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Abstract

Tick-borne nairoviruses (order Bunyavirales) encode an ovarian tumor domain protease

(OTU) that suppresses the innate immune response by reversing the post-translational modi-

fication of proteins by ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15). Ub is

highly conserved across eukaryotes, whereas ISG15 is only present in vertebrates and

shows substantial sequence diversity. Prior attempts to address the effect of ISG15 diversity

on viral protein-ISG15 interactions have focused on only a single species’ ISG15 or a limited

selection of nairovirus OTUs. To gain a more complete perspective of OTU-ISG15 interac-

tions, we biochemically assessed the relative activities of 14 diverse nairovirus OTUs for 12

species’ ISG15 and found that ISG15 activity is predominantly restricted to particular nairo-

virus lineages reflecting, in general, known virus-host associations. To uncover the underly-

ing molecular factors driving OTUs affinity for ISG15, X-ray crystal structures of Kupe virus

and Ganjam virus OTUs bound to sheep ISG15 were solved and compared to complexes of

Crimean-Congo hemorrhagic fever virus and Erve virus OTUs bound to human and mouse

ISG15, respectively. Through mutational and structural analysis seven residues in ISG15

were identified that predominantly influence ISG15 species specificity among nairovirus

OTUs. Additionally, OTU residues were identified that influence ISG15 preference, suggest-

ing the potential for viral OTUs to adapt to different host ISG15s. These findings provide a

foundation to further develop research methods to trace nairovirus-host relationships and

delineate the full impact of ISG15 diversity on nairovirus infection.

Introduction

Nairoviruses (family Nairoviridae), which number ~40 divided over 16 species, are globally

distributed, predominantly tick-associated, arthropod-borne viruses [1, 2] (Fig 1A). Several
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nairoviruses cause human disease, most notably Crimean-Congo hemorrhagic fever virus

(CCHFV). CCHFV is one of the most widespread hemorrhagic fever viruses [3]; infections

have been reported across Africa, the Middle East, Asia, and Eastern and Southern Europe,

with outbreak associated case-fatality rates ranging from 5–40%. Other nairoviruses known to

cause human disease include Nairobi Sheep Disease virus (NSDV) in Africa and Asia (Asian

variant Ganjam virus, GANV), Dugbe virus (DUGV) in Africa, and Erve virus (ERVEV) in

Western Europe. These viruses typically cause mild fever, headache, and diarrhea [4–9].

In addition to infecting humans, many nairoviruses have been directly associated with

other vertebrate hosts. CCHFV, for example, is reported to infect a wide array of mammalian

species [10, 11], however disease is restricted to humans. Importantly, CCHFV maintenance

and transmission relies on asymptomatic circulation among a number of hosts, including

small mammals, reptiles, and livestock [10, 11]. NSDV and DUGV also infect livestock, with

NSDV causing severe gastroenteritis in sheep and goats. Nairoviruses have been isolated from

bats [4, 6, 12–14], and are often detected in vertebrate associated ectoparasites; Kupe virus

(KUPEV), for example, was isolated from ticks infesting cattle, sheep, and goats, while others

were found in ticks infesting gull nests [15–17].

Nairoviruses possess a negative sense, single-stranded RNA ((-)ssRNA) genome consisting

of three segments denoted as small (S), medium (M), and large (L), that encode the viral nucle-

oprotein, glycoproteins, and the multifunctional L protein, respectively. Beyond the RNA-

dependent RNA polymerase (RdRp), the L protein contains a viral homologue of the ovarian

tumor domain protease (OTU) at the N-terminus (Fig 1B). This OTU reverses posttransla-

tional modifications by ubiquitin (Ub) and interferon (IFN) stimulated gene product 15

(ISG15). Ub and ISG15 are conjugated to proteins (ubiquitination/ISGylation) in a process

involving activating (E1), conjugating (E2), and ligating (E3) enzymes. Ubiquitination plays a

key role in activation of the innate immune response, while ISGylation primarily occurs on

newly synthesized proteins in response to IFN induction, making viral proteins a predominant

target [18].

The OTU has been found to have an important role in immune suppression [19–22].

Reverse genetics experiments with CCHFV have demonstrated a clear connection of OTU

deubiquitinase (DUB) activity with enhanced viral replication through suppression of the type

I IFN response [22]. The role of OTU deISGylase activity, while not as clear, appears to be

involved in promoting higher levels of L protein during later stages of CCHFV infection.

ISG15 possesses a large degree of functional diversity, including a role in antiviral activity. In

addition to mediating effects through ISGylation, ISG15 has been observed to function in a

free form: extracellularly as a cytokine and intracellularly modulating immune responses [23–

33]. Notably, the role of ISG15 appears to differ between host species, with a more pronounced

antiviral effect in mice compared to humans [31].

In contrast to Ub, which is almost perfectly conserved among eukaryotes, ISG15 shows a

much greater degree of diversity with sequence identities that can drop below 60% among

mammals (Fig 1C). These primary structure differences may translate into tertiary structure

diversity, with ISG15s from different species potentially possessing different preferred orienta-

tions of its two Ub-like domains [34–36]. Positional variation in the domains could result in

different surfaces being available for protein-protein interactions, including those in regions

known to interface with viral proteins [37]. Previous structural studies have identified specific

elements in OTU-ISG15 interactions that might be involved in defining ISG15 substrate speci-

ficity [38]. However, a complete picture is still lacking regarding the importance of these and

potentially other factors in driving ISG15 species preferences. This includes how they may dif-

fer among nairovirus OTUs.

Nairovirus OTUs and host ISG15 specificity
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To address this gap in understanding OTU-ISG15 interactions, 14 nairovirus OTUs span-

ning the virus family were assessed for their ability to cleave ISG15s from 12 different animal

species. This revealed that deISGylase activity appears restricted to particular nairovirus line-

ages, with many nairoviruses demonstrating a lack of deISGylase activity. Within these viruses

possessing deISGylase activity, a range of host ISG15 preferences are observed, with some

OTUs lacking human ISG15 activity but possessing substantial activity towards other species’

ISG15s. By determining previously unresolved structures of the KUPEV and GANV OTU

bound to sheep ISG15, we identified key residues required for OTU interaction with sheep

ISG15. These novel structures were used to further examine key OTU and ISG15 residues

responsible for OTU species preference. Comparing OTUs activity on ISG15 from multiple

animal species, we identified key residues implicated in species-specific OTU-ISG15

interactions.

Results

Nairovirus OTUs display ISG15 species preferences

To investigate the ability of nairovirus OTUs to cleave ISG15 from various animal species, we

took advantage of the ability of viral OTUs to cleave ISG15 precursor (proISG15) into mature

ISG15 [34, 38–40]. ProISG15 substrates were derived from 12 animal species and tested against

a panel of 14 diverse nairovirus OTUs. Samples were taken over the course of an hour and the

relative quantities of pro- versus mature ISG15 were resolved by SDS-PAGE (Fig 2 and S2A).

This assay revealed that prominent deISGylase activity is largely restricted to nairoviruses in

the lineage that includes CCHFV such as Thiafora virus, NSDV, and DUGV [41, 42], while no

ISG15 cleavage is observed using OTUs from many of the viruses outside of these lineages.

However, phylogenetic relatedness, or OTU similarity, of viruses does not always equate to

comparable deISGylase activity (Fig 1A). While the closely related KUPEV and DUGV possess

almost identical cleavage profiles, the same cannot be said for NSDV and GANV. Despite

being a variant of the same virus, GANV possesses enhanced activity towards human, camel,

pig, and mouse proISG15 (Fig 2B).

Interestingly, some OTUs that possess weak or undetectable activity for human proISG15

possess substantial activity for ISG15 of other species. For instance, the OTUs from KUPEV

and DUGV have limited activity for human proISG15, but efficiently cleave sheep and cow

proISG15s and show moderate activity towards camel and vesper bat proISG15s. Likewise,

these OTUs poorly cleave human ISGylated host substrates in a cell-based assay (S2B Fig).

Even within the same order of mammals, differences between ISG15s can lead to substantial

differences in their ability to be engaged by OTUs. For instance, vesper bat and Egyptian fruit

bat ISG15s share only 64% sequence identity. Accordingly, they have completely different

interaction profiles. While the proISG15 from vesper bat is processed by several of the OTUs,

Fig 1. Sequence alignment of OTUs and ISG15. (A) Phylogenetic tree of Nairoviruses based on the OTU sequence, adapted from Dzimianski et al. 2019 [41].

