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Following their success in numerous imaging and computer vision applications, deep-
learning (DL) techniques have emerged as one of the most prominent strategies
for accelerated MRI reconstruction. These methods have been shown to outperform
conventional regularized methods based on compressed sensing (CS). However, in most
comparisons, CS is implemented with two or three hand-tuned parameters, while
DL methods enjoy a plethora of advanced data science tools. In this work, we revisit
�1-wavelet CS reconstruction using these modern tools. Using ideas such as algorithm
unrolling and advanced optimization methods over large databases that DL algorithms
utilize, along with conventional insights from wavelet representations and CS theory,
we show that �1-wavelet CS can be fine-tuned to a level close to DL reconstruction
for accelerated MRI. The optimized �1-wavelet CS method uses only 128 parameters
compared to >500,000 for DL, employs a convex reconstruction at inference time, and
performs within <1% of a DL approach that has been used in multiple studies in terms
of quantitative quality metrics.
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Lengthy data acquisition remains an impediment for MRI, requiring the use of accelerated
imaging techniques. Recently, deep-learning (DL) methods have emerged as a powerful
strategy for accelerated MRI (1–3), with many studies showing substantial improvement
over conventional methods, such as compressed sensing (CS) (4). Among DL methods,
physics-guided DL (PG-DL) approaches that incorporate the forward MRI encoding
operator have received increased attention (1, 2). These methods use a nonlinear repre-
sentation for regularization, implicitly learned through neural networks, as opposed to
the linear transform-based representations of images in CS. DL reconstruction methods
are trained on large databases, include hundreds of thousands of tunable parameters,
and use advanced optimization techniques and loss functions (3). When CS methods
are implemented for comparison, they typically use two or three hand-tuned parameters
and do not leverage the sophisticated tools from the DL era.

In this study, we use these advanced data science tools to revisit �1-wavelet CS for
accelerated MRI. To this end, we leverage ideas that are often used for DL reconstructions,
such as algorithm unrolling and end-to-end training over large databases, as well as
conventional insights from CS methodology, such as wavelet subband processing (5)
and reweighted �1 minimization (6). We show that an optimized learned �1-wavelet CS
strategy with a mere 128 tunable parameters performs close to a PG-DL method with
>500,000 parameters that has been used in previous studies (7), quantitatively in terms
of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and blur metric
and qualitatively in terms of expert reader scores.

Approach

Regularized Reconstruction for Accelerated MRI. The inverse problem for accelerated
MRI involves solving the objective function

x̂= arg min
x

1

2
‖y −Ex‖22 +R(x), [1]

where E : CN → C
M is the forward multicoil encoding operator used in parallel imaging

that contains coil sensitivity maps and partial Fourier matrix for undersampling in k space
(3, 8), y ∈ C

M is the undersampled k-space data from all coils, and x ∈ C
N is the image

to be reconstructed. Note the quadratic term in Eq. 1 enforces data consistency (DC),
while R(·) is a regularizer.

In conventional CS MRI reconstruction, the regularizer is typically a weighted �1 norm
of transform coefficients, i.e., R(x) =

∑L
l=1 λl ‖Wlx‖1, where Wl is a prespecified

linear transform, such as a discrete wavelet transform (DWT) (4). This leads to a
convex objective function, which is solved using iterative optimization algorithms (8).
For instance, the alternating direction method of multipliers (ADMM) algorithm leads
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to three tunable parameters, one for DC, one for dual update,
and one for transform domain soft thresholding, which are often
hand-tuned in practice. Such algorithms are run until a stopping
criterion is met, which further makes parameter tuning difficult.

On the other hand, in PG-DL methods, the problem in Eq. 1
is solved using the idea of algorithm unrolling, which unrolls an
iterative algorithm for this problem, such as ADMM, for a fixed
number of iterations (3). In this case, the DC units are imple-
mented with conventional methods, such as gradient descent or
conjugate gradient (7), while the proximal operation related to the
regularizer unit is solved implicitly using neural networks. This un-
rolled network is then trained end-to-end over a large database us-
ing a loss function minθ

1
N

∑N
n=1 L

(
ynref, En

full
(
f (yn ,En ;θ)

))
,

where ynref denotes the fully sampled reference k space of the nth
subject; En

full is the fully sampled multicoil encoding operator of
the nth subject; N is the number of datasets in the training
database; f (yn ,En ;θ) denotes the network output of the un-
rolled network with parameters θ of the nth subject; and L(·, ·)
is a loss function, such as the �2 norm or �1 norm (3).

