approved by the Zhejiang University Institu-

tional Animal Care and Use Committee, and we strictly

followed the current laws for animal experiments. The sche-

matic drawing shown in Fig. 1 was used to illustrate the

process of this study.

Preparation of Porcine Tendon Decellularized Matrix

The decellularization protocol we used is similar to our pre-

vious study21. Firstly, fresh porcine tendons were cut into

10 mm�10 mm pieces, washed in 50 ml of 0.1 M phosphate

buffered saline (PBS) for 15 minutes, then soaked in liquid

nitrogen for 2 minutes and immersed in a 37� C solution of

500 ml 0.9% saline for 10 minutes. This procedure was

repeated five times. Before being placed in the 24-well

plates, the tendon pieces were cut into 80 mm-thick sections

with a cryostat microtome (Microm HM550, Waltham, MA,

USA). They were then washed three times with ml of 0.1 M

PBS, for 30 min each time. Next, 100 ml of 200 unit ml�1

DNase (Roche, Basel, Switzerland) was placed into each

well, then they were incubated at 4 % for 14 hours followed

by washing for 30 min with 1 ml of 0.1 M PBS at 4 %. Before

the experiments, hematoxylin and eosin (H&E) staining con-

firmed the resident cells were completely removed.

Stem Cell Isolation and Culture

The human TSPCs21 and human embryonic stem cells

(ESC)-MSCs22 used in this study were acquired according

to our previous study. Briefly, the cells were planted in 10

cm dishes and cultured at 37 %, 5% CO2 with complete

medium consisting of Dulbecco’s modified Eagle’s

medium, 10% fetal bovine serum, and 1% penicillin-

streptomycin (all from Gibco, Carlsbad, CA, USA). The

non-adherent cells were removed with PBS and the medium

exchanged every 2 to 3 days. Cells at passage 3 were used

for experiments. Then 3 days before surgery, the cells at a

concentration of 1�105 cells per ml were seeded on the

scaffold. Before being used for the experiments, the

multi-lineage differentiation potential and clonogenicity

of these stem cells were confirmed in this study.
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In Situ Rat Achilles Tendon Repair Model

The hind limbs of 18 skeletally mature female Sprague Daw-

ley (SD) rats (Zhejiang University Laboratories, Hangzhou,

China) weighing between 200 g and 220 g were used for this

experiment. All the rats were treated with cyclophosphamide

(150 mg/kg) 24 h before the operation. After general

anesthesia, a full tear wound was created and the Achilles

tendon was removed to create a defect of 6 mm in length.

The decellularized extracellular matrix (ECM) scaffolds (10

� 10 mm, thickness 80 mm), seeded with TSPCs (ECM þ
TSPCs group, N ¼ 12, 5 � 105 cells per scaffold) or MSCs

(ECMþMSCs group, N¼ 12, 5� 105 cells per scaffold) or

without seeding cells (ECM group, N ¼ 12) were rolled into

the gap wound, then sutured to the remaining Achilles ten-

don using a non-resorbable suture (6-0 nylon). We next irri-

gated the wound and closed the skin. The animals were

allowed free cage activity after surgery. Then 4 weeks

post-surgery, specimens were collected successively.

Histological Staining and Immunohistochemistry

The harvested, regenerated tendon tissue was promptly

immersed in 10% (v/v) neutral buffered formalin (Xinghan

Ltd, Zhengzhou, China) and dehydrated through an alcohol

gradient, then embedded in paraffin blocks. For standard

histological evaluation, 7 mm sections were stained with

H&E (N¼ 3 per group). To examine the general appearance

of the collagen fibers, Masson’s Trichrome staining (N ¼ 3

per group) was also performed according to standard

procedures. Polarizing microscopy (N ¼ 3 per group) was

used to assess mature collagen fibrils. The general histolo-

gical score (fiber structure, fiber arrangement, rounding of

nuclei, inflammation, vascularity, cell population) of the

H&E staining result was calculated in this study and the

method was according to Shen et al.23,24 For immunohisto-

chemical analysis (N ¼ 3 per group), mouse anti-rat mono-

clonal antibody against collagen I (1:200 dilution; Abcam,

Cambridge, UK) was used to assess the expression of col-

lagen I in repaired Achilles tendon.

Determination of Collagen Content

The amount of collagen in the repaired tendon was quanti-

fied using a collagen assay kit (Jiancheng Ltd, Nanjing,

China). We digested the lyophilized tendons (N ¼ 3 per

group) with a hydrolysis regent at 95 % for 20 min, and

serially diluted acid-soluble collagen type I (provided by the

kit) to generate the standard curve according to the manual.

