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Abstract: Since they lack native soluble membrane antigens, the analysis and selection of antigen-
specific antibodies are commonly performed on whole live cells. Here, we have developed a simple
and convenient enzyme-linked immunosorbent assay (ELISA) based on cell membrane antigens. Sol-
uble cell membrane proteins isolated from Raji cells were immobilized on the polystyrene microplate,
which permitted the assessment of a therapeutic anti-CD22 monoclonal antibody. The experiments
showed less variability in the intra-assay. Compared to the living cell ELISAs, the advantage of
the assay is avoiding cell losses and high variation of optical density (OD) readings. We provide a
quantitative and reproducible ELISA that can be potentially applied to the development of specific
antibodies against cell surface antigens.
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1. Introduction

Therapeutic monoclonal antibodies (mAbs) have become important for the treatment
of diseases in clinics [1,2]. A standardized method is important for quality evaluation and
pharmacokinetic (PK) measurements in preclinical and clinical trials of the administered
mAbs [3]. Because soluble membrane antigens are not available or accessible, different
alternative methods have been developed for the detection and analysis of mAbs that
recognize cell surface antigens. For example, ELISA assays based on whole live cells [4–6]
or fixed cells [6–8] have been used to characterize antibodies against cell surface antigens.
Meanwhile, other methods based on anti-idiotype (anti-Id) antibodies [6,9], peptide con-
jugates [10], or flow cytometry [11] provide effective tools for monitoring the antibody
production or PK of the administered antibody in the patients [12]. However, the develop-
ment of anti-Id antibodies remains challenging, laborious, and time-consuming [13,14].

A number of anti-CD22 mAb drugs have been developed in different clinical trials
for therapy of B-cell leukemias and autoimmune diseases [15,16]. Several anti-CD22
mAb are investigated under different clinical trial phases for non-Hodgkin’s lymphoma
(NHL) [17–19]. CD22 is restrictively expressed in lymphocytes of the B cell lineage and can
be found in the cytoplasm of pro- and pre-B cells. Because anti-CD22 mAbs can target and
suppress matured B cells, their indications have been further expanded for the treatment of
rheumatoid arthritis (RA), systemic lupus erythematous (SLE), etc. Therefore, it is urgently
necessary to develop consistent and reliable protocols for quality control (QC) analysis of
anti-CD22 mAbs and derivatives during antibody production or clinical studies [12,20].

Here, we showed a reliable and convenient ELISA assay based on whole cell mem-
branes to assess anti-CD22 antibodies. Membrane proteins were isolated from Raji cells, a
malignant B cell line, and then attached to polystyrene plate in carbonate-bicarbonate buffer.
We assayed chimeric anti-CD22 antibodies to the membrane antigens of Raji cells. We
further selected high-affinity phage-displayed binders from 11 anti-CD22 scFv candidates
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by using the established cell-based ELISA assay. This simple ELISA can be applied for
anti-CD22 antibodies in QC analysis.

2. Materials and Methods
2.1. Antibodies and Cell Lines

Mouse/human chimeric anti-CD22 IgGs were generated by fusing the heavy and light
chain sequences of the anti-CD22 antibody RFB4 with human IgG1 constant regions. The
human B-lymphoblastoid cell line Raji was purchased from ATCC and cultured in RPMI
1640 supplemented with 10% fetal bovine serum (FBS) (GIBCO).

2.2. Expression and Purification of Anti-CD22 IgGs

The soluble anti-CD22 IgG protein was expressed by the HKE293T cells as per the
procedures previously described [21–23].

2.3. Preparation of Cell Membrane Proteins

To prepare cell membrane antigen, 1 × 107 Raji cells were harvested via centrifugation
at 300× g for 5 min. They were washed with 1 mL of phosphate buffer (PBS) once and
suspended in 0.5 mL of PBS. The suspended cells were ultrasonicated on ice for 45 s with
12 watts of power output and then centrifuged at 300× g for 10 min. The supernatant
was collected and diluted in the final 0.5 mL of PBS. The protein concentration of the
supernatant containing soluble membrane proteins was quantified using a BCATM Protein
assay Kit (Pierce, Rockford, IL, USA). The concentration was set at 1–1.5 mg/mL.

