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Background: Accurate cystoscopic recognition of Hunner lesions (HLs) is indis-
pensable for better treatment prognosis in managing patients with Hunner-type
interstitial cystitis (HIC), but frequently challenging due to its varying appearance.
Objective: To develop a deep learning (DL) system for cystoscopic recognition of a
HL using artificial intelligence (AI).
Design, setting, and participants: A total of 626 cystoscopic images collected from
January 8, 2019 to December 24, 2020, consisting of 360 images of HLs from 41
patients with HIC and 266 images of flat reddish mucosal lesions resembling HLs
from 41 control patients including those with bladder cancer and other chronic
cystitis, were used to create a dataset with an 8:2 ratio of training images and test
images for transfer learning and external validation, respectively. AI-based five DL
models were constructed, using a pretrained convolutional neural network model
that was retrained to output 1 for a HL and 0 for control. A five-fold cross-validation
method was applied for internal validation.
Outcome measurements and statistical analysis: True- and false-positive rates were
plotted as a receiver operating curve when the threshold changed from 0 to 1.
Accuracy, sensitivity, and specificity were evaluated at a threshold of 0.5.
Diagnostic performance of the models was compared with that of urologists as a
reader study.
Results and limitations: The mean area under the curve of the models reached 0.919,
with mean sensitivity of 81.9% and specificity of 85.2% in the test dataset. In the
reader study, the mean accuracy, sensitivity, and specificity were, respectively,
83.0%, 80.4%, and 85.6% for the models, and 62.4%, 79.6%, and 45.2% for expert urol-
ogists. Limitations include the diagnostic nature of a HL as warranted assertibility.
lsevier B.V. on behalf of European Association of Urology. This is an open access article
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Conclusions: We constructed the first DL system that recognizes HLs with accuracy
exceeding that of humans. This AI-driven system assists physicians with proper
cystoscopic recognition of a HL.
Patient summary: In this diagnostic study, we developed a deep learning system for
cystoscopic recognition of Hunner lesions in patients with interstitial cystitis. The
mean area under the curve of the constructed system reached 0.919 with mean
sensitivity of 81.9% and specificity of 85.2%, demonstrating diagnostic accuracy
exceeding that of human expert urologists in detecting Hunner lesions. This deep
learning system assists physicians with proper diagnosis of a Hunner lesion.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Interstitial cystitis (IC) and bladder pain syndrome (BPS)
represent a chronic debilitating disorder characterized by
persistent pelvic pain associated with lower urinary tract
symptoms [1]. IC/BPS can be divided into two subtypes
based on cystoscopic findings: Hunner-type IC (HIC, having
Hunner lesions), which corresponds to the International
Society for the Study of IC/BPS (ESSIC) BPS type 3, and BPS
(lackingHunner lesions), corresponding to ESSIC BPS types
1 and 2 [1–3]. Growing evidence has revealed that these
two subtypes are different in terms of clinical characteris-
tics, bladder pathology, and gene expression profiles, sug-
gesting distinct causes of pathogenesis [4–8]. Hence,
treatment strategies should be devised separately in a
subtype-directed manner, and proper recognition of a Hun-
ner lesion is of great importance [3]. However, there have
been no objective and standardized diagnostic criteria for
a Hunner lesion, and thus diagnosis of HIC is made subjec-
tively by physicians based on cystoscopic findings and other
clinical information including patient’s characteristics and
demographics. In addition, Hunner lesions vary in appear-
ance, which can make recognition challenging [9] and
may explain the variable frequency of the Hunner lesion
subtype reported around the world [8].

Artificial intelligence (AI), especially deep learning, has
increasingly been applied in medical fields, especially in
diagnostic imaging [10–14]. Previous research has demon-
strated that deep learning models can exceed the abilities
of humans to detect several diseases, including bladder can-
cer [11,15–18]. Herein, we developed a computer-aided
diagnosis (CAD) system for Hunner lesions by applying a
pretrained convolutional neural network (CNN), the most
frequently used and established deep learning algorithm
for image-data classification, which distinguished Hunner
lesions from other confusable flat reddish mucosal lesions
with higher accuracy than IC/BPS-proficient physicians.
2. Patients and methods

2.1. Ethics statement

This study was approved by the Institutional Review Board of the

University of Tokyo Hospital (no. 2019114NI), Kyorin University Hospi-

tal (no. H30-182), and National Institute of Advanced Industrial Science

and Technology (no. Hi2019-304). All participants were informed about
this study using generally accessible contact information, and written

informed consent was obtained from patients who chose to participate.