Viruses belonging to the same species are shown by colored ovals, with serogroup classifications noted where applicable. Viruses included in this study are

indicated with red text. The relative human deISGylase activity of representative OTUs within 12 of the species is shown by a purple bar based on previous

studies. (B) Sequence alignment of the OTUs from KUPEV, DUGV, GANV, NSDV, CCHFV, and ERVEV. A generic secondary structure of the nairovirus

OTUs is shown. Residue numbering is based on the KUPEV OTU. Residues forming the catalytic triad are boxed in magenta, while those forming the

“selectivity pocket” previously identified as important for interaction with Ub are boxed in black. Mutation sites targeted to influence overall activity is

indicated by a blue star/box, sites to influence sheep ISG15 activity with an orange star/orange box, and sites to influence mouse ISG15 activity with a red star/

box. An expanded sequence alignment with the remaining OTUs is included in the S1 Fig. (C) Alignment of ISG15s from the indicated species with human Ub

for comparison. The residue numbering is based on human ISG15. The residues in ISG15 forming the binding interface with KUPEV OTU are indicated by

green bars. The seven residues focused on in this study related to differential interactions with OTUs are boxed in red. Sequence alignments were generated

using CLUSTALW followed by visual inspection and adjustment [68, 69]. Initial graphics for the sequence alignments were created using the ESPript server

[70].

https://doi.org/10.1371/journal.pone.0226415.g001

Nairovirus OTUs and host ISG15 specificity

PLOS ONE | https://doi.org/10.1371/journal.pone.0226415 December 23, 2019 4 / 26

https://doi.org/10.1371/journal.pone.0226415.g001
https://doi.org/10.1371/journal.pone.0226415


Fig 2. Activity of nairovirus OTUs for proISG15 from different species. (A) Cleavage of proISG15 substrates derived from different animal species by

nairovirus OTUs. Each OTU was present at a 20 nM concentration and run against 10 μM of each ISG15 at 37˚C. Samples were taken at the indicated

timepoints and the reaction quenched in 2x Laemmli sample buffer followed by boiling at 98˚C for five minutes. SDS-PAGE analysis was performed using

Nairovirus OTUs and host ISG15 specificity

PLOS ONE | https://doi.org/10.1371/journal.pone.0226415 December 23, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0226415


the Egyptian fruit bat proISG15 is only cleaved by ERVEV. With the exception of fish

proISG15, which shows no sign of cleavage by any of the OTUs, most of the other proISG15s

show varying susceptibility to processing by the nairovirus OTU panel. Altogether, these data

suggest that even small sequence differences may play a role in tuning OTU activity, resulting

in a wide range of OTU-ISG15 interaction profiles.

Structures of KUPEV OTU and GANV OTU bound to sheep ISG15 provide

insight into the role of the OTU selectivity pocket on deISGylase activity

The proISG15 cleavage assay raised the question of why certain ISG15s (e.g., sheep and cow)

are cleaved efficiently by various OTUs, while others (e.g., human and N. shrew) are not (Fig

2B). As a first step to answer this question, we aimed to gain structural insights into OTU

interactions with sheep ISG15 by generating never before elucidated crystal structures of sheep

ISG15 in complex with KUPEV and GANV OTU, and by identifying key OTU and ISG15

binding residues. Sheep ISG15 was derivatized into a suicide inhibitor with propargylamine

and incubated with KUPEV and GANV OTUs to form covalent complexes that could be used

for X-ray crystallography. This yielded an atomic resolution structure of KUPEV OTU bound

to the C-terminal domain of sheep ISG15 (C-sheep ISG15) solved to 2.06 Å and a low-resolu-

tion structure of GANV OTU bound to full length sheep ISG15 to 3.15 Å (Table 1).

Examination of the high resolution KUPEV and low resolution GANV OTU-sheep ISG15

structures reveals them to possess the familiar overall mode of OTU-substrate binding, in

which the OTU binds to the C-terminal domain of ISG15 by a mix of hydrophobic and elec-

trostatic interactions (Fig 3A and 3B, [38, 43–46]). The main areas of interaction can be

divided into three major regions of the OTU surface (Fig 3 and S3A, [43, 45, 46]). Region I sur-

rounds the OTU active site and interacts with the tail of sheep ISG15 through electrostatic

interactions (Fig 3D, Panel I). Regions II and III of the OTU surface encompass the α3 “selec-

tivity helix” and beta sheets 1, 3, and 4, respectively, and work in tandem to create the major

hydrophobic interface with sheep ISG15 outside of the ISG15 tail. On the sheep ISG15 side,

the interface with the OTUs is formed by W123, P130, and F149 (Fig 3A–3C Panels II and III).

In addition to these central hydrophobic interactions, there are also some contributing periph-

eral electrostatic interactions, including both direct and water-mediated components (S3B

Fig).

One of the most noteworthy interactions is that of sheep ISG15 D89 forming water-medi-

ated interactions with both KUPEV OTU T128 and R149 (Fig 3C, Panel P). Interestingly, this

results in D89 pointing away from the interface, contrasting with previous observations for

this residue position in OTU-Ub structures and CCHFV OTU-human ISG15 structures. In

the case of OTU-Ub structures, the analogous residue to sheep ISG15-D89 is L8 which inserts

into a OTU “selectivity pocket” whose hydrophobic nature is critical for efficient Ub binding

[41]. Considering the selectivity pocket in KUPEV is lined by hydrophobic residues V18,

V120, A129, and I131, the adoption of a more solvent-exposed confirmation of the charged

aspartate in sheep ISG15 is understandable. GANV and KUPEV OTUs interact with sheep

ISG15 in a highly similar manner, including how GANV OTU accommodates sheep ISG15

D89 outside of the selectivity pocket (Fig 3C panel P). Given that both OTUs of GANV and

KUPEV exhibit robust deISGylation activity towards sheep ISG15, this highlights that accom-

modation of D89 in the selectivity pocket is not necessary for robust OTU deISGylase activity.

Mini-PROTEAN1 TGX Stain-Free™ as described in the Materials and Methods. The substrate preference of OTUs was assessed by comparing the relative

quantities of cleavage product versus unreacted substrate over the time course of the assay. (B) Summary of proISG15 cleavage assays for nairovirus OTUs

presented as a heat map. Colors range from green (robust cleavage) to dark red (no cleavage).

https://doi.org/10.1371/journal.pone.0226415.g002
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Hence, while the hydrophobicity of the selectivity pocket is critical and generally predictive for

Ub binding to nairovirus OTUs, an analogous predictive role for the pocket in ISG15 binding

is not likely to be as pervasive.

OTU residue 122 influences overall OTU activity

The most noticeable difference in the interface of the OTUs from KUPEV and GANV with

sheep ISG15 is located at position 122. For GANV OTU, this position is occupied by a gluta-

mate that is in proximity to interact with sheep ISG15’s K90. In other ISG15s this position is

universally a lysine/arginine, and in Ub a threonine. In the KUPEV OTU residue 122 is an

asparagine residue, while CCHFV is unique among OTUs with an alanine at this position (Fig

1A). These residues would not have the same potential to interact with ISG15 or Ub substrates

as E122 in GANV OTU, suggesting this may partially account for the observed enhanced activ-

ity of GANV OTU towards Ub and human ISG15-7-amido-4-methylcoumarin (AMC)

Table 1. Data collection and refinement statistics.

KUPEV OTU-C-sheep ISG15 (PDB entry

6OAR)

GANV OTU-sheep ISG15 (PDB entry

6OAT)

Data collection

Space group P212121 P61

Wavelength (Å) 1 1

Cell dimensions

a, b, c (Å) 41.8, 158.8, 171.0 55.0, 55.0, 494.8

α, β, γ (˚) 90, 90, 90 90, 90, 120

Resolution (Å) 50.00–2.06 (2.11–2.06)† 50.00–3.15 (3.20-3.15)†

Rpim 0.049 (0.450) 0.074 (0.523)

CC1/2 0.994 (0.699) 0.994 (0.662)

I / σI 15.9 (1.51) 11.2 (1.1)

Completeness (%) 99.8 (99.9) 85.1 (82.0)

Redundancy 5.1 (4.6) 6.8 (7.0)

Refinement

Resolution (Å) 41.29–2.06 (2.14–2.06) 39.51–3.15 (3.20-3.15)

No. reflections 70,367 12,240

Rwork (%)/ Rfree

(%)

17.7/21.7 25.3/30.5

No. atoms

Protein 7532 4912

Ligand/ion‡ 16 8

Water 359 0

B-factors

Protein 45.79 117.57

Ligand/ion‡ 38.02 79.33

Water 45.26 ---

R.m.s. deviations

Bond lengths

(Å)