The concentration was obtained through absorbance at 550

nm via a microplate reader (Molecular Devices, San Jose,

CA, USA).

Transmission Electron Microscopy

Achilles tendon specimens (N ¼ 3 per group) were fixed via

standard procedures for transmission electron microscopy

(TEM; Tecnai G2 F20 S-TWIN, FEI, Hillsboro, Oregon,

USA) to assess the diameter and alignment of collagen fibril.

Methods and processes are the same as previously

Fig. 1. The schematic drawing of the study process.
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described24. To acquire an accurate representation of the

fibril diameter distribution, we measured more than 500 col-

lagen fibrils for each specimen.

Mechanical Testing

Mechanical testing (N ¼ 5 per group) was carried out

through an Instron tension/compression system with Fast-

Track software (Model 5543, Instron, Canton, MA).

Measurements of the tendon’s cross-sectional area were per-

formed via two Vernier calipers at 5 mm proximal to the

conjunction of the bone and tendon. The bone end of the

tendon was secured by a specially designed restraining jig

and the tendon end was pinched with a clamp25. The Achilles

tendon-calcaneus complex (ACC) was then rigidly fixed to

custom-made clamps. After applying a preload of 0.1 N,

each ACC underwent pre-conditioning by cyclic elongation

of between 0 and 0.5 mm for 20 cycles at 5 mm per min. This

was followed by a load-to-failure test at an elongation rate of

5 mm per min. The load-elongation behavior of the ACCs

and failure modes were recorded. The structural properties of

the ACC were represented by stiffness (N/mm), ultimate

load (N), energy absorbed at failure (mJ) and stress at failure.

For each ACC, the greatest slope in the linear region of the

load-elongation curve over a 0.5 mm elongation interval was

used to calculate the stiffness.

Statistical Analysis

Statistical significance between groups was assessed by one-

way analysis of variance followed by post-hoc Scheffe test

using SPSS 22.0 (IBM, Amun, New York, USA). All values

of P < 0.05 were accepted as statistically significant.

Results

Characterization of Decellularized Porcine Tendon

After the decellularization, most of the cells were removed

and only the native collagen structure was present on H&E

staining (Fig. 2A). MSCs or TSPCs were seeded to the scaf-

fold (Fig. 2B) and kept in an incubator at 37 %, 5% CO2.

Then 3 days later, the combination of cells and scaffolds

were rolled up, thus an in vitro engineered tendon was gen-

erated, in which the cells and scaffolds were alternately

layered, as could be observed upon H&E staining (Fig.

2C). Subsequently, the engineered tendons were trans-

planted into a rat model of an Achilles tendon defect.

TSPCs Promoted Tendon Regeneration Structurally

Then 4 weeks post-surgery all rats were euthanized, and

the inflammatory reaction, immunological reaction or scaf-

fold dislocation were observed in the Achilles tendon

repair site. Masson trichrome and H&E staining were

employed to evaluate the reparative effect in both the

repaired zone and junction zone for each group. In the

repaired zone, Masson trichrome staining manifested more

organized collagen fiber structures in the ECM þ TSPCs

group when compared with other two groups (Fig. 3A).

Meanwhile, H&E staining also showed more fibroblast-

like cells that closely resembled the native tenocyte in the

ECM þ TSPCs group (Fig. 3B). Around the collagen

fibers, vascular components could be found in each group.

It showed the good histocompatibility of the ECM scaffold

for tissue engineering tendons. Polarized light imaging

confirmed the better effect of ECM þ TSPCs as there was

a notable increase of mature collagen fibers in comparison

to the other two (Fig. 3C). At the junction of the repaired

tendons, more disarranged collagen fibers and scar tissue

could be seen in control groups of both the H&E and

Masson trichrome staining (Fig. 4A–B). The histological

score (Fig. 4C) was lowest in the ECM þ TSPC group

(6.64 + 1.33 vs. 9.09 + 0.92 in ECM þ MSC group and

10.61 + 0.71 in ECM group). These data collectively

demonstrated the combination of decellularized porcine

tendon and TSPCs promoted the regeneration of injured

tendons to form a better structure.