2.4. Screening of Phage-Displayed Anti-CD22 scFvs

Phages were prepared as described previously [24]. To rescue the phage from the
individual clones, replicas of the master plate were prepared by adding 20 µL of overnight
culture from the master plate to 1 mL/well of 2×YT medium supplemented with 2%
glucose and ampicillin in a fresh 96-well cluster plate. After incubation for ~1.5 h at 37 ◦C
with shaking at 250 rpm, M13KO7 helper phage was added to each well in the master
plate. The phage infection was performed by incubating for 1 h at 37 ◦C with shaking at
250 rpm. The infected bacterial cells were collected by centrifugation at 3000× g for 10 min
at room temperature. The medium was then quickly discarded and cells in each well were
resuspended in 2×YT medium containing ampicillin and kanamycin. The master plate
was incubated overnight at 37 ◦C with shaking at 250 rpm. The next day, the culture plate
was centrifuged at 3000× g for 10 min at room temperature and the phage supernatant was
directly used for ELISA.

2.5. Cell-Based ELISA Assay

The concentration of membrane antigen was adjusted to 1 mg/mL in carbonate–
bicarbonate buffer (15 mM Na2CO3, 35 mM NaHCO3, pH 9.6) and added to a 96-well
polystyrene microplate plate (IWAKI, Tokyo, Japan) in amounts of 100 µL. The plate was
incubated overnight at 4 ◦C to allow membrane antigen to attach to the plate bottom. To
block non-specific binding sites on the plate, 200 µL of boric acid buffer (26 mM Na2B4O7,
100 mM H3BO3, 0.1% BSA, 100 mM NaCl, 3 mM KCl and 0.5% Tween-20, pH8.0) were
added to each well. The plate was then incubated at 37 ◦C for 1 h. Serially diluted IgGs or
phages in 100 µL of boric acid buffer were added to the plate and incubated at 37 ◦C for 1 h.
To remove the unbound IgGs or phages, the plate was washed three times with 100 µL of
boric acid buffer. Bound IgGs were detected by adding 100 µL of horseradish peroxidase
(HRP)-conjugated goat anti-human Fc antibody (Jackson ImmunoResearch, West Grove,
PA, USA). Bound phages were detected by mouse anti-M13KO7 antibody (GE Healthcare,
Chicago, IL, USA). After 1 hour of incubation at 37 ◦C, the plate was washed as described
as above. The substrate o-phenylenediamine (Sigma-Aldrich, St. Louis, MO, USA) was
added, and plates were incubated until the appropriate color had developed. The reaction
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was stopped by adding 100 µL of 40% H2SO4. The absorbance (λ = 450 nm) was measured
with a µQuant® microplate reader (Bio-Tek Instruments Inc., Winooski, VT, USA).

2.6. Data Analysis

Data analysis was performed using GraphPad Prism 8 (GraphPad Software, San Diego,
CA, USA). The OD readings of sample wells were normalized by subtracting blank read-
ing from that of sample wells. The averages of duplicate well OD readings as y-values
were plotted against the logarithm of concentration as x-values. The data were ana-
lyzed using the four-parameter curve-fitting equation explained in detail in the GraphPad
Prism 4.0 Software.

3. Results
3.1. Validation for Cell-Based ELISA

In an attempt to roughly isolate membrane antigens, whole live cells were subjected to
three simple steps, including ultrasonic process, low-speed centrifugation, and high-speed
centrifugation. Ultrasonic process with 12 watts of power output for 45 s was effective
enough to fragmentate the whole live cells. Via subsequently low-speed centrifugation,
which may reduce unbroken cells or larger fragments, and high-speed centrifugation,
which may sedimentate insoluble membrane antigen fragments, membrane antigens were
isolated rapidly.

We screened the concentrations of membrane proteins at 0.5, 1, and 1.5 mg/mL in the
preliminary experiments. After considering low non-specific background and high positive
OD values, membrane proteins were adjusted to a final concentration of 1 mg/mL using
carbonate–bicarbonate buffer (pH 9.6) and immobilized on the polystyrene microplate via
overnight incubation at 4 ◦C. We assayed chimeric anti-CD22 antibodies against membrane
antigens of Raji cells. Titration curves of the antibodies were plotted by the mean of OD
reading against logarithm of concentration (Figure 1). The EC50 of chimeric anti-CD22
antibodies was shown as 28.3 µg/mL in the four-parameter curve-fitting analysis. EC50
may be used as an index of binding affinity of antibodies. To assess specificity of assay
for measuring anti-CD22 antibodies, we used chimeric anti-CD22 antibodies as a positive
control and an irrelevant anti-TNF alpha antibody to explore the antigen specificity of
anti-CD22 antibody binding activity on membrane antigen of Raji cells. Chimeric anti-CD22
antibody displayed a dose response curve, whereas the irrelevant anti-TNF alpha antibody
did not display detectable specific binding on membrane antigen of Raji cells. Results are
shown in Figure 1. The results clearly prove the special binding of anti-CD22 antibodies to
membrane antigen of Raji cells, whereas the irrelevant anti-TNF alpha antibody did not
display detectable specific binding on membrane antigen of Raji cells.