All procedures followed appropriate guidelines.
2.2. Participants and cystoscopic image preparation

A total of 82 participants were enrolled in this study, including 41

patients with HIC who had undergone and responded to endoscopic sur-

gery (electrocautery of Hunner lesions with bladder hydrodistension),

and 41 control patients who had flat reddish mucosal lesions in their

bladders and underwent transurethral resection/biopsy of the lesions

at the University of Tokyo Hospital from January 8, 2019 to December

24, 2020. All surgeries were performed under general or spinal anesthe-

sia on an inpatient basis. The flat reddish mucosal lesions were carefully

searched and cystoscopically visualized, with the bladder minimally

filled with normal saline. Diagnosis of HIC was made by two urologists

with expertise in managing IC/BPS, both board members of the East

Asian IC/BPS Clinical Guidelines Committee (Y.A. and Y.H.) [1], according

to the East Asian clinical guidelines for IC/BPS, the American Urological

Association guidelines for IC/BPS, and the ESSIC criteria [1,2,19,20].

Demographics of patients with HIC retrieved from medical records

included the following: O’Leary and Sant’s Symptom Index and Problem

Index; an 11-point numerical rating of pain intensity, with 0 indicating

no pain and 10 indicating maximum pain; a 7-grade quality of life scale

derived from the International Prostate Symptom Score, with 0 indicat-

ing excellent and 6 indicating terrible; daytime and nocturnal urinary

frequency; average and maximum voided volume; and bladder capacity

measured during bladder hydrodistension at a pressure of 80 cmH2O

under general/spinal anesthesia. Paired cold cup biopsies of the Hunner

lesion and nonlesion background mucosa were obtained and sent to the

Department of Pathology for histological analysis. Diagnoses of control

patients were made based on histology at surgery: 23 patients were

diagnosed with non–muscle-invasive bladder cancer, including 20 with

carcinoma in situ (CIS) and three with papillary urothelial carcinoma

(pTa; one with high grade and two with low grade); eight patients exhib-

ited histological evidence of subepithelial chronic inflammatory changes

accompanied by granulomas, epithelial denudation and reactive atypia,

and stromal edema in bladders that had undergone intravesical

mycobacteria bacillus Calmette-Guérin (BCG) injection for previous

bladder cancers, and were diagnosed with BCG-related cystitis; and

ten patients were diagnosed with chronic cystitis unrelated to HIC or

BCG, including one with malakoplakia and three with radiation cystitis

having a previous history of radiation therapy for prostate cancer

(two) or cervical cancer (one) [21]. Of the 20 patients with CIS, two

had previously undergone intravesical BCG therapy. All control patients

underwent transurethral resection/biopsy of the bladder tumors and/or

the flat reddish mucosal lesions if suspected of bladder cancer, suggested

by urine cytology class III or worse, and/or associated with asymp-
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tomatic macrohematuria. All surgeries were performed using white-

light rigid endoscopes (Olympus Medical System, Tokyo, Japan, or Karl

Storz, Tuttlingen, Germany). Still cystoscopic images were obtained from

the operative video records of each surgery. The flat reddish mucosal

lesions resembling Hunner lesions in control patients served as control

images for Hunner lesions, regardless of the presence or absence of

malignancy.
Table 1 – Demographics of study participants
2.3. A CAD model for Hunner lesions

We first processed cystoscopic images to highlight and correct differ-

ences between images obtained from the Olympus and Karl Storz cysto-

scopes. In each image, a region of interest (ROI) was outlined by a circle,

and the color tone and brightness of the bladder mucosa within the ROI

were corrected according to the color balance of that area. In addition,

the area outside the ROI was replaced by snow noise that was adjusted

to the corrected color tone of the ROI (Supplementary Fig. 1). Then, the

processed cystoscopic images were randomly assigned to the training

set (80%) for transfer learning of a CNN model and the test set (20%)

for external validation.