Fig. 2. Porcine Achilles tendon decellularized and sectioned in longitudinal slices with a thickness of 80 mm. (A) The H&E staining of the
decellularized matrix; (B) 3 days before surgery, the stem cells were seeded on the bioscaffold, then the mixture was rolled up and
transplanted into a defect of rat Achilles tendon; (C) the H&E staining of mixture, cells and scaffolds were alternately layered. Scale
bars ¼ 100 mm (A), 50 mm (C).
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TSPCs Produced More Collagen

We monitored the expression level of the tendon-related

collagen content of repaired tendons. Immunohistochem-

ical staining showed the highest density of collagen type

I in the ECM þ TSPC group (Fig. 5A). Moreover, both

TSPCs and MSCs deposited more collagen type I compared

to the cell-free group. The collagen content assay (Fig. 5B)

showed a similar trend (that had less than 0.124 + 0.012

mg/mg in ECM þ TSPC group vs. 0.12 + 0.006 mg/mg in

the ECM þ MSC group and 0.11 + 0.003 mg/mg in the

ECM group). These data suggested stem cells produced

more collagen.

Fig. 3. Repaired zone of engineered tendons 4 weeks after surgery. (A) Masson trichrome staining of each group. (B) Typical H&E staining of
repaired zones in a section of each group. (C) Polarized light microscopy images of each group. Scale bars ¼ 50 mm (A, B, C), 200 mm (inset
of A, B, C).

Fig. 4. Junction zone (square frame of each picture) of engineered tendons 4 weeks after surgery. (A) Masson trichrome staining of each
group (N: normal zone, R: repaired zone). (B) Typical H&E staining of junctional zone of each group. (C) Histological evaluation was
performed for each group (ECM vs ECM þ TSPC: 10.61+ 0.71 vs 6.64 +1.33, P < 0.05). Scale bars ¼ 50 mm (A, B), 200 mm (inset of A, B).
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Ultrastructural Morphology

To correlate histological evidence with the ultrastructure

morphology of repaired Achilles tendons (ATs), specimens

were observed under TEM. The ECM þ TSPC group dis-

played thicker collagen fibrils (Fig. 6A) in comparison to

other groups. The fibrils’ average diameter was 23.5 nm

(816 fibers) in the ECMþ TSPC group, 21.7 nm (984 fibers)

in the ECMþMSC group, and 21.1 nm (522 fibers) in ECM

group (Fig. 6B). The diameter distribution showed 19.85%
of the ECMþ TSPC group’s regeneration fibrils were larger

than 30 nm, which was higher than that of the ECM þMSC

group (8.33%) and the ECM group (8.05%). Those results

indicate that TSPCs are beneficial for the generation of

larger fibrils.

TSPCs Promoted Biomechanical Properties of
Repaired AT

To further correlate tissue structural features with their bio-

mechanical properties, we performed mechanical testing.

Most of the specimens fractured at the muscle-tendon junc-

tion or the tendon-calcaneal interface. Only one of the ECM

þ MSC group specimens fractured at the middle of the AT.

The ECM þ TSPC group (23.24 + 5.54 N/mm) showed

significantly more stiffness than the ECM þ MSC group

(17.89 + 4.48 N/mm) and the ECM group (14.40 + 7.09

N/mm) (Fig. 7A). The maximum force (Fig. 7B) of the

ECM þ TSPC group (59.79 + 8.05 N) was significantly

higher than ECM group (40.83 + 14.38 N), and stress at

failure (Fig. 7C) manifested a similar trend (6.91 + 1.11

Mpa vs. 4.32 + 2.13 Mpa, P < 0.05). The assays of energy

absorbed at failure (Fig. 7D) of the ECM þ TSPC group

were obviously higher than the ECM þ MSC group

(131.44 + 32.63 mJ vs. 90.10 + 34.21 mJ, P < 0.05). The

lack of statistical significance may be due to the small sam-

ple size (N ¼ 5 per group). The ECM þ TSPC group exhib-

ited better biomechanical properties than the other two

groups.

Discussion

In this study, we used a decellularized mammalian tendon

extracellular matrix scaffold with TSPCs or MSCs to repair

injured tendons, and demonstrated that: (1) the tendon ECM

scaffold easily acquires and promotes tendon regeneration

especially when combined with TSPCs or MSCs, which can

be used as a suitable bioscaffold for tendon tissue engineer-

ing; and (2) seeded TSPCs showed enhanced improvement

of biomechanical properties and morphological structure in

regenerated tendons compared to MSCs.

In recent years, bioscaffolds’ physical properties have

been given more attention and various sources of decellular-

ized matrix have been used in tendon tissue engineering26. In

our engineered tendons with stem cells, the cells and decel-

lularized tendon matrix were arranged in layers and were in

close contact with each other. Such an intimate contact may

be a key inducer in directing the site-specific differentiation

Fig. 5. (A) Histological observation of repaired tendon by immunohistochemical staining specific for collagen I. (B) Collagen content of the
repaired tendon in each group (ECM vs ECMþ TSPC: 0.110 + 0.003 vs 0.124 + 0.013, P < 0.05). Scale bars ¼ 50 mm (A), 200 mm (inset of
A). *P < 0.05.
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Fig. 6. (A) Ultrastructure of tissue-engineered tendons after 4 weeks post-surgery. (B) Histogram of the distribution of collagen fibril
diameters (N > 500). Scale bars ¼ 100 nm.