The repeatability and reproducibility of the assay are acceptable. Our data are analyzed
by one four-parameter curve-fitting equation. The data analyzed using the four-parameter
logistic model had been applied in the immunoassays [8,25,26]. The chimeric anti-CD22
antibody was assayed three times on different days. The mean of OD readings was plotted
against the logarithm of concentration for experiments performed on different days. Since
EC50 may be used as an index of the binding affinity of antibodies, we analyzed the inter-
assay and intra-assay EC50 values. The EC50 values of chimeric antibody both showed less
variability in the inter- or intra-assay experiments. The EC50 values of chimeric antibody
varied from 28.3 to 32.3, with an average of 29.5 ± 2.3 (CV = 10%), as shown in Table 1.

To investigate whether the concentration of the membrane antigen had an effect on
the assay performance, we compared chimeric anti-CD22 antibody binding curves at five
different concentrations of membrane antigens (Figure 2). All other assay conditions were
the same for the 96-well plates. At the low 1 µg/mL and 10 µg/mL concentrations of
membrane antigen, chimeric anti-CD22 antibody showed low binding affinity. The binding
affinities of antibodies rose with the elevation of membrane antigen density. No significant
difference in binding activity was observed at concentrations between 0.1 mg/mL and
0.5 mg/mL. The curve was obviously shifted at the concentration of 1 mg/mL. The optimal
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concentration of membrane antigen was determined to be 1 mg/mL. We coated 10 ng of
recombinant CD22 protein per well in the ELISA plate. ELISA reached the saturation value
at the 1 µg/mL concentration of anti-CD22 antibody. Cell-membrane-based ELISA reaches
saturation at 100 µg/mL of anti-CD22 antibody. We estimate that the coated cell membrane
contains CD22 amounts lower than 10 ng per well.

Antibodies 2022, 11, x FOR PEER REVIEW 4 of 8 
 

 

 

Figure 1. Titration curves of antibodies in binding assay against membrane antigens. Total soluble 

membrane proteins of Raji cells were used to detect chimeric anti-CD22 antibody (■) and anti-TNF 

α antibody (▼). The averages of samples were plotted against antibody concentration. 

The repeatability and reproducibility of the assay are acceptable. Our data are ana-

lyzed by one four-parameter curve-fitting equation. The data analyzed using the four-

parameter logistic model had been applied in the immunoassays [8,25,26]. The chimeric 

anti-CD22 antibody was assayed three times on different days. The mean of OD readings 

was plotted against the logarithm of concentration for experiments performed on different 

days. Since EC50 may be used as an index of the binding affinity of antibodies, we analyzed 

the inter-assay and intra-assay EC50 values. The EC50 values of chimeric antibody both 

showed less variability in the inter- or intra-assay experiments. The EC50 values of chi-

meric antibody varied from 28.3 to 32.3, with an average of 29.5 ± 2.3 (CV = 10%), as shown 

in Table 1. 

Table 1. Summary of intra-assay and inter-assay variability of EC50 of chimeric anti-CD22 antibod-

ies. 

 
Experiment 

Mean 
1 2 3 

EC50 (μg/mL) 28.3 28.09 32.27 29.55 

SD 1.12 1.16 1.17  

SEM    2.35 

CV% 3.9 4.1 3.6 7.9 

N * 3 3 3 3 

* Number of sample or experiment. 