0.005 0.003

Bond angles (˚) 0.55 0.61

†Values in parentheses denote the highest resolution shell
‡Includes the propargylamine linker

https://doi.org/10.1371/journal.pone.0226415.t001
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Fig 3. Structures of the KUPEV and GANV OTUs in complex with sheep ISG15. (A) A cartoon rendering of the KUPEV OTU (green) bound to the C-terminal

domain of sheep ISG15 (purple). The propargylamine molecule covalently linking the ISG15 and OTU is shown in brown. The regions of the OTU forming the interface

with sheep ISG15 are indicated by a shaded background. The approximate locations of residues forming the selectivity pocket are indicated by red dots. The secondary

structure for KUPEV OTU as calculated by the DSSP server is indicated [71]. (B) A cartoon rendering of the GANV OTU (orange) bound in complex with sheep ISG15

(purple), annotated as in (A). (C-D) Closeup views of major interactions within the three main regions (I-III) and peripheral regions (P) of the KUPEV/GANV interface

with sheep ISG15. Black dashes indicate interatomic distances�3.5 Å between atoms capable of forming electrostatic pairs. (E) A closeup of residue 122 in the KUPEV

and GANV OTUs, with the impact of mutating this residue measured by activity towards Ub-AMC and human ISG15-AMC. Values are the mean ± standard deviation

of two independent experiments.

https://doi.org/10.1371/journal.pone.0226415.g003
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substrates [41]. To confirm this, E122 in GANV OTU was mutated to an asparagine, and the

corresponding positions in the KUPEV and CCHFV OTUs to glutamate. As anticipated, the

GANV OTU E122N mutant reduced activity for human ISG15-AMC almost 10-fold, while

KUPEV OTU N122E boosted activity more than 6-fold relative to WT (Fig 4B). The CCHFV

OTU A122E mutant had a modest effect with just a marginal increase in activity, suggesting

that in some OTUs other features may dictate the relative importance of this residue.

The OTU α3 selectivity helix contributes to OTU specificity for human and

sheep ISG15

The ability to increase GANV and KUPEV OTU activities towards human ISG15 with a single

amino acid change led us to probe whether other OTU structural motifs could play a role in

altering OTU activities towards other ISG15 species. We therefore assessed the potential struc-

tural features delineating OTU preference for human versus sheep ISG15, using the KUPEV,

GANV and CCHFV OTUs. KUPEV OTU possesses low activity for human proISG15, but a

high activity for sheep proISG15, whereas the GANV and CCHFV OTUs possess similar activ-

ities for either ISG15 (Fig 2). Examination of the OTU surface interacting with human and

sheep ISG15 suggested that the OTU α3 selectivity helix [44] could play a role in differential

specificity (Fig 5). This helix, particularly residue 80, is positioned where interactions with resi-

due 132 in ISG15, a glutamate in human versus aspartate in sheep, may be able to influence

binding. In GANV and CCHFV residue 80 is a lysine and arginine, respectively, which are

both flexible and capable of forming an electrostatic interaction. In KUPEV OTU this residue

is an isoleucine, creating the potential for a steric clash with the longer glutamate in human

ISG15 compared to aspartate in sheep ISG15 (Fig 4A).

To examine whether the selectivity helix might be responsible for differentiating human

and sheep ISG15, mutations were introduced to each OTU at residue 80. Additionally, due to

the difference in the position of the helix as a result of a glycine at position 81 in KUPEV and

GANV versus a leucine in CCHFV, additional mutants were made to examine the impact of

this helix’s localization by converting residues 80–82 in KUPEV and GANV to the correspond-

ing ones in CCHFV, and vice versa. To assess the impact of these changes, each mutant was

tested for activity towards human ISG15-AMC, human proISG15, and sheep proISG15, as

well as Ub-AMC to assess the effect on activity beyond ISG15 (Fig 5). In KUPEV OTU, residue

80 alone appears not to have a significant impact on ISG15 cleavage. In contrast, the KUPEV

helix mutant (I80R/G81L/T82V) demonstrates a 5-fold increase in human ISG15-AMC activ-

ity while reducing Ub-AMC activity by half. This trend is also seen on sheep and cellular pro-

teins ISGylated proteins with sheep or human ISG15, demonstrating that these changes seen

with pure enzymatic substrates do carry over to cellular substrates (Fig 5). This increase in

ISG15 activity is reflected in both human and sheep proISG15 cleavage, suggesting that this

helix is important for human ISG15 activity and ISG15 activity in general.

For GANV OTU, the K80I mutant reduces human ISG15-AMC activity by half but does

not affect Ub-AMC, while the helix mutant reduces both by approximately half. Interestingly,

this does not seem to be completely reflected between species in the proISG15 assay. Specifi-

cally, only the GANV helix mutant’s ability to cleave human proISG15 appears to be affected,

not the sheep counterpart. However, this differs for CCHFV OTU. Alteration of the CCHFV

helix mutant within this region has a drastic impact on its ability to cleave Ub and ISG15 sub-

strates. The helix mutant obliterated human ISG15-AMC activity while reducing the activity

towards Ub-AMC almost 10-fold, and almost no cleavage of either human or sheep proISG15

and host ISGylated proteins were observed (Fig 5). The R80I mutant, on the other hand, was

more selective, reducing human ISG15-AMC activity by more than half while only lowering
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Ub-AMC activity less than 20%. In addition, this mutant showed a differential impact in the

proISG15 assay, with a noticeable reduction in human proISG15 cleavage while sheep

proISG15 was not detectably impacted. This indicates that the relative activity towards human

and sheep ISG15 can be influenced by the selectivity helix.

Shifting OTU specificity between human and mouse ISG15

Beyond altering OTU specificity for ISG15s from human and sheep, the possibility to enhance

OTU specificity for mouse ISG15 was investigated. To assess which OTU residues are impor-

tant for mouse ISG15 preference, we compared OTUs in complex with mouse, sheep and

human ISG15. This suggested that OTU accommodation of mouse ISG15 residue 87 (residue

89 in sheep and human ISG15) may play an important role (Fig 5A). This residue is pointed

away from the OTU-ISG15 interface in KUPEV and GANV OTUs bound to sheep ISG15, and

ERVEV OTU bound to mouse ISG15. Both KUPEV and GANV OTUs are able to interact

with D89 in sheep ISG15 through water-mediated electrostatic interactions with an arginine

(R149) or tyrosine (Y149) residue. This results in the possibility that the longer E87 in mouse

ISG15 could form a direct electrostatic interaction with these residues if they were present in

CCHFV OTU. However, CCHFV possesses a glutamine (Q149) that would be less suitable to

form this interaction with mouse ISG15. To assess whether the formation of a mouse ISG15

E87 –OTU Y149 interaction would be beneficial to enhancing an OTU activity towards mouse

ISG15, a Q149Y mutant of CCHFV OTU was generated (Fig 5). As expected, this mutant did

not affect OTU activity on human ISG15-AMC, and OTU activity towards mouse proISG15

modestly but noticeably improved, with increased product formation at 5 minutes (Fig 5C and

5D).

In order to generate an OTU that specifically preferred mouse ISG15 over human ISG15,

additional residues were sought that simultaneously decreased CCHFV OTU activity toward

human ISG15. CCHFV residue E128 stood out as a candidate, since E128 is expected to facili-

tate the interaction with human ISG15 N89 but likely not with mouse ISG15 E87 (Fig 5A).

Therefore, this residue was mutated to threonine (E128T) and combined with either a Q149R

or Q149Y mutation to promote mouse ISG15 activity. Due to the documented impact of the

E128T in reducing Ub activity as well, an additional mutation was added (T10E) that is favor-

able for Ub in an attempt to compensate [44]. Analysis of the T10E/E128T/Q149R mutant

revealed that OTU activity towards human ISG15-AMC activity is reduced by more than 90%,

while Ub-AMC activity remained ~50% of the WT OTU. However, activity of this triple

mutant towards mouse proISG15 suffered a small reduction, albeit not to the same degree as

for human proISG15. In contrast, the T10E/E128T/Q149Y triple mutant reduced activity for

human ISG15-AMC by almost 80%, while boosting Ub-AMC activity by ~40%. This mutant

also had markedly reduced cleavage observed with human proISG15, with some substrate still

remaining after 20 minutes. Cleavage of mouse proISG15 is boosted relative to the wildtype

OTU and closely resembles what is achieved by the Q149Y mutation alone. This puts the activ-

ity of this triple mutant towards mouse proISG15 to levels just slightly weaker than the activity

shown with human proISG15. As a result, this further highlights the feasibility of significantly

Fig 4. Targeting the OTU “selectivity helix” to alter ISG15 preference. (A) Overlay of the KUPEV, GANV, and CCHFV OTUs. The OTU “selectivity helix”

is indicated by a red oval, with closeup views of the helix in each structure shown to the right. (B) Impact of single or multiple mutations within the helix on the

activity of the KUPEV, GANV, and CCHFV OTUs towards Ub-AMC and human ISG15-AMC. Values represent the mean ± standard deviation of two

independent experiments. (C) Cleavage assays of OTU mutants with human and sheep proISG15. Samples from each timepoint were run on BioRad Mini-

PROTEAN1 TGX™ gels and visualized by Coomassie staining. (D) Western blot analysis of OTU activity on conjugated human or sheep ISG15. Cell lysates

containing conjugated human or sheep ISG15 was incubated with purified OTUs, and deISGylase activity was assessed by Western blot.

https://doi.org/10.1371/journal.pone.0226415.g004
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altering an OTU’s activity toward an ISG15 of one species at the expense of another with just a

few mutations.