Proposed Learning of Optimized �1-Wavelet CS MRI Reconstruc-
tion. For the optimized �1-wavelet CS method, we propose to
use both the aforementioned algorithm unrolling and end-to-end
training strategies. To this end, we unroll the ADMM algorithm
for T = 10 iterations. While a single DWT, with Daubechies4
wavelets being popular, is commonly used in conventional CS
MRI reconstruction (4), a level of redundancy will further benefit
the reconstruction. To show the versatility of the original CS
formulation, we use L= 4 DWTs, Daubechies1-to-4 wavelets, to
form a simple overcomplete representation (9). Noting that for a
given DWT, ADMM has three tunable parameters, for data con-
sistency, dual update, and transform domain soft thresholding (8),
this leads to a total of 3 · L= 12 = 12 learnable parameters, all of
which can be learned using the end-to-end training formulation
described earlier.

Building on this basic model, we augment the �1-wavelet CS
method with two strategies derived using the characteristics of
DWTs and �1 minimization. First, due to the substantial signal
scaling changes between different subbands of a DWT, we propose
to use a different soft-thresholding parameter for each wavelet
subband. For S subbands, this leads to L · (S + 2) = 4(S + 2)
learnable parameters. In our experiments, S = 14 leads to 64
learnable parameters. Finally, especially in lower signal-to-noise
ratio regimes, it has been shown that reweighted �1 minimization
(6) may help enhance the recovery of small coefficients, which
in turn may improve blurring artifacts associated with CS re-
construction. In our setup, the output of the subband processed
optimized �1-wavelet CS reconstruction is used to define the
new weights for the reweighted �1 regularizer. Once these signal-
dependent weights are incorporated into the objective function,
the subband thresholding weights are relearned. Note there are
still L · (S + 2) learnable parameters for this stage, and the total
number of learnable parameters across the two stages is 2 · L ·
(S + 2) = 128. This proposed approach is also trained using the
earlier end-to-end formulation and is referred to as the optimized
�1-wavelet CS reconstruction.

Results

Experiments were carried out using fully sampled coronal proton
density (PD) and PD with fat-suppression (PD-FS) knee data
obtained from the New York University (NYU)-fastMRI database
(10). The datasets were retrospectively undersampled with a ran-
dom mask (R = 4 with 24 central k-space autocalibration signal

Fig. 1. A representative slice from coronal PD knee MRI, reconstructed using
hand-tuned �l-wavelet CS, optimized �1-wavelet CS, and PG-DL. The proposed
optimized �1-wavelet CS outperforms hand-tuned �l-wavelet CS, and it has
comparable performance to that of PG-DL.

lines). Training and testing were performed on PD and PD-FS
data separately. For comparison, a PG-DL approach was imple-
mented using the same ADMM unrolling except the use of a
residual network (ResNet) regularizer unit, with a total of 592,130
learnable parameters. This ResNet was originally adapted from the
winner of a superresolution challenge and has been used in recent
MRI studies successfully (7). Note the only difference between
this PG-DL and the proposed �1-wavelet CS methods is the R(·)
term, where the former employs a neural network for implicit
regularization, while the latter uses a weighted �1 norm of wavelets
for solving a convex problem. Finally, for baseline comparison,
a conventional implementation of �1-wavelet CS reconstruction
was implemented using D4 wavelets for regularization (4), which
was solved using ADMM (8). Here, the parameters of ADMM
were hand-tuned empirically, and this method is referred to as the
hand-tuned �1-wavelet CS reconstruction.

Figs. 1 and 2 show representative slices from coronal PD
and PD-FS knee MRI, respectively. In both cases, the proposed
optimized �1-wavelet CS has visibly comparable image quality to
PG-DL, while both methods yield sharper images compared to
the conventional hand-tuned �1-wavelet CS.

Table 1 summarizes the assessments over all test datasets,
including quantitative measures of SSIM and PSNR with respect
to the reference image, and a referenceless blur metric (11), as well
as qualitative image reading scores for SNR and aliasing artifacts,
which were evaluated on a four-point ordinal scale (1, excellent;
2, good; 3, fair; 4, poor) (2). Both SSIM and PSNR show that the
proposed optimized �l -wavelet CS outperforms the conventional
hand-tuned �l -wavelet CS method, with a performance close to
that of PG-DL. The referenceless quantitative blur metrics show
the same trend, with the optimized �l -wavelet CS comfortably
outperforming hand-tuned �l -wavelet CS, while having close met-
rics to those of PG-DL. These results suggest that the difference in

Fig. 2. A representative coronal PD-FS knee slice, reconstructed using hand-
tuned �l-wavelet CS, optimized �1-wavelet CS, and PG-DL. The proposed opti-
mized �1-wavelet CS performs closely to PG-DL and has better reconstruction
quality than the hand-tuned �1-wavelet CS method.
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Table 1. Summary of results over coronal PD and PD-FS test datasets