We used InceptionResNetv2, a pretrained CNNmodel with >1 million

natural images from the ImageNet database (http://www.image-net.

org), for constructing our CAD models based on transfer learning, to

compensate for the relatively small volume of training images (Supple-

mentary Fig. 2) [22]. We employed a five-fold cross-validation method

to evaluate our CAD models. Briefly, the training dataset was further ran-

domly divided into five stratified subsets of equal size and proportion of

Hunner lesion images. Among the five subsets, images from four subsets

(ie, 80% of the training data) were used to retrain the pretrained CNN

model, and images from the remaining subset (20% of the training data)

were used to validate the retrained CNN models. In this process, the net-

work parameters of the pretrained CNN model were transferred to the

initial network parameters to learn the cystoscopic images according

to the proposed method. Then, all network parameters were retrained

using images of the four subsets in a supervised manner based on the

Stochastic Gradient Descent algorithm to discern Hunner and control

lesions and validated using images from the remaining subset to prevent

overfitting in this CAD model. These steps were repeated five times by

alternating each subset used as test images, yielding five CAD models.

Subsequently, the performance of the constructed five CAD models

was evaluated using the test dataset for external validation (Supplemen-

tary Fig. 2).
HIC Control

No. (male/female) 41 (5/36) 41 (30/11)
Mean age at surgery (yr) 67.6 ± 11.8 (42–83) a 74.6 ± 9.2

(45–94)
Years from symptom onset

to surgery
3.8 ± 3.7 (1–18) NA

OSSI 14.9 ± 4.6 (5–20) NA
OSPI 12.7 ± 3.7 (3–16) NA
Pain intensity b 7.7 ± 1.8 (4–10) NA
QOL score c 5.6 ± 0.9 (2–6) NA
Daytime frequency 13.5 ± 5.7 (5–30) NA
Nocturia frequency 4.7 ± 2.6 (0–12) NA
Average voided volume (ml) 101.5 ± 47.8 (30–227) NA
Maximum voided volume (ml) 164.6 ± 80.6 (50–350) NA
Maximum bladder capacity at

hydrodistension (ml)
426.9 ± 181.0 (150–
1000)

NA

HIC = Hunner-type interstitial cystitis; NA = not analyzed; OSPI = O’Leary
2.4. Reader study of diagnostic performance to compare CAD
models with urologists

Next, we assessed the potential clinical utility of the constructed CAD

models by comparing their diagnostic performance with that of urolo-

gists in a reader study. A 100-image dataset was created by randomly

selecting 50 images each of Hunner lesions and control lesions from

the test dataset (Supplementary Fig. 2). Five IC/BPS experts (defined as

those who had performed �100 endoscopic surgeries for patients with

HIC), 11 Japanese Urological Association board–certified urologists

(those who had �6 yr of experience in urology), and eight urology resi-

dents (�5 yr of experience in urology) classified each image of the

selected 100-image dataset in a blinded manner.
and Sant’s Problem Index; OSSI = O’Leary and Sant’s Symptom Index; QOL
= quality of life; SD =standard deviation.
a Mean ± SD (range).
b Assessed using an 11-point pain intensity numerical rating scale

ranging from 0, indicating no pain, to 10, indicating maximum pain.
c Assessed on a 7-grade QOL scale derived from the International
Prostate Symptom Score, with 0 indicating excellent and 6 indicating
terrible.
2.5. Statistical analysis

The performance of the CADmodels for Hunner lesions was evaluated by

creating a receiver operating characteristic (ROC) curve. The CNN was

retrained to output 1 if the image was of a Hunner lesion and 0 if of a

control lesion. True- and false-positive rates were plotted on the ROC
curve when the threshold changed from 0 to 1. The area under the curve

(AUC) was calculated from the ROC curve. Accuracy, sensitivity, and

specificity were evaluated at a threshold of 0.5.
3. Results

3.1. Participants and cystoscopic image preparation

The demographics of the patients are shown in Table 1. All
patients with HIC favorably responded to electrocautery of
Hunner lesions and manifested the histological characteris-
tics of HIC, such as lymphoplasmacytic infiltration, epithe-
lial denudation, stromal fibrosis, and edema in bladder
pathology [4,5,20]. All control patients did not have lower
urinary tract symptoms and/or chronic pelvic pain that
needed treatments to be resolved.