Identification of ISG15 residues responsible for OTU species specificity

The structures of sheep ISG15 in complex with the OTUs from KUPEV and GANV further

reinforce that nairovirus OTU interactions with ISG15 are confined to a well-defined region of

the ISG15 surface, formed by the C-terminal ISG15 residues (Fig 1C, Fig 3, Fig 6A) [37, 38, 43,

46]. Several of the ISG15 residues interacting with OTUs are highly conserved, restricting the

probable contributors of species preference to just a handful of variable residues (Fig 1C). Pre-

vious OTU-ISG15 structures identified ISG15 residues 89 and 149–151 (87 and 147–149 in

mouse ISG15) as key residues involved in OTU-interactions. Since these residues are not con-

served, they have the potential to affect OTU species preference (Fig 6A and 6B) [38].

Fig 5. Selectively altering CCHFV OTU interactions with human ISG15 and mouse ISG15. (A) Closeup views of

the structural environment encompassing residues 128 and 149 (131/152 in ERVEV) of the OTUs is shown. (B)

Overlay of the KUPEV, GANV, and CCHFV OTUs with the targeted sites shown by red dots. (C) Impact of mutations

on the activity of CCHFV OTU towards Ub-AMC and human ISG15-AMC. Values shown for the AMC assays

represent the mean ± standard deviation of two independent experiments. (D) Impact of mutations on the activity of

CCHFV OTU towards human proISG15 and mouse proISG15. Samples from each proISG15 assay timepoint were run

on BioRad Mini-PROTEAN1 TGX™ gels and visualized by Coomassie staining.

https://doi.org/10.1371/journal.pone.0226415.g005

Fig 6. Molecular contributors to species-variable ISG15 interactions with nairovirus OTUs. (A) Surface rendering of sheep ISG15 (purple) with the residues forming

the interface shown in light teal. The locations of residues 89, 149, and 151 that have been previously suggested as responsible for species-specific interactions are

indicated. (B) Molecular environment of the CCHFV OTU-human ISG15 (PDB ID 3PHX) and ERVEV OTU-mouse ISG15 (PDB ID 5JZE) structures surrounding

residues 89 and 149–151 (87 and 147–149 in mouse ISG15). (C) Cleavage assays of the CCHFV, ERVEV, KUPEV, and GANV OTUs with mutant human proISG15

constructs. Mutations were introduced to human proISG15 at residues 89, 149, and 151 to match those in northern tree shrew, fish, or mouse ISG15. Samples from each

timepoint were run on BioRad Mini-PROTEAN1 TGX Stain-Free™ gels and visualized as described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0226415.g006
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To test the influence of these four positions on ISG15 species preference, mutations were

introduced to the proISG15 constructs and assessed for their impact on cleavage by the OTUs

(Fig 6C). First, we mutated human proISG15 to resemble ISG15 from species that CCHFV

OTU does not efficiently cleave. Human ISG15 was mutated at these positions to resemble

shrew (F149Y/N151H), fish (N89E/F149E/N151V), or mouse (N89E/F149I/M150K/N151H).

All of these ISG15 mutants are less efficiently cleaved by CCHFV OTU, especially the fish-like

and mouse-like mutants. In addition, the fish-like ISG15 mutant demonstrated a complete

lack of cleavage when it was tested with KUPEV and GANV OTUs.

In contrast, mutating these four variable ISG15 positions did not exert the expected effect

for every OTU. In particular, the shrew-like and fish-like ISG15 mutations did not impact

ERVEV OTU activity. Similarly, KUPEV and GANV OTU activity on the shrew-like ISG15

mutant seemed to be unaffected. This suggests that other factors may be at play that have a

more important role in some OTU-ISG15 interactions. Re-examination of the ERVEV OTU-

mouse ISG15 structure in conjunction with the KUPEV OTU-sheep ISG15 structure revealed

aspects of the ERVEV and KUPEV OTUs that may account for these observations. Specifically,

the OTU hydrophobic cleft formed by KUPEV P77/I80 and ERVEV P80/I83 may be critical in

binding ISG15 P128/130 (Fig 7A). Although proline is the most common residue at this posi-

tion in ISG15s, in the case of northern tree shrew this residue is an aspartate (D130). This

aspartate pointing into the hydrophobic surface created by KUPEV I80 and ERVEV I83 would

likely interfere with binding of northern tree shrew ISG15 D130. Contrasting the hydrophobic

residues encoded by KUPEV OTU (I80) and ERVEV OTU (I83), the GANV and CCHFV

OTUs contain residues (K80 and R80 respectively) that result in a less stringent ISG15 binding

environment, and are therefore better able to accommodate the northern tree shrew ISG15

D130. To test the importance of ISG15 residue 130, we mutated northern tree shrew proISG15

(D130P). Mutating this site alone is able to introduce or enhanced cleavage of shrew proISG15

by all the OTUs tested (Fig 7B). Conversely, the opposite mutation in human proISG15

(P130D) was able to reduce or eliminate cleavage by all tested OTUs. Combining the P130D

with other mutations, F149Y and N151H in human proISG15 to generate a “shrew-like”

ISG15 further reduced OTU activity, demonstrating that these sites act synergistically to confer

ISG15 species specificity among OTUs.

The previous four highlighted residues (89, 149–151) were identified principally due to

their potential for steric clashes, or secondary structural changes, within the OTU–ISG15

interface [38]. However, the influence of position 130 appears to be more modulated by affin-

ity on the edge of the OTU–ISG15 interface. This raised the question of whether there may be

other less obvious residues on the periphery of the OTU-ISG15 interface that can influence

OTU activity towards ISG15s. This could potentially explain how OTUs appear to differentiate

between human and sheep ISG15. These two ISG15s are highly similar at the five positions

identified so far to be drivers of OTU species specificity towards ISG15s. Comparison of the

newly available structures of KUPEV with sheep ISG15 and CCHFV with human ISG15 sug-

gested two other residues that could potentially contribute to the OTU-ISG15 interface: L121

and E132 in human ISG15 versus Q121 and D132 in sheep ISG15 (Fig 7C). The location of

ISG15 residue 121 suggests a transient interaction could occur with an OTU, such as from

KUPEV, that possesses an arginine at position 149. At position 132 in ISG15, most known

ISG15s possess a glutamate at this position. Only a few ISG15s, like from sheep, have an aspar-

tate at that position. This difference could potentially add a steric, or electrostatic component

that could interfere with compatibility of an OTU’s selectivity helix, particularly at OTU posi-

tion 80. To investigate the relative contribution of these ISG15 residues to the ISG15-OTU spe-

cies preference, we introduced three sheep-like mutations in human ISG15 (N89D/L121Q/

E132D). These mutations were expected to increase human ISG15’s susceptibility for KUPEV
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Fig 7. The impact of ISG15 residues 130, 121, and 132 on species-specific OTU-ISG15 interactions. (A) Comparison of KUPEV OTU-sheep ISG15,

ERVEV OTU-C-mouse ISG15 (PDB ID 5JZE), GANV OTU-sheep ISG15, and CCHFV OTU-human ISG15 (PDB ID 3PHX) interactions between residue

130/128 of ISG15 and residues 77–80 of the OTU highlighting the variable sensitivity of this region. Cleavage assays show the relative impact of mutations in
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and ERVEV OTU. These mutations resulted in a modestly increased human proISG15 cleav-

age by KUPEV OTU, while GANV and CCHFV cleaved the sheep-like human ISG15 mutant

less efficiently (Fig 7D). Taken together, this shows that five ISG15 residue positions (89, 130,

and 149–151) strongly contribute to species-specific OTU interactions, while at least two fur-

ther residue positions (121 and 132) play additional roles.