Fig. 7. Biomechanical properties of repaired tendons at 4 weeks post-surgery. The stiffness (A), maximum force (B), stress at failure (C), and
energy absorbed at failure (D) of the TSPC-treated group was higher than other two groups. *P < 0.05. N ¼ 5 per group.

1640 Cell Transplantation 27(11)



of stem cells because the biophysical and biochemical prop-

erties of the decellularized matrix is relatively native, such as

the native parallel arrangement of collagen fibers of the

ECM leading to the right direction of engraftment stem

cells24,27 and suppressing the wrong direction of commit-

ment. Our previous study showed the tendon ECM not only

enhanced tenogenic differentiation of TSPCs, but also sig-

nificantly suppressed osteogenic-lineage differentiation21.

In comparison to the study by Kryger et al.28, both stud-

ies proved tenocytes and MSCs could be used to success-

fully repopulate acellularized tendons for tendon repair.

The present study goes deeper into the in vivo application

of these cells for tissue engineering. Furthermore, the

bioactive factors of tendon extracellular matrix could

quickly release into the microenvironment of stem cells and

promote cell proliferation. Zhang et al. recently reported

tendon extracellular matrix effectively stimulated the prolif-

eration of rabbit patellar tendon stem cells in vitro29.

Plenty of evidence has documented that tissue-specific

stem cells are best for tissue engineering. Numerous studies

demonstrated that TSPCs promoted tissue regeneration

in vivo30–32. As the local resident stem cells, TSPCs showed

higher potential in repairing injured tendons compared to

MSCs20. This is consistent with our study, wherein the ECM

þ TSPCs group possessed a better anatomical structure,

synthesized more collagen, and had more powerful biome-

chanical properties than ECM þ MSCs. The regenerated

tendons were closer to normal tendon tissue structure and

properties, and regulated inflammation in tendon healing via

JNK and STAT3 signaling17. However, it is known that the

tenogenic differentiation capacity of TSPCs significantly

decreases with advancing age18. The expression of transcript

factor Fos observably decreased in early post-natal rat

Achilles tendons with time11. Loss of tenomodulin (Tnmd)

possibly resulted in augmented senescence and reduced self-

renewal of TSPCs33. Only an allogeneic cell source of

TSPCs can be used for tissue repair because it is hard to

obtain autologous cells without causing morbidity of the

donor site. Hence, the aging and the small quantity will limit

the development of TSPCs in the future.

The MSCs’ specialty of directed differentiation and

paracrine mechanisms has important implications for ten-

don repair and regeneration34. Many kinds of tissue-

derived MSCs used to repair injured tendons have

achieved good curative effects35,36. In this study, the ECM

þ MSCs group possessed better functional healing of

injured tendons than ECM group. This is consistent with

previous results that show the tendon tissue matrix pro-

motes the tenogenic-lineage differentiation of MSCs37.

Even though their therapeutic effect is lower than TSPCs,

their wide variety of sources, ease of isolation and culture,

and suitability for large-scale industrial development

underline their huge potential.

The selection of suitable seed cells is critical to tendon

tissue engineering. Although stem cells perform similarly to

some extent, there are some unique properties of tissue-

specific stem cells that may influence the tissue engineering

outcome38. TSPCs expressed a higher level of adipogenic,

osteogenic, and chondrogenic besides tenogenic genes, sug-

gesting they possessed the capacities of adipogenesis, osteo-

genesis, and chondrogenesis differentiation20. When an

optimized condition is obtained, the complete capability of

TSPCs in tendon tissue engineering is achieved, which

shows its potential. Large animal models may be required,

with long-term follow up and cell tracking to appreciate the

functional benefits in future.

Our study collectively demonstrated that decellularized

extracellular matrix derived from porcine tendon signifi-

cantly promoted injured tendon regeneration when

combined with TSPCs or ESC-MSCs. Compared with

ESC-MSCs, TSPCs combined with decellularized matrix

showed more improvement in the structural and biomecha-

nical properties of regenerated tendons in vivo. This study

developed a practical strategy for functional tendon tissue

regeneration and further studies are warranted to utilize

TSPCs integrated with a tendon-derived decellularized

matrix for tendon regeneration.
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