To investigate whether the concentration of the membrane antigen had an effect on 

the assay performance, we compared chimeric anti-CD22 antibody binding curves at five 

different concentrations of membrane antigens (Figure 2). All other assay conditions were 

the same for the 96-well plates. At the low 1 μg/mL and 10μg/mL concentrations of mem-

brane antigen, chimeric anti-CD22 antibody showed low binding affinity. The binding 

affinities of antibodies rose with the elevation of membrane antigen density. No signifi-

cant difference in binding activity was observed at concentrations between 0.1 mg/mL and 

0.5 mg/mL. The curve was obviously shifted at the concentration of 1 mg/mL. The optimal 

concentration of membrane antigen was determined to be 1 mg/mL. We coated 10 ng of 

Figure 1. Titration curves of antibodies in binding assay against membrane antigens. Total soluble
membrane proteins of Raji cells were used to detect chimeric anti-CD22 antibody (�) and anti-TNF α

antibody (H). The averages of samples were plotted against antibody concentration.

Table 1. Summary of intra-assay and inter-assay variability of EC50 of chimeric anti-CD22 antibodies.

Experiment
Mean

1 2 3

EC50 (µg/mL) 28.3 28.09 32.27 29.55
SD 1.12 1.16 1.17

SEM 2.35
CV% 3.9 4.1 3.6 7.9
N * 3 3 3 3

* Number of sample or experiment.
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CD22 antibody were used to detect membrane antigen. The averages of samples were plotted against
the antibody concentration.
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3.2. Selection of Binding-Improved Antibodies Using Cell-Based ELISA

In order to improve the binding activity of anti-CD22 antibody, RFB4 was converted
into single chain variable fragments (scFv). In previous studies, we randomly introduced
mutated residues in the variable regions of heavy or light chains of RFB4 via error-prone
PCR (non-published data). After cloning randomly mutated sequences into a phage
displayed vector, the CD22-positive phages were selected against the recombinant CD22
antigens. After sequencing, eleven sequences with different residue mutations were used
as examples in the ELISA. We attempted to select the best binders from 11 anti-CD22 scFv
candidates by using the established cell-based ELISA assay. CD22-specific scFv clones were
displayed using a phagemid vector. Phages displaying the scFv mutants, including parental
scFv HL, were produced, and binding characteristics of the scFv-phages were compared by
cell-based ELISA. Separate experiments were performed three times in triplicate sample
wells. All scFv candidates gave specific binding in phage ELISA when compared to that of
M13KO13 helper phage control (Figure 3). Among them, Clone 6 exhibited the strongest
binding, with almost three-fold improvement in each experiment.
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Figure 3. Binding characteristics of phage-displayed anti-CD22 scFvs. Different scFv mutants were
displayed with phagemid vector. Overnight cultures of scFv-phages were incubated with Raji cell
membrane, and bound scFv-phages were detected with an HRP-conjugated anti-M13 secondary
antibody. HL represents the parental scFv clone. M13KO7 helper phages are used as the negative
control. Data shown are means ± SEM of 2–3 separate experiments each performed in triplicate.

4. Discussion

The ELISA assay based on whole live cells is favorable due to the naïve molecular
structure of antigens on the cell surface. In case of native soluble membrane antigens being
expensive and not easily expressed for use in quality evaluation and pharmacokinetic (PK)
measurements of the administered antibodies in preclinical and clinical trials, many alter-
native assay approaches have been developed to assess the membrane-specific antibodies.
Meanwhile, the difference between batches of recombinant antigens can result in the high
variations in the studies. The assay’s major limitation is high variation of OD reading and
complicated wash procedures. Despite the adoption of anti-Id antibodies overcoming the
difficulty, the production of anti-Id antibodies is always time-consuming. Therefore, we
developed a quantitative cell membrane ELISA assay for assessment of membrane-specific
antibodies. The ELISA assay was validated by measuring anti-CD22 antibodies against
Raji cells. The results were quantitative and reproducible. When the method was further
used to select CD22-scFv binders with improved binding in a phage manner, it exhibited
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reliable and significant results in three separate experiments. The ELISA method will be
potentially useful in the high-throughput screening of antibodies.

Based upon these experiments, we demonstrate that the coating of membrane antigen
to polystyrene plate in carbonate–bicarbonate buffer is tight enough so that the wash proce-
dures can be performed on an ELISA microplate under vigorous conditions. Compared
to the live cell ELISAs, the main advantage in the assay is avoiding cell loss and high
variation of OD readings. This assay proves handy for evaluating antibodies targeting
specific antigens on the cell surface.

Author Contributions: Validation, S.F.; conceptualization and writing, Q.Z. All authors have read
and agreed to the published version of the manuscript.
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