To further assess the crucial role of these ISG15 residues in determining OTU species pref-

erence, these sites in vesper bat versus Egyptian fruit bat ISG15 were compared. These two

ISG15s provide a stark contrast in the activity that OTUs generally exhibit towards them, with

moderate to high cleavage observed for vesper bat, while only ERVEV is able to cleave Egyp-

tian fruit bat proISG15 (Fig 2). As would be expected, these two ISG15s differ at five out of the

seven identified residue positions (Fig 1B). To test the influence of these residues in distin-

guishing the two bat species, these sites were mutated in Egyptian fruit bat proISG15 to match

the corresponding residues in vesper bat proISG15. Though modestly, these mutations were

able to introduce cleavage of Egyptian fruit bat proISG15 by KUPEV, GANV, and CCHFV,

and enhanced the cleavage by ERVEV (Fig 7D). Overall, these assays demonstrate that shifting

ISG15 substrate preferences can be accomplished through specifically mutating a particular set

of residues, and that this can have a key role in species-specific cleavage activity patterns.

Discussion

Here we investigated nairovirus ISG15 species preference by assessing deISGylase activity for

14 nairovirus OTUs against ISG15s from 12 different animal species. Surprisingly, we found

that only a portion of nairoviruses appear to display robust deISGylase activity, and these

OTUs display a clear preference for ISG15 from distinct species. Using new structures of

KUPEV and GANV OTUs bound to sheep ISG15, and comparing them to previously reported

structures of CCHFV and ERVEV OTUs bound to human and mouse ISG15, respectively [38,

43, 46], we identified residues in the OTU-ISG15 interface critical for this species-specificity.

Furthermore, using structure-guided mutational analyses, we identified seven ISG15 residues

primarily responsible for the observed species-specificity of nairovirus OTUs.

Our study raises questions on the ability of OTUs to adapt to a host species, and what drives

the specificity of OTUs for particular species’ ISG15. Most nairoviruses are known to persis-

tently infect ticks, which serve as vector and reservoir, while vertebrates are amplifying hosts

developing transient infection. Therefore, the evolution of nairoviruses is likely influenced by

both arthropod and vertebrate hosts. Since ticks do not encode ISG15, OTU deISGylase activ-

ity was likely acquired as a result of nairovirus interactions with mammalian hosts and may

therefore be important for host tropism and maintenance in nature. This is supported by our

finding that deISGylase activity is only present in nairoviruses associated with mammalian

host species, including sheep and cattle. Notably, we found that many OTUs display robust

activity towards ISG15s from these species (Fig 2). Efficient ISG15 activity could increase and/

or prolong the viremic period in mammals, therefore enhancing transmission to other ticks,

forming an overall selective advantage. Nairovirus species devoid of deISGylase activity may

preferentially infect vertebrates lacking ISG15, such as birds, or are primarily restricted to

arthropod hosts. Although ticks lack ISG15, they possess other Ub-like proteins, such as

SUMO and Nedd8 [47], which could drive OTU evolution in adaptation to some arthropods.

human proISG15 and northern tree shrew proISG15 on reactions with the CCHFV, ERVEV, KUPEV, and GANV OTUs. (B) KUPEV OTU-C-sheep ISG15

and CCHFV OTU-C-human ISG15 interactions at points that differ between sheep ISG15 and human ISG15. Cleavage assays show the impact of performing

residue swaps in human proISG15 and Egyptian fruit bat proISG15 on reactions with CCHFV, ERVEV, KUPEV, and GANV. Samples from each timepoint

were run on BioRad Mini-PROTEAN1 TGX Stain-Free™ gels and visualized as described in the Materials and Methods.

https://doi.org/10.1371/journal.pone.0226415.g007
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Of note, not all nairovirus species possess an OTU; this feature is restricted to viruses of the

tick-associated Orthonairovirus genus, while nairoviruses associated with millipedes and spi-

ders lack this domain. This supports the notion that the OTU was acquired during nairovirus

evolution to counter tick or vertebrate antiviral responses.

Currently, how variation in nairovirus OTU activity on ISG15 relates to disease susceptibil-

ity in a particular host is unclear. Despite showing similar preferences for human, sheep, and

cow ISG15, CCHFV causes severe disease in humans but is asymptomatic in livestock. Simi-

larly, NSDV/GANV can cause deadly illness in sheep and goat populations, while cattle and

other livestock are refractory to infection [14]. A recent study demonstrated that species-spe-

cific sequence differences in ISG15 can impact viral tropism. The influenza B nonstructural

protein 1 is able to sequester and counter the antiviral effects of human ISG15, but not mouse

ISG15. These species-specific differences in ISG15 have been suggested to contribute to influ-

enza B’s limited host tropism [35, 48–51]. Along similar lines, coronavirus deISGylases also

show biochemical sensitivity to ISG15 species-species differences, which has been suggested to

potentially contribute to the preferred host ranges of these viruses [34, 36, 39]. Of course,

ISG15 represents only one aspect of the virus-host interface, and other factors contribute to

disease. In addition, the importance of ISG15 in the immune response varies between different

species. For example, mouse ISG15 plays a central role, whereas human ISG15 is less crucial

for antiviral immunity.

ISG15 from different species have been observed to ISGylate substrates with varying

degrees of efficiency, and the key residues driving these differences are also involved in the

OTU binding interface [37, 52]. Similarly, the primary cellular deISGylase, USP18, interacts

with the same general surface of ISG15 as OTUs [37, 53, 54]. Interestingly, the regions of

USP18 that interface with ISG15 are highly conserved (S4 Fig), suggesting the potential for

ISG15 variability to create species-specific dynamics in these interactions. This has been sug-

gested to be a contributing factor to differences in the antiviral effect of ISG15 when compar-

ing mice and humans [31]. In addition to its deISGylase activity, USP18 also negatively

regulates IFN signaling through association with the IFN receptor. Stronger association of

human USP18 and ISG15 enhances the stability of USP18, prolonging this inhibitory effect in

humans, but not in mice. Thus, considering the varying contributions of ISG15 to antiviral

immunity, it cannot be assumed that equivalent OTU deISGylase activities always translate to

equivalent presentations of illness between species.

The observed trends in OTU-ISG15 preferences provide a strong foundation for assessing

virus-host interactions, and could serve as a marker for viral host range. Virus-host interac-

tions may be predicted from ISG15 sequence alone, possibly allowing for the identification of

previously unknown hosts involved in the enzootic maintenance of nairoviruses. In addition,

these new structures and biochemical data may provide insights into the direction in which a

given nairovirus is adapting. Our data demonstrates that only a few changes are necessary for a

virus to adapt to ISG15 of a different species, potentially affecting host range or disease mani-

festation/pathogenesis. Testing mutant variants of nairovirus OTUs may help anticipate the

degree to which it would have to adapt to human hosts and provide insights into the potential

threat posed by the virus.

In addition to determining virus-host interactions, identification of key residues impacting

OTU-ISG15 interactions may allow us to capitalize on the role of ISG15 in conferring suscepti-

bility to disease. This could contribute to the development of novel animal models of disease.

Animal models to study nairovirus disease, specifically CCHFV, have been largely limited to

use of immunocompromised animals such as Stat-1-/- or IFNAR-/- mice [55, 56]. While a non-

human primate model has been recently described for CCHFV [57], immunocompetent small

animal models to study disease and potential treatments are lacking. Modification of ISG15
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could be a more conservative and targeted approach to alter susceptibility to particular nairo-

viruses in animals for disease research. Alternatively, this approach could be employed to

modify ISG15 in agriculturally important animals to make them more resistant to disease.

The role of OTU-ISG15 interactions during nairovirus infection have remained largely in

obscurity. This is in part due to the mystery that has enshrouded ISG15 function, including

the potential that it differs between species, and the lack of clarity on the full impact of the

OTU in nairovirus infections. Here we expand the knowledge of OTU interactions by showing

that viral OTU deISGylase activity levels are associated with particular nairovirus lineages, and

that there is a direct relationship between preferred species’ ISG15 and reported host tropism.

Furthermore, by investigating OTU-ISG15 interactions using novel structures, we identify

specific residues in both the OTU and ISG15 that primarily drive these preferences. These

findings can be used to guide future studies on the function of ISG15 in countering viral infec-

tions, and in turn, it’s role in viral ecology and disease.

Materials and methods

Constructs, expression and purification of OTUs and ISG15s

The OTUs of CCHFV, DUGV, ERVEV, NSDV, GANV, TAGV, QYBV, FARV, HpTV-1,

ISKV, LPHV, DGKV, HAZV, and KUPEV were constructed, expressed, and purified as previ-

ously described [38, 41, 44, 45]. For ISG15s, those in the pro form from human (Homo sapiens;
Accession: AAH09507.1), mouse (Mus musculus; Accession: AAB02697.1), sheep (Ovis aries;
Accession: AF152103.1), dromedary camel (Camelus dromedarius; Accession: XP_010997

700.1), northern tree shrew (Tupaia belangeri; Accession: AFH66859.1), vesper bat (Myotis
davidii; Accession: ELK23605.1), and fish (Oplegnathus fasciatus; Accession: BAJ16365.1) were

constructed, expressed and purified as previously described [38].