A total of 626 images of 233 lesions in 82 surgeries,
including 360 images of 129 Hunner lesions and 266 images
of 104 control lesions, were obtained (Table 2 and Fig. 1). A
total of 338 images, including 236 images of Hunner lesions
and 102 images of control lesions, were obtained using the
Olympus rigid endoscope, and 288 images, including 124
images of Hunner lesions and 164 images of control lesions,
were obtained using the Karl Storz rigid endoscope. Of the
266 control images, 136 were of CIS, 14 of urothelial carci-
noma, 78 of BCG cystitis, 11 of radiation cystitis, two of
malakoplakia, and 25 of other chronic cystitis (Supplemen-
tary Table 1). The training dataset contained 500 images,
including 288 of Hunner lesions and 212 of control lesions,
and the test dataset contained 126 images, including 72 of
Hunner lesions and 54 of control lesions.

3.2. Diagnostic performance of the constructed models

Themean AUC of the five constructed CADmodels was 0.919
in the test image dataset for external validation, with mean
sensitivity of 81.9% and specificity of 85.2% at a threshold of
0.5 (Fig. 2A). In a reader study, the mean accuracy, sensitiv-

http://www.image-net.org
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Table 2 – Demographics of cystoscopic image data

HIC Control

UC a BCG b Chronic cystitis c

No. of surgeries 41 41
23 8 10

No. of images
(Olympus)

360 (236) 266 (102)

150 (47) 78 (30) 38 (25)
No. of lesions 129 104

57 26 21
Mean number of

images per lesion
2.8 2.53

2.6 3 1.8

BCG = bacillus Calmette-Guérin; HIC = Hunner-type interstitial cystitis;
UC = urothelial carcinoma.
a Urothelial carcinoma, including carcinoma in situ (20) and papillary
urothelial carcinoma (three).

b Bacillus Calmette-Guérin–related cystitis.
c Chronic cystitis unrelated to BCG cystitis, including radiation cystitis
(three) and malakoplakia (one).
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ity, and specificity (at a threshold of 0.5) were, respectively,
83.0%, 80.4%, and 85.6% for the five models; 62.4%, 79.6%,
Fig. 1 – Representative cystoscopic images of Hunner lesions and control lesions
Hunner lesions, (D and E) BCG cystitis, (F) radiation cystitis, (G) chronic cystitis, (H
urothelial carcinoma.
and 45.2% for the IC/BPS expert physicians; 51.0%, 40.0%,
and 62.0% for the Japanese Urological Association board–
certified urologists; and 46.8%, 36.0%, and 57.8% for the urol-
ogy residents. The diagnostic accuracy of the five models for
Hunner lesions (mean AUC of 0.912) exceeded that of the IC/
BPS expert physicians (Fig. 2B). Prediction of each image by
the CADmodels and humans was depicted as a heatmap and
box plot (Supplementary Fig. 3 and 4). The results suggested
that humans are likely to misrecognize control lesions for
Hunner lesions, rather than vice versa.

3.3. Heatmap visualization

Examples of Hunner and control lesions correctly recog-
nized by the CAD models are shown as heatmap visualiza-
tion in Figure 3, in which areas that were important for
diagnosis processing are highlighted. The CAD models
seemed to preferentially assess the region of a reddened
mucosal area accompanied by radiating/surrounding small
vessels in the vicinity for differentiation between images
of Hunner and control lesions. Images of control lesions that
. Representative images of preprocessed cystoscopic images including (A–C)
) CIS, and (I) UC. BCG = bacillus Calmette-Guérin; CIS = carcinoma in situ; UC =



Fig. 2 – ROC curves for the five constructed deep learning models. (A) ROC curves for the five constructed deep learning models using the test dataset. (B) ROC
curves for the five constructed deep learning models and the operating points of human urologists in the reader study. AUC = area under the curve; BPS =
bladder pain syndrome; IC = Interstitial cystitis; ROC = receiver operating characteristic.

Fig. 3 – Heatmap visualization of Hunner and control images correctly recognized by the deep learning models. The heatmaps, created using Gradient-
weighted Class Activation Mapping software, highlight the important regions in cystoscopic images for correctly predicting Hunner and control lesions.
Vessels that cluster radially toward or surround the lesions were highlighted. These features might be responsible for image recognition by the deep learning
models. The upper number of each heatmap image indicates the value predicted by the models (0, control, and 1, Hunner lesion).
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all IC/BPS expert physicians unanimously misrecognized as
Hunner lesions but all five CAD models correctly predicted
as control lesions are shown in Supplementary Figure 5.
The CAD models seemed to discriminate the images by
focusing on features including specific capillary structures
that IC/BPS expert physicians were not likely to fully notice
during cystoscopy.
4. Discussion

In the present study, we developed an AI-driven CAD sys-
tem for supporting cystoscopic recognition of a Hunner
lesion based on a deep learning algorithm. The constructed
models achieved a mean AUC of 0.912, sensitivity of 80.4%,
and specificity of 85.6% for the detection of Hunner lesions,
which outperformed the diagnostic accuracy of IC/BPS
expert physicians.