Reference Hand-tuned �1-wavelet CS Optimized �1-wavelet CS PG-DL
PSNR — 36.5230 [34.0447, 38.7672] 37.9107 [35.1328, 40.2464] 38.7396 [35.5185, 41.2859]
SSIM — 0.9190 [0.8510, 0.9499] 0.9317 [0.8618, 0.9619] 0.9423 [0.8737, 0.9683]
Blur metric 0.2777 [0.2183, 0.3207] 0.3329 [0.2683, 0.3876] 0.3278 [0.2804, 0.3742] 0.3202 [0.2652, 0.3664]
Perceived SNR 2.500 ± 0.5130 2.500 ± 0.5130 2.250 ± 0.4435 2.200 ± 0.7194
Aliasing artifact 1.750 ± 0.7018 2.800 ± 0.5187 2.600 ± 0.4756 2.250 ± 0.4051

786 slices of coronal PD and PD-FS from 10 subjects were used for testing. SSIM, NMSE, and blur metrics were calculated individually for each of these slices. The first and second rows
show the median and the interquartile range [25th, 75th percentiles] of the PSNR and SSIM metrics. The third row shows the median and the interquartile range [25th, 75th percentiles]
of the blur metric. Qualitative image readings were also performed by an expert radiologist, where one score was given for each of the PD and PD-FS datasets per subject. The fourth row
and the fifth row show the mean and ±SD of image readings for SNR and aliasing artifacts, respectively, for the reference and all methods.

performance on individual patient/scan reconstructions between
PG-DL and optimized �l -wavelet CS approaches is typically
smaller than the interpatient/scan variability of either approach.
In terms of qualitative image readings, all methods performed
similarly in terms of perceived SNR. Interestingly, the reference
had the worst score due to the higher level of noise from the
acquisitions. For aliasing artifacts readings, the trend was the
same with PG-DL outperforming both �l -wavelet CS methods,
although the difference from the proposed optimized �l -wavelet
CS method was not statistically significant.

Discussion

In this study, we revisited �l -wavelet CS for accelerated MRI
using powerful data science tools that have been developed in
the DL era for fine-tuning. While the highly tunable PG-DL
outperformed our optimized �l -wavelet CS approach as expected,
the performance gap was smaller than previously reported in the
literature. This is interesting for a number of reasons. First, during
regularization, PG-DL implicitly uses a sophisticated nonlinear
representation for the underlying images with a large number of
learnable parameters. On the other hand, our �1-wavelet approach
uses linear representations, involves only a small number of pa-
rameters, and enables an explainable convex optimization proce-
dure at inference time. Interestingly, there is <0.01 difference in
SSIM between our proposed learned �1-wavelet method that uses
128 parameters and the PG-DL approach that uses >500,000
parameters. Second, while PG-DL may potentially be further
improved using more sophisticated neural networks and training
strategies (12), it is worth noting that our �1-wavelet CS approach
used a very simple linear model described by four fixed orthogonal
DWTs and did not involve learning of linear representations.

Although the difference between optimized �1-wavelet CS and
PG-DL was smaller than previously reported quantitatively and
not significant qualitatively, PG-DL did have the highest metrics
and was the preferred reconstruction method of the expert reader
for all subjects, attesting to its ability to retain subtle details
beyond the four-point ordinal scale. Although this is not entirely

surprising given the complexity of the PG-DL model, both the
improved quantitative metrics and the statistically similar image
readings are encouraging for traditional CS methods. Going
beyond the simple 128 parameters used here with predefined
Daubechies wavelet transforms, use of more advanced wavelets,
such as symmlets, or CS with linear transform/tight frame learning
(13, 14) may further close this gap. Given the promising results
from the current model, such improvements warrant further
investigation, since the �1-norm–based CS reconstruction uses
convex sparse image reconstruction with linear representation
at inference time, which may be beneficial for characterizing
robustness, generalizability, and stability (15).

Materials and Methods

For all methods, ADMM was unrolled for T = 10 iterations. In all cases, the
input to the network was the zero-filled image, x(0) = EHy. The coil sensitivities
in E were estimated using ESPIRiT (16). The DC subproblem was solved using
conjugate gradient (3, 7) with five iterations and warm start. All tunable param-
eters were shared across iterations, consistent with the ADMM solution for Eq. 1.
Supervised training was performed with a normalized �1-�2 loss in k space (3,
7), using TensorFlow in Python. Training was performed on 300 slices from 10
subjects for coronal PD and PD-FS datasets. Testing was performed on all 786
coronal PD and PD-FS slices from 10 different subjects (17). For each method,
SSIM, PSNR, and blur metrics were calculated individually for each of these slices.
Further implementation details are provided in SI Appendix. For image readings,
Wilcoxon signed-rank test was used to evaluate the scores with a significance level
of P < 0.05. Further details on image readings are also available in SI Appendix.

Data Availability. Source codes for the algorithms have been deposited
on Zenodo (https://zenodo.org/record/6808387) (18), also accessible through
https://imagine.umn.edu/research/software (19). Previously published raw MRI
data were used for this work (https://doi.org/10.1148/ryai.2020190007) (10).
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