Similarly to the previously reported proISG15s, the constructs of proISG15s originating

from pig (Sus scrofa; Accession ACB87600.1), rabbit (Oryctolagus cuniculus; Accession

XP_017195918), Egyptian fruit bat (Rousettus aegyptiacus; XP_015999857.1), cow (Bos taurus;
NP_776791.1), and hedgehog (Erinaceus europaeus; XP_007525810.2) were comprised of their

species mature ISG15 sequence identified by sequence homology, codon optimized, and had

additional amino acid sequence GTEPGGRSGHHHHHH added to the C-terminal end.

These constructs were placed into a pET-15b plasmid using the NdeI/BamHI restriction sites.

The expression and purification of these proISG15s mirrored that of previously reported

proISG15s [38]. In short, E. coli BL21 (DE3) cells containing these proISG15 constructs were

grown in 6 L of LB broth containing 100 μg/mL ampicillin until an OD600 of 0.6 was reached.

Expression was induced by the addition of IPTG to a final concentration of 0.5 mM then the

culture was grown overnight at 18˚C. Subsequently, bacterial cells were isolated via centrifuga-

tion at 6,000 x g for 10 min and stored at -80˚C until purification. For purification, the cell pel-

lets containing these ISG15s were suspended in Buffer A [500 mM NaCl, 50 mM Tris (pH 7.0),

1 mM Tris (2-carbozyethyl) phosphine hydrochloride (TCEP-HCl)]. The addition of 5 mg of

chicken lysozyme per 500 mL of Buffer A was used to initiate lysis for 30 minutes at 4˚C then

sonicated on ice at 50% power with 5-second pulse increments for 6 minutes. The insoluble

cell debris was separated via centrifugation for 30 min at 48,000 x g. The resulting supernatant

was filtered with a 0.80 μm filter prior to flowing it over a high-density nickel agarose beads

(GoldBio) equilibrated with Buffer A. The column was then washed using Buffer A supple-

mented with 30 mM imidazole prior to eluting the protein of the column using Buffer A sup-

plemented with 300 mM imidazole. The eluted protein was further purified using a Superdex-

S75 column equilibrated with Buffer B [200 mM NaCl, 50 mM HEPES (pH 7.0), 2 mM DTT].

These purified pro-ISG15s were concentrated to ~1–4 mg/mL for storage at -80˚C until use.
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All OTU and ISG15 protein concentrations were determined through UV-visible spectroscopy

at 280 nm using molar extinction coefficients experimentally derived by the method of Gill

and von Hippel [58].

To generate the propargylamine derivatized sheep ISG15 and its C-terminal variant con-

taining amino acids 79–156, sequence with codon for last glycine removed was inserted into

pTYB2 using the NdeI/SmaI restrictions sites. As previously described [59], subsequent muta-

tion was performed to alter the SmaI site to create the desired the RLRG sequence at the C-ter-

minus of the two ISG15 constructs. These constructs were expressed and initially purified in

the same way as the other ISG15 constructs. For purification, the only difference in the initial

steps were the use of buffer C [75 mM NaCl, 50 mM sodium acetate, and 25 mM HEPES (pH

6.8)] augmented with 0.16% Triton X-100. Once the clarified supernatant was obtained, it was

flowed over a chitin resin column pre-equilibrated with buffer C. The chitin resin was subse-

quently washed with 2 column volumes of buffer C and resuspended in 50 ml of buffer C sup-

plemented with 260 mM sodium 2-mercaptoethanesulfonate (MESNA). The solution was

then rotated gently overnight 4˚C, and the chitin beads were recollected by gravity flow. The

volume of the solution containing the thioester forms of sheep ISG15 and C-sheep ISG15 was

reduced to 10 mL. To generate the final derivatized product of sheep ISG15-PA, or C-sheep

ISG15-PA, 0.92 g of propargylamine and 240 μL of 5 M NaOH were added to the ISG15 thioe-

ster containing solutions and left to incubate overnight at 4˚C.

Protease activity assay with proISG15 substrates

Activity assays of OTUs originating from CCHFV, DUGV, ERVEV, NSDV, GANV, TAGV,

QYBV, FARV, HpTV-1, ISKV, LPHV, DGKV, HAZV, and KUPEV with purified proISG15

derived from Egyptian fruit bat, northern tree shrew, rabbit, sheep, cow, fish, mouse, hedge-

hog, camel, vesper bat, and human were adapted from the previously reported methods [38].

Briefly, 20 nM OTU was tested for the ability to cleave 10 μM of each proISG15. Timepoints

were taken over the course if an hour and the reactions quenched in 2x Laemmli buffer and

boiling at 98˚C for 5 minutes. Samples were run on BioRad Mini-PROTEAN1 TGX™ (OTU

mutants with proISG15) or Mini-PROTEAN1 TGX Stain-Free™ pre-cast gels (wildtype

proISG15 assays and mutant proISG15 assays). All the OTU mutant assays with proISG15 and

assays involving fish proISG15 were visualized by Coomassie staining. Visualization of the

remaining assay timepoints relied on Stain-Free technology that enhances the fluorescence of

endogenous tryptophan. The gels were UV-activated for two minutes and subsequently

imaged in a BioRad ChemiDoc™ Imaging system according to the manufacturer’s

recommendations.

Cellular deISGylase assay

OTU activity towards cellular conjugated ISG15 was determined using purified OTUs and cell

lysates. Cell lysates containing conjugated human ISG15 were obtained by treating Huh7 cells

with 1000 IU of IFN-β for two days before harvesting in triton lysis buffer (1% triton X-100, 20

mM Tris-HCl, 2.5 mM MgCl2). Alternatively, lysates were obtained by transfecting HEK293T

cells with plasmids expressing V5-tagged sheep or human ISG15 (Genscript), and human

Ube1L, UbecH8, and HERC5 using Trans-IT-LT1 (Mirus). Lysates were clarified by centrifu-

gation (20 min at 13,000 rpm) and incubated for 20 min at room temperature with purified

OTU. Samples were mixed with 4x Laemmli buffer and boiled at 95˚C for 8 minutes. Proteins

were separated on 4–12% Bis-Tris SDS-PAGE gels and transferred to nitrocellulose mem-

branes using a trans-blot system (BioRad). ISG15 was detected using an ISG15 antibody (Pro-

teintech # 15981-1-AP) or a V5 tag antibody (ThermoFisher Scientific #R960CUS). Tubulin
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was used as loading control marker (T5169, Sigma). Primary antibodies were detected with

SuperSignal West Dura Fast Western blot kits (Thermo Fisher). Protein bands were visualized

using a ChemiDoc MP system (BioRad).

KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep ISG15 complex

formation

The procedure to form the KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep ISG15 com-

plexes was adapted from previously described methods [38]. In short, purified KUPEV OTU

and GANV OTU was added directly to the C-sheep ISG15-PA and sheep ISG15-PA mixtures

respectively in a 1:4 volume ratio. The solutions were then dialyzed in buffer D [250 mM

NaCl, 25 mM HEPES (pH 7.0)] and buffer E [100 mM NaCl, 50 mM Tris (pH 8.0)] respec-

tively overnight at 4˚C. The dialyzed complex solution was then flowed through high-density

nickel agarose beads pre-equilibrated with buffer D and buffer E respectively. The KUPEV

OTU-C-sheep ISG15 complex was washed with buffer D supplemented with 30 mM imidazole

and eluted with buffer D supplemented with 300 mM imidazole. The GANV OTU-sheep

ISG15 complex was washed with buffer E supplemented with 10 mM imidazole and eluted

with 300 mM imidazole. To further purify the GANV complex, the solution, dialyzed in 50

mM Tris (pH 8.0), underwent anion exchange chromatography, eluting from a MonoQ 10/

100 column using a linear gradient from 0 to 1 M NaCl with 50 mM Tris (pH 8.0). To further

purify the complexes, size exclusion was performed on a Superdex 75 column pre-equilibrated

with buffer F [100 mM NaCl, 5 mM HEPES (pH 7.0), and 5 mM DTT] for KUPEV OTU-C-

sheep ISG15 and buffer G [100 mM NaCl, 5 mM HEPES (pH 7.5), and 10 mM DTT] for

GANV OTU-sheep ISG15. The KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep ISG15

complexes were then concentrated to 12 mg/ml and 12.5 mg/ml respectively.