A Hunner lesion, a characteristic reddish mucosal lesion
frequently accompanied by abnormal capillary structures, is
a hallmark of HIC. Although the etiology of a Hunner lesion
remains elusive, it has been suggested that locally intensi-
fied inflammatory responses, in conjunction with ischemia,
may be associated with the pathogenesis of a Hunner lesion
[23]. This characteristic bladder lesion has crucial implica-
tions for diagnosis and treatment prognosis in HIC. In clini-
cal management, Hunner lesion–targeted therapies such as
local electrocautery or steroid injection provide more favor-
able outcomes than other treatment options in patients
with HIC [24,25]. However, there have been no objective
diagnostic markers for cystoscopic recognition of a Hunner
lesion, and its appearance is highly variable [9]. Such lack of
objectivity and variability in cystoscopic appearance, in
addition to the extremely low prevalence of the Hunner
lesion subtype, make recognition of a Hunner lesion chal-
lenging for the majority of urologists who do not have as
much expertise as expert physicians in managing IC/BPS.

AI and deep learning techniques have successfully been
applied in medical image diagnosis. Examples include
dermoscopic diagnosis of melanoma [11,15], detection of
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diabetic retinopathy in retinal fundus photographs [26],
endoscopic diagnosis and progression assessment of gastric
cancer [13], classification and mutation prediction of lung
cancer using histological images [14], and prediction of
genomic features and the response to immune checkpoint
therapies of various cancers from histological images [27].
In urology, Shkolyar et al [16] developed deep learning
models that detected bladder cancer with sensitivity of
90.9% and specificity of 98.6%. Ali et al [17] developed an
AI diagnostic platform using blue-light cystoscopic images
that not only detected bladder cancer with high sensitivity
of 95.77% and modest specificity of 87.84%, but also classi-
fied tumor invasiveness with sensitivity of 88% and speci-
ficity of 96.56%. Tokuyama et al [28] developed AI models
that predicted early recurrence of non–muscle-invasive
bladder cancer with a probability of up to 90% based on
machine learning of nuclear features in histological images.
Yamamoto et al [12] developed a deep learning algorithm
based on the assessment of histological images that accu-
rately predicted recurrence of prostate cancer. These studies
consistently demonstrated that deep learning models exert
higher diagnostic ability in conjunction with human perfor-
mance than when using either method alone. Collectively,
AI and deep learning techniques have the potential to
surpass limitations on conventional image diagnosis per-
formed by humans only.

There are several limitations to this study that relate to
the methodology, first among which is the opaque black
box nature of AI-based deep learning techniques. Second,
this study was performed using images that were acquired
only by rigid cystoscopes. The appearance of cystoscopic
images may vary depending on the light source and type
of cystoscope. The versatility of our CAD models is to be val-
idated using images obtained by other types of light sources
or cystoscopes, including flexible cystoscopes. Third, the ret-
rospective study design and the diagnostic nature of a Hun-
ner lesion as warranted assertibility might bias cystoscopic
image collection and thereby affect the results. Diagnosis
of a Hunner lesion was made by our two urologists in a sub-
jective manner, and thereby it might act as a working
hypothesis in the present study.With regard to this, we used
images of Hunner lesions that were obtained from cases that
favorably responded to electrocautery of the lesions and
showed characteristic histological features consistent with
HIC [4,5,20]. Conversely, this might exclude some HIC cases
that did not show those clinical and histological features,
and could be another limitation of the present study. Objec-
tive, reliable, and reproducible diagnosticmarkers for a Hun-
ner lesion are urgently needed to standardize the diagnosis
of a Hunner lesion. Further multicenter, international
prospective studies are warranted to verify the clinical util-
ity of our CAD models in real-world settings.

5. Conclusions

We first developed the deep learning system that recog-
nizes Hunner lesions in cystoscopic images with accuracy
(mean AUC up to 0.912) greater than that of IC/BPS expert
physicians. Our models provide a platform for developing
a system that supports the accurate diagnosis of a Hunner
lesion and that can lead to improved treatment outcomes
in managing patients with HIC.
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