Crystallization of KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep

ISG15

The KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep ISG15 complexes were screened

against a series of Qiagen NeXtal suites by hanging drop using a TTP Labtech Mosquito (TTP

Labtech, Herfordshire, United Kingdom). For the KUPEV OTU-C-sheep ISG15 complex, the

initial screens yielded small, cube-shaped crystals from a condition consisting of 0.1 M sodium

acetate (pH 4.6) and 2.0 M potassium acetate. This condition was optimized using a follow up

screen, varying concentrations from 2.1 M to 2.6 M potassium acetate and varying pH from

3.6 to 5.1. The final optimized crystals were grown in hanging drops with 2 ul of protein com-

plex solution mixed 2:1 with mother liquor containing 0.1 M sodium acetate (pH 4.1) and 2.2

M potassium acetate. The crystals were flash cooled in a cryoprotective solution containing 0.1

M sodium acetate (pH 4.1), 3 M potassium acetate, and 30% glycerol. For the GANV OTU-

sheep ISG15 complex, the initial screens yielded flat, hexagonal crystals from a condition con-

taining 0.1 MES (pH 6.5) and 15% PEG 20,000. This condition was optimized using a follow

up screen, varying concentrations from 8% to 19% PEG 20,000. The final optimized crystals

were grown in hanging drops with 1 ul of protein complex solution mixed 1:1 with mother

liquor containing 0.1 MES (pH 5.5) and 15% PEG 20,000. The crystals were flash cooled in a

cryoprotective solution containing 15% PEG 20,000 and an 18% solution consisting of ethyl-

ene glycol, DMSO, and glycerol present in a 1:1:1 ratio (EDG).

All crystals were mounted under a dry N2 steam at 100 K. A data set for KUPEV OTU-C-

sheep ISG15 was collected at the National Synchrotron Light Source II (Brookhaven National

Laboratory, Upton, NY) on Life Science Biomedical Technology Research AMX beamline

17-ID-1 using a Eiger9M detector. Data were collected using wavelength 1 Å. Similarly, a data
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set for GANV OTU-sheep ISG15 was collected at the Advanced Photon Source (Argonne

National Labs, Argonne, IL) on SBC-CAT beamline ID-18 using a Pilatus3 X 6M detector.

Data were collected using wavelength 1 Å.

Data processing and structure solutions

All X-ray images were indexed, strategized, integrated, and scaled using HKL2000 [60]. To

create a cross-validation set from a random 5% of the reflections to be used throughout refine-

ment, the CCP4 software suite was employed [61]. The initial phase solutions for the structures

of KUPEV OTU-C-sheep ISG15 and GANV OTU-sheep ISG15 were obtained using molecu-

lar replacement via Phaser [62]. The search models for both KUPEV OTU-C-sheep ISG15 and

GANV OTU-sheep ISG15 were homology models created by MODELLER [63] using the

structures of CCHFV OTU-human ISG15 (PDB entries 3PHX and 3PSE) [43, 46], DUGV

OTU-Ub (PDB entry 4HXD) [44], and ERVEV OTU-mouse ISG15 (PDB entry 5JZE) [38] as

templates. The structures were refined initially using Autobuild [64] then iterative cycles of

model building with Coot [65] and refinement with Phenix [66]. The Find Water COOT pro-

gram function was used to initially add water molecules to 2Fo—Fc density peaks greater than

1σ and subsequently were assessed individually [67]. Molprobity was used to examine the final

model of each structure to confirm the quality of the structures. The data collection and refine-

ment statistics for each structure along are listed in Table 1. KUPEV OTU-C-sheep ISG15

(PDB entry 6OAR) and GANV OTU-sheep ISG15 (PDB entry 6OAT) have been deposited in

the protein data bank.

Mutant generation and enzymatic assays

Mutants of proISG15 and nairovirus OTUs were generated by the QuikChange approach

using the manufacturer’s protocol (Agilent Technologies, Inc). The resulting PCR product was

transformed into NEB-5α cells by heat shock (New England Biolabs), followed by plasmid

purification and confirmation of mutants by sequencing. Confirmed mutant plasmids were

transformed into BL21(DE3) or T7 Express cells by heat shock (New England Biolabs). The

proISG15 cleavage assays were run as described above. Assays with Ub- and human ISG15-

AMC for the OTU mutants were run in duplicate as previously described [38, 41, 44]. Confir-

mation of Ub-AMC activity for HAZV, TAGV, FARV, DGKV, HpTV-1, LPHV, QYBV, and

ISKV were run with an adapted protocol (S2C Fig). Assays were run in triplicate with 4 nM

OTU against 1 μM Ub-AMC in a 30 μL reaction volume.

Accession numbers

Final protein structures were deposited in the Protein Data Bank with IDs for 6OAR and

6OAT for KUPEV OTU–C-sheep ISG15 and GANV OTU–sheep ISG15 complexes

respectively.

Supporting information

S1 Fig. Expanded nairovirus OTU sequence alignment. Sequence alignment of the OTUs

from the fourteen viruses included in this study. Annotated as in Fig 1A.

(TIF)

S2 Fig. Related to Fig 2. (A) OTU-proISG15 cleavage assays for HAZV, TAGV, FARV,

DGKV, HpTV-1, LPHV, QYBV, and ISKV. Data obtained as described in Fig 2 and the Mate-

rials and Methods. (B) Western Blots of OTU activity against ISGylated substrates in cellular

lysates. (C) Reference Ub-AMC activity for OTUs. DGKV, HpTV-1, and LPHV are known to
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have poor/negligible DUB activity [44]. Values are the mean ± standard deviation of three

independent experiments.

(TIF)

S3 Fig. Related to Fig 3. (A) Surface rendering of the KUPEV OTU with the major regions

forming the interface indicated. (B) Electrostatic interactions between KUPEV OTU (green)

and sheep ISG15 (purple) in a region peripheral to the main interface.

(TIF)

S4 Fig. USP18 sequence alignment. Sequence alignment of USP18 from human (Accession:

CAG33497.1), mouse (Accession: CAJ18436.1), cow (Accession: XP_005887504.1), pig

(Accession: NP_998991.1), hedgehog (Accession: XP_016048336.1), Egyptian fruit bat (Acces-

sion: XP_015980899.1), rabbit (Accession: XP_017193977.1), and camel (Accession:

P_010992102.1). The catalytic triad is shown in black boxes. Regions forming the interface

with ISG15 are noted by blue bars based on a mouse USP18-ISG15 X-ray crystal structure

(PDB entry 5CHV).

(TIF)

S1 File. Validation report for KUPEV OTU-C-sheep ISG15.

(PDF)

S2 File. Validation report for GANV OTU-sheep ISG15.

(PDF)
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References

1. Maes P, Adkins S, Alkhovsky SV, Avsic-Zupanc T, Ballinger MJ, Bente DA, et al. Taxonomy of the

order Bunyavirales: second update 2018. Arch Virol. 2019; 164(3):927–41. Epub 2019/01/22. https://

doi.org/10.1007/s00705-018-04127-3 PMID: 30663021.

2. Maes P, Alkhovsky SV, Bao Y, Beer M, Birkhead M, Briese T, et al. Taxonomy of the family Arenaviri-

dae and the order Bunyavirales: update 2018. Arch Virol. 2018; 163(8):2295–310. https://doi.org/10.

1007/s00705-018-3843-5 PMID: 29680923.

3. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemor-

rhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral

Res. 2013; 100(1):159–89. Epub 2013/08/03. https://doi.org/10.1016/j.antiviral.2013.07.006 PMID:

23906741.

4. Burt FJ, Spencer DC, Leman PA, Patterson B, Swanepoel R. Investigation of tick-borne viruses as

pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged

Nairovirus OTUs and host ISG15 specificity

PLOS ONE | https://doi.org/10.1371/journal.pone.0226415 December 23, 2019 22 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226415.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226415.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226415.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226415.s006
https://doi.org/10.1007/s00705-018-04127-3
https://doi.org/10.1007/s00705-018-04127-3
http://www.ncbi.nlm.nih.gov/pubmed/30663021
https://doi.org/10.1007/s00705-018-3843-5
https://doi.org/10.1007/s00705-018-3843-5
http://www.ncbi.nlm.nih.gov/pubmed/29680923
https://doi.org/10.1016/j.antiviral.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/23906741
https://doi.org/10.1371/journal.pone.0226415


thrombocytopenia. Epidemiol Infect. 1996; 116(3):353–61. Epub 1996/06/01. https://doi.org/10.1017/

s0950268800052687 PMID: 8666081; PubMed Central PMCID: PMC2271429.

5. Dandawate CN, Work TH, Webb JK, Shah KV. Isolation of Ganjam virus from a human case of febrile ill-

ness: a report of a laboratory infection and serological survey of human sera from three different states

of India. Indian J Med Res. 1969; 57(6):975–82. Epub 1969/06/01. PMID: 5823182.

6. Kalunda M, Mukwaya LG, Mukuye A, Lule M, Sekyalo E, Wright J, et al. Kasokero virus: a new human

pathogen from bats (Rousettus aegyptiacus) in Uganda. Am J Trop Med Hyg. 1986; 35(2):387–92.

Epub 1986/03/01. https://doi.org/10.4269/ajtmh.1986.35.387 PMID: 3082234.

7. L’Vov D K, Kostiukov MA, Daniiarov OA, Tukhtaev TM, Sherikov BK. [Outbreak of arbovirus infection in

the Tadzhik SSR due to the Issyk-Kul virus (Issyk-Kul fever)]. Vopr Virusol. 1984; 29(1):89–92. Epub

1984/01/01. PMID: 6143452.

8. Rao CV, Dandawate CN, Rodrigues JJ, Rao GL, Mandke VB, Ghalsasi GR, et al. Laboratory infections

with Ganjam virus. Indian J Med Res. 1981; 74:319–24. Epub 1981/09/01. PMID: 6797936.

9. Treib J, Dobler G, Haass A, von Blohn W, Strittmatter M, Pindur G, et al. Thunderclap headache caused

by Erve virus? Neurology. 1998; 50(2):509–11. Epub 1998/03/04. https://doi.org/10.1212/wnl.50.2.509

PMID: 9484383.

10. Spengler JR, Bergeron E, Rollin PE. Seroepidemiological Studies of Crimean-Congo Hemorrhagic

Fever Virus in Domestic and Wild Animals. PLoS Negl Trop Dis. 2016; 10(1):e0004210. Epub 2016/01/

08. https://doi.org/10.1371/journal.pntd.0004210 PMID: 26741652; PubMed Central PMCID:

PMC4704823.

11. Spengler JR, Estrada-Pena A, Garrison AR, Schmaljohn C, Spiropoulou CF, Bergeron E, et al. A chro-

nological review of experimental infection studies of the role of wild animals and livestock in the mainte-

nance and transmission of Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2016; 135:31–47.

Epub 2016/10/28. https://doi.org/10.1016/j.antiviral.2016.09.013 PMID: 27713073; PubMed Central

PMCID: PMC5102700.

12. Davies FG. Nairobi sheep disease. Parassitologia. 1997; 39(2):95–8. Epub 1997/06/01. PMID:

9530691.

13. Ishii A, Ueno K, Orba Y, Sasaki M, Moonga L, Hang’ombe BM, et al. A nairovirus isolated from African

bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nat Commun. 2014;

5:5651. Epub 2014/12/03. https://doi.org/10.1038/ncomms6651 PMID: 25451856; PubMed Central

PMCID: PMC4268697.

14. Montgomery E. On a Tick-borne Gastroenteritis of Sheep and Goats occurring in British East Africa.

Journal of Comparative Pathology and Therapeutics. 1917; 30(1):28–57.

15. Converse JD, Hoogstraal H, Moussa MI, Feare CJ, Kaiser MN. Soldado virus (Hughes group) from

Ornithodoros (Alectorobius) capensis (Ixodoidea: Argasidae) infesting Sooty Tern colonies in the Sey-

chelles, Indian Ocean. Am J Trop Med Hyg. 1975; 24(6 Pt 1):1010–8. Epub 1975/11/01. https://doi.org/

10.4269/ajtmh.1975.24.1010 PMID: 1200252.

16. Crabtree MB, Sang R, Miller BR. Kupe virus, a new virus in the family bunyaviridae, genus nairovirus,

kenya. Emerg Infect Dis. 2009; 15(2):147–54. Epub 2009/02/06. https://doi.org/10.3201/eid1502.

080851 PMID: 19193256; PubMed Central PMCID: PMC2657624.

17. Sang R, Onyango C, Gachoya J, Mabinda E, Konongoi S, Ofula V, et al. Tickborne arbovirus surveil-

lance in market livestock, Nairobi, Kenya. Emerg Infect Dis. 2006; 12(7):1074–80. Epub 2006/07/14.

https://doi.org/10.3201/eid1207.060253 PMID: 16836823; PubMed Central PMCID: PMC3291068.

18. Durfee LA, Lyon N, Seo K, Huibregtse JM. The ISG15 conjugation system broadly targets newly syn-

thesized proteins: implications for the antiviral function of ISG15. Mol Cell. 2010; 38:722–32. Epub

2010/06/15. https://doi.org/10.1016/j.molcel.2010.05.002 PMID: 20542004.

19. Bakshi S, Holzer B, Bridgen A, McMullan G, Quinn DG, Baron MD. Dugbe virus ovarian tumour domain

interferes with ubiquitin/ISG15-regulated innate immune cell signalling. J Gen Virol. 2013; 94(Pt

2):298–307. Epub 2012/11/09. https://doi.org/10.1099/vir.0.048322-0 PMID: 23136361; PubMed Cen-

tral PMCID: PMC3709621.

20. Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, Paragas J, et al. Ovarian tumor

domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses.

Cell Host and Microbe. 2007; 2:404–16. https://doi.org/10.1016/j.chom.2007.09.014 PMID: 18078692

21. Holzer B, Bakshi S, Bridgen A, Baron MD. Inhibition of interferon induction and action by the nairovirus

Nairobi sheep disease virus/Ganjam virus. PLoS One. 2011; 6(12):e28594. Epub 2011/12/14. https://

doi.org/10.1371/journal.pone.0028594 PMID: 22163042; PubMed Central PMCID: PMC3230622.

22. Scholte FEM, Zivcec M, Dzimianski JV, Deaton MK, Spengler JR, Welch SR, et al. Crimean-Congo

Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific

Protease. Cell Rep. 2017; 20(10):2396–407. Epub 2017/09/07. https://doi.org/10.1016/j.celrep.2017.

08.040 PMID: 28877473; PubMed Central PMCID: PMC5616139.

Nairovirus OTUs and host ISG15 specificity

PLOS ONE | https://doi.org/10.1371/journal.pone.0226415 December 23, 2019 23 / 26

https://doi.org/10.1017/s0950268800052687
https://doi.org/10.1017/s0950268800052687
http://www.ncbi.nlm.nih.gov/pubmed/8666081
http://www.ncbi.nlm.nih.gov/pubmed/5823182
https://doi.org/10.4269/ajtmh.1986.35.387
http://www.ncbi.nlm.nih.gov/pubmed/3082234
http://www.ncbi.nlm.nih.gov/pubmed/6143452
http://www.ncbi.nlm.nih.gov/pubmed/6797936
https://doi.org/10.1212/wnl.50.2.509
http://www.ncbi.nlm.nih.gov/pubmed/9484383
https://doi.org/10.1371/journal.pntd.0004210
http://www.ncbi.nlm.nih.gov/pubmed/26741652
https://doi.org/10.1016/j.antiviral.2016.09.013
http://www.ncbi.nlm.nih.gov/pubmed/27713073
http://www.ncbi.nlm.nih.gov/pubmed/9530691
https://doi.org/10.1038/ncomms6651
http://www.ncbi.nlm.nih.gov/pubmed/25451856
https://doi.org/10.4269/ajtmh.1975.24.1010
https://doi.org/10.4269/ajtmh.1975.24.1010
http://www.ncbi.nlm.nih.gov/pubmed/1200252
https://doi.org/10.3201/eid1502.080851
https://doi.org/10.3201/eid1502.080851
http://www.ncbi.nlm.nih.gov/pubmed/19193256
https://doi.org/10.3201/eid1207.060253
http://www.ncbi.nlm.nih.gov/pubmed/16836823
https://doi.org/10.1016/j.molcel.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20542004
https://doi.org/10.1099/vir.0.048322-0
http://www.ncbi.nlm.nih.gov/pubmed/23136361
https://doi.org/10.1016/j.chom.2007.09.014
http://www.ncbi.nlm.nih.gov/pubmed/18078692
https://doi.org/10.1371/journal.pone.0028594
https://doi.org/10.1371/journal.pone.0028594
http://www.ncbi.nlm.nih.gov/pubmed/22163042
https://doi.org/10.1016/j.celrep.2017.08.040
https://doi.org/10.1016/j.celrep.2017.08.040
http://www.ncbi.nlm.nih.gov/pubmed/28877473
https://doi.org/10.1371/journal.pone.0